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Abstract

In many fields where human understanding plays a crucia) soleh as bioprocesses, the
capacity of extracting knowledge from data is of criticalpiontance. Within this frame-
work, fuzzy learning methods, if properly used, can greb#ip human experts. Amongst
these methods, the aim of orthogonal transformations, miawe been proven to be mathe-
matically robust, is to build rules from a set of trainingalanhd to select the most important
ones by linear regression or rank revealing techniques Ot algorithm is a good repre-
sentative of those methods. However, it was originally glesil so that it only cared about
numerical performance. Thus, we propose some modificatbrise original method to
take interpretability into account. After recalling theginal algorithm, this paper presents
the changes made to the original method, then discussesresnits obtained from bench-
mark problems. Finally, the algorithm is applied to a reakd fault detection depollution
problem.

Key words: Learning, rule induction, fuzzy logic, interpretabilif@LS, orthogonal
transformations, depollution, fault detection

1 Introduction

Fuzzy learning methods, unlike “black-box” models such asral networks, are
likely to give interpretable results, provided that somestaints are respected.
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While this ability is somewhat meaningless in some appbecatsuch as stock mar-
ket prediction, it becomes essential when human expertstavgain insight into a
complex problem (e.g. industrial [17] and biological [28bpesses, climate evolu-
tion [13]).

These considerations explain why interpretability issneSuzzy Modeling have
become an important research topic, as shown in recerdtliter [2]. Even so, the
meaning given to interpretability in Fuzzy Modeling is ndways the same. By
interpretability, some authors mean mathematical inetgility, as in [1] where
a structure is developed in Takagi-Sugeno systems, thds keethe interpretation
of every consequent polynomial as a Taylor series exparmrdiount the rule center.
Others mean linguistic interpretability, as in [11], [10he present paper is focused
on the latter approach. Commonly admitted requirementsferpretability are a
small number of consistent membership functions and a nede number of rules
in the fuzzy system.

Orthogonal transformation methods provide a set of toaldéolding rules from
data and selecting a limited subset of rules. Those methedsaviginally designed
for linear optimization, but subject to some conditionsytiban be used in fuzzy
models. For instance, a zero order Takagi Sugeno model camitben as a set of
r fuzzy rules, theyth rule being:

R, : if x1is A andz, is A and ... theny = 67 (@D)

where A{, AL ... are the fuzzy sets associated to thez, ... variables for that
given rule, and? is the corresponding crisp rule conclusion.

Let (z,y) be N input-output pairs of a data set, wherec R? andy € R. For the
ith pair, the above Takagi Sugeno model output is calculatedlkasvi:

~

S 69 (7\ Ja0 ($§-)>
yl _ q=1 J=1 -

T p (2)
> (j/\1 fas (@))

q=1

In equation 2 is the conjunction operator used to combine elements inulee r
premise,mg(x}) represents, within theth rule, the membership function value

for:cé»,jzl...p.

. p .
Let us introduce the rule firing strengif (') = A p4¢(z}). Thus equation 2 can
=1



be rewritten as:
Xr: 0w (z")

y=t——— ®3)
> wi(z?)

=1

Q

Once the fuzzy partitions have been set, and provided a giatnset, the?(z")

can be computed for alf’ in the data set. Then equation 3 allows to reformulate the
fuzzy model as a linear regression problem, written in mdttim as:y = P60+ E.

In that matrix form, y is the sample output vector, P is thexfjrstrength matrix,

0 is the rule consequent vector and E is an error term. Orthalgoamsformation
methods can then be used to determingthe be kept, and to assign them optimal
values in order to design a zero order Takagi Sugeno modaltine data set.

A thorough review of the use of orthogonal transformatiorthnds (SVD, QR,
OLS) to select fuzzy rules can be found in [29]. They can beldn into two main
families: the methods that select rules using thematrix decomposition only, and
others that also use the outputo do a best fit. The first family of methods (rank
revealing techniques) is particularly interesting whemitiput fuzzy partitions in-
clude redundant or quasi redundant fuzzy sets. The ortteddeast squares (OLS)
technique belongs to the second family and allows a rulecsetebased on the
rule respective contribution to the output inertia or vade. With respect to this
criterion, it gives a good summary of the system to be modelduich explains
why it has been widely used in Statistics, and also why it isigaarly suited for
rule induction, as shown for instance in [26].

The aim of the present paper is to establish, by using the OétBod as an exam-
ple, that orthogonal transformation results can be madepretable, without suf-
fering too much loss of accuracy. This is achieved by bugdterpretable fuzzy
partitions and by reducing the number of rule conclusiors Turns orthogonal
transformations into useful tools for modeling regresgooblems and extracting
knowledge from data. Thus they are worth a careful studyeretare few available
techniques for achieving this double objective, contraririowledge induction in
classification problems.

In section 2, we recall how the original OLS works. Sectiontddduces the learn-
ing criteria that will be used in our modified OLS algorithmecBon 4 presents
the modifications necessary to respect the interpretaloitinstraints. In the next
section, the modified algorithm is applied to benchmark |enois, compared to the
original one and to reference results found in the liteeaté real-world applica-

tion is presented and analyzed in section 6. Finally we giveesconclusions and
perspectives for future work.



2 Original OLS algorithm

The OLS (orthogonal least squares) algorithm [3,4] can ed usFuzzy Modeling
to make a rule selection using the same technique as in liegegssion. Wang and
Mendel [27] introduced the use of Fuzzy Basis Functions tp tha input variables
into a new linear space. We will recall the main steps useldarotiginal algorithm.

Rule construction

First N rules are built, one from each pair in the data set.dtgbhn and Mendel
[15] proposed the following Gaussian membership functmnrthie jth dimension
of theith rule.

VR
[ ( K )] (4)

MA;;(U) =
with o; = s.[ max (z%) — min (z¢%)], s being a scale factor whose value de-
i=1,2,...N* 7/ i=1,2,..,.N* 7/

pends on the_p}oblem.

Rule selection

Once the membership functions have been built, the Fuzeydnte System (FIS)
optimization is done in two steps. The first step is non-lireeal consists in fuzzy
basis function (FBF) construction; the second step, wiadihear, is the orthogonal
least square application to the FBF.

A FBF p'(x") is the relative contribution of th&h rule, built from theith example,
to the inferred output:

Thus the fuzzy system output (see equation 3) can be writtéwiawed as a linear
combinationy’ = 3" p(x?) 69, wheref? € R are the parameters to optimize (they
q

correspond to the rule conclusions). The system is equivatethe matrix form
y = PO+ E, y being the observed output whileis the error term, supposed to be
uncorrelated with the’(x) or P.

The elemenp;; of the matrix P represents thé&h rule firing strength for thgth
pair, i.e. thejth component of the’ vector.



The OLS procedure transforms thferegressors into a set of orthogonal ones using
the Gram-Schmidt procedure. Thematrix can be decomposed into an orthogonal
one, M, and an upper triangle ond,

The system becomes= M A6 +TE Letg = A#, then the orthogonal least square
m;y

solution of the system ig; = —

, 1 < ¢ < rwherem; is theith column of the

2

orthogonal matrix\/.
Optimald can be computed using the triangular systéfn= g.

Thanks to the orthogonal characteristicidf there is no covariance, hence vector
(i.e. rule) individual contributions are additive. Thisoperty is used to select the
rules. At each step, the algorithm selects the veetdhat maximizes the explained
variance of the observed outputThe selection criterion is the following one:

2. T,
[zVar); = w
vy

The selection stops when the cumulated explained variansatisfactory. This
occurs at step < N when

T

1=> [zVar]; <e (5)

i=1

e being a threshold value (e.g. 0.01).

Conclusion optimization

As the selected; still contain some information related to unselected ruts
hensohn and Mendel [15] propose to run the algorithm a seiored No selection
is made during this second pass, the aim being only to opgirtie rule conclu-
sions.

The original algorithm, as described here, results in nodéh a good numerical
accuracy. However, as we'll see later on, it has many drakgoaben the objective
is not only numerical accuracy but also knowledge extractio

3 Learning criteria

Two numerical criteria are presented: the coverage indesedbupon an activation
threshold, and the performance index. We will use them tesasthe overall system



guality. The performance index is an error based index thibalow us to measure
the numerical accuracy of our results, while the coveradexntogether with the
activation threshold, will give us information related teetsystem completeness
with respect to the learning data. To some extent, the cgeeradex reflects the
potential quality of the extracted knowledge. Linguistiteigrity, for its part, is
insured by the proposed method, and thus does not need taha®d.

The two criteria are actually independent of the OLS alponiand can be used to
assess the quality of any Fuzzy Inference System (FIS).

3.1 Coverage index and activation threshold

Consider a rule bask B, containingr rules such as the one given in equation 1.
Definitions

Let I; be the interval corresponding to thle input range and? C I; x ... x I, be
the subset oR” covered by the rule basé,(x ... x I, is the Cartesian product).

Definition 1 An activation threshold: € [0, 1] defines the following constraint:
givena, a sampler’ is said active iff 3 R, € RB, s.t.wi(x?) > a.

Definition 2 Let n be the number of active samples. The coverage index=
n/N is the proportion of active samples for the activation thesl «.

Note: Increasing the activation threshold reduces the atwfliactive samples and
transforms/? into a subsef? C 17

The threshold choice depends on the conjunctive operagalrtascompute the rule
firing strength: the use of prod operator yields lesser firing strengths which will
decrease with the input dimension, whilenén operator results in higher and less
dependent firing strengths.

The two-dimensional rule system depicted by figure 1 illtsts the usefulness of
the activation threshold and coverage index in the framkwbknowledge extrac-
tion.

3.1.1 Maximum coverage index & 0)
C1, is the maximum coverage index and it gives us two kinds ofriétion:

e Completeness: for a so called complete system, where edahséhitem ac-
tivates at least one rule, we hat&, = 1 while an empty rule base yields



IF input 1 IS 2
IF input 1 IS 1

AND IF input 2 IS
AND IF input 2 IS

1
2
Fig. 1. Input domain rule coverage

Cl, = 0. The coverage index can thus be used to measure the congidsten
of the rule base, with respect to a given data set.

e Exception dataC'l, ~ 1 is often the consequence of exception samples. We call
exception an isolated sample which is not covered by thelrage. Sample; g
in figure 1 is such an exception.

The maximum coverage index of the system shown in figure %, meaning
that there are a few exceptions.

3.1.2 Coverage index far > 0

Figure 2 shows the previous system behaviour with an amivétresholdy = 0.1.
Unfortunately, the coverage index drastically drops fi@¥ to 66%.

100

b7

1 2 3 Input 1

] No threshold (I7)
B 0.1 threshold (1},)

Fig. 2. Input domain withy = 0.1
Generally speaking, the use of a coverage index gives itiditaas to:

e System robustness (see Figure 2).
¢ Reliability of extracted knowledge: Figure 1 shows thatstegn can have a good
accuracy and be unreliable.



¢ Rule side effect: if too many samples are found in the ruleded, the rule
base reliability is questionable. Studying the evolutidrcaverage versus the
activation threshold allows to quantify this "rule sideesft".

As we shall see in section 5, a blind application of OLS maygelfairly patho-
logical situations (good accuracy and a perfect coveragexiniropping down as
soon as an activation threshold constraint is added).

The coverage index and activation threshold are easydpassy-to-understand
tools with the ability to detect such undesirable rule bases

3.2 Performance index

The performance index reflects the numerical accuracy girbeictive system. In

. 1
this study, we usé&’/ = —
n

The performance index only takes account of the active sesnfpl < N, see
definition 2), so a given system may have good predictionltesm only a few
of the available samples (i.e. god but poorC'I«), or cover the whole data set,
but with a lower accuracy.

4 Proposed modifications for the OLS

In this section, we propose changes that aim to improve ediugle interpretabil-
ity. Rule premises, through variable partitioning, aneémrdnclusions are both sub-
ject to modification.

Figure 3 is a flowchart describing the method used in the malgDLS and the
proposed modifications.

The fuzzy partitioning readability is a prerequisite told@in interpretable rule base
[11]. In the original OLS algorithm, a rule is built from eattkm of the training
set, and a Gaussian membership function is generated fromedue of each
variable. Thus a given fuzzy partition is made up of as mamygyisets as there
are distinct values within the data distribution. The resliistrated in figure 4, is
not interpretable. Some membership functions are quaghdaht, and many of the
corresponding fuzzy sets are not distinguishable, whickes & impossible to give
them a semantic meaning. Moreover, Gaussian functions &@vther drawback
for our purpose: their unlimited boundaries, which yieldeafpct coverage index,
likely to drop down as soon as an activation threshold is set.
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Fig. 3. Flowchart for the modified OLS algorithm

1000 1200

Fig. 4. Original fuzzy partition generated from a 106-iteample

4.1 Fuzzy partition readability

The necessary conditions for a fuzzy partition to be intadyle by a human expert
have been studied by several authors [5, 8, 9]. Let us rdealhain points:

¢ Distinguishability: Semantic integrity requires that theembership functions
represent linguistic concepts different from each other.

e A justifiable number of fuzzy sets [19].

e Normalization: All the fuzzy sets should be normal.
e Overlapping: All the fuzzy sets should significantly overla



e Domain coverage: Each data point,should belong significantly;(z) > e, at
least to one fuzzy set.is called the coverage level [21].

We implement these constraints within a standardized fpaztition as proposed
in [24]:
Ve Y pp(x)=1
f=1,2,...M (6)
Vf3x suchas pp(x) =1

where) is the number of fuzzy sets in the partition gndz) is the membership
degree ofr to the fth fuzzy set. Equation 6 means that any point belongs at most
to two fuzzy sets when the fuzzy sets are convex.

Due to their specific properties [22] we choose fuzzy setsarigular shape, except
at the domain edges, where they are semi trapezoidal, anishdgure 5.a. Such a
M-term standardized fuzzy partition is completely definedbyoints, the fuzzy
set centers. With an appropriate choice of parameters, synoal triangle MFs
approximately cover the same range as their Gaussian éepiiyaee figure 5.b).

c c2 c 4 Gaussian

o =01
u =05

0.8

0.6

04t

02t 4 02r

Triangular basis =5 o

0 L L L L L L L L
-200 0 200 400 600 800 1000 1200 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

(a) A standardized fuzzy partition (b) Triangle equivalEnd Gaussian MF

Fig. 5. New fuzzy partitions

4.2 Fuzzy partition design

Various methods are available to build fuzzy partitiong[18this paper, we want
to use the OLS algorithm to build interpretable rule basésleypreserving a good
numerical accuracy. To be sure that this is the case, we lvagenpare results
obtained with the original partitioning design in OLS andgk achieved with an
interpretable partitioning. To that effect, we need a sevgid efficient way to de-
sign standardized fuzzy partitions from data, as the onengbelow. The fuzzy set
centers are not equidistant as in a regular grid, but armastd according to the
data distribution, using the well known— means algorithm [14]. The multidi-

mensional k-means is recalled in Algorithm 1, we use it hedependently in each

10



input dimension.

1: Let N multidimensional data points denotedi =1... N
Let C the number of clusters to build

2: Initialization: choose k centroids E(k§,=1...C
(random or uniformly spaced)

3: Assign each data point to the nearest cluster:

cluster(z;) = argming(dist(z;, E(k))

Compute cluster centroids m(k)

while 3k such as m(k) # E(k) do
FOR (k=1 to C)E(k) = m(k)
GOTO 3

end while

© N TR

Algorithm 1. k-means algorithm

How to choose the number of fuzzy sets for each input vartableere are several
criteria to assess partition quality [11] but it is diffictdt make an a priori choice.
In order to choose the appropriate partition size, we firsiegate a hierarchy of
partitions of increasing size in each input dimensjbrdenotedFPfj for an;
size,n"** being the maximum size of the partition (limited to a reasd@aumber
(= 7)[19)).

Note: FPj"" is uniquely determined by its size;, the fuzzy set centers being the
coordinates computed by tthe— means algorithm.

The best suited number of terms for each input variable eydehed using a refine-
ment procedure based on the use of the hierarchy of fuzzijipast This iterative

algorithm is presented below. It calls a FIS generation rdlgm to be described
later. It is not a greedy algorithm, unlike other techniquesloes not implement
all possible combinations of the fuzzy sets, but only a feasem ones.

Table 1 illustrates the first steps of a refinement procedura four inpur system.
Detailed procedures are given in Algorithm 2(refinementpdure) and Algorithm
3 (FIS generation).

The key idea is to introduce as many variables, describedsofigient number of
fuzzy sets, as necessary to get a good rule base.

The initial FIS is the simplest one possible, having only are (Algorithm 2, lines
1-2; Table 1, line 1). The search loop (algorithm lines 5 tpldilds up temporary
fuzzy inference systems. Each of them corresponds to addliting initial FIS one
fuzzy set in a given dimension. The selection of the dimensioretain is based
upon performance and is done in lines 14-15 of the algoritifinve go back to
table 1, we see that the second iteration corresponds ®2ite5, and that the best
configuration is found by refining input variable # 2. Follogithis selection, a FIS

11



Line # | Iteration #| #MF per variable| PI Cl

1 1 11 11 P, CL

2 2 2 1 11 PI} I

3 2 12 11 PI3 ClI3(best)
4 2 11 2 1 P} CI3

5 2 11 1 2 PI; CI

6 3 2 211 PI} CI}

7 3 1 311 PIZ CI3

8 3 12 21 PI3  CI3 (best)
9 3 12 1 2 PI} CI§

10 4 2 2 21 PI} CI}

11 4

Table 1

An example of ongoing refinement procedure

1 iter=1;Vjn; =1
2: CALL FIS Generatior{(Algorithm 3)
3: while iter < iter,,,, do

4:  Store system as base system
5 for1 <j<pdo
6: if n; = nj**® then next j (partition size limit reached for input j)
7 n;=n;+1
8 CALL FIS Generatior(Algorithm 3)
9: Pl; =PI
10: n;=n;-1
11: Restore base system
12:  end for
13: if Vj n; = n"** then exit (no more inputs to refine)
14:  s=argmin{P[;, j=1,...,p, n; <nj} (Selectinputto refine)
5. ng=ng+1
16: CALL FIS Generatior{Algorithm 3): returnF'1.S;;.,
17: iter=iter+1
18: end while

Algorithm 2. Refinement procedure

to be kept is built up. It will serve as a base to reiterate ggusnce (Algorithm 2,
lines 3 to 18).

When necessary, the procedure calls a FIS generation thigpreferred to as Al-
gorithm 3, which is now detailed.

12



The rule generation is done by combining the fuzzy sets ofFilﬁé‘j partitions
forj=1,...,p, as described by Algorithm 3. The algorithm then removesdabe
influential rules and evaluates the rule conclusions, usirigut training data values
y',i = 1...N. The condition stated in ling, whereq, the activation threshold

Require: {n;|j=1,..,p}
1. getFPY Vj=1,..,p
2: Generate thﬂ;’:1 n; rule premises
3: forall Ruler € FIS do
4 @, =max w"(z")
5. if a, < athenremove ruler
6
7
8

,wryi

M=

elseinitialize rule conclusiorC;, = +
i=1

: end for
: Compute PI

Algorithm 3. FIS generation

defined in section 3.1, ensures that the rule is significdindgl by the examples of
the training set.

The procedure does not yield a single fuzzy inference sysbem/’ FIS of in-
creasing complexity. The selection of the best one takesdanhsideration both
performance and coverage indices. The selegtefl, corresponds to:

k = argmin(Ply,k = 1,..., K such as C1,(FISg) > thres), wherePI, and
CI1,(FISy) are theF'1S; performance and coverage indices.

In the following, only the fuzzy partition correspondingtt@bestFIS will be kept.
The initial rules are ignored as they will be determined by @LS.

The use of standardized fuzzy partitions, with a small nunalbéinguistic terms,
ensures that rule premises are interpretable. Moreowar ctivice eliminates the
problem ofquasi redundantule selection, due to MF redundancy and underlined
by authors familiar with these procedures, as [26].

However, the OLS brings forth a different conclusion forteadle. It makes rules
difficult to interpret. We will now propose another modifiicat of the OLS proce-
dure to improve that point.

4.3 Rule conclusions

Reducing the number of distinct output values improves megability as it makes
rule comparison easier. Rule conclusions may be assignieduwdtic label if the
number of distinct conclusions is small enough. The eagiagtio reduce the num-

13



ber of distinct output values is to adjust conclusions upometion of the algo-
rithm. We use the following method based on the k-means iéthgor

Given a number of distinct conclusions, and the set of training output values
y', i =1,2,..., N, the reduction procedure consists in:

e Applying the k-means method [14] to thé output values with: final clusters.
e For each rule of the rule base, replacing the original casctuby the nearest
one obtained from the k-means.

The vocabulary reduction worsens the system numericaracgwn training data.
However, rule conclusions are no more computed only withagtlsquare opti-
mization, and the gap between training and test errors magcheed.

5 Results on benchmark data sets

This section presents, compares and discusses resulisezbta two well known
cases chosen in the UCI repository [16].

5.1 Data sets

The data sets are the following ones:

e cpu-performancé209 samples):
Published by Ein-Dor and Feldmesser [7], this data set authe measured
CPU performance and 6 continuous variables such as main ryesize or ma-
chine cycle time.

e auto-mpg(392 samples):
Coming from the StatLib library maintained at Carnegie MelUniversity, this
case concerns the prediction of city-cycle fuel consunmpitiomiles per gallon
from 4 continuous and 3 multi-valued discrete variables.

The cpu-performance and auto-mpg datasets are both regrggsblems. Many
results have been reported for them in the previous yea?9[@3, 25].

Experimental method
For the experiments, we use on each dataset a ten-fold catidation method.
The entire dataset is randomly divided into ten parts. Fohgzart, the training

is done on the nine others while testing is made on the selecte. Besides the
stop criterion based upon the cumulated explained varigegpeation 5), another

14



one is implemented: the maximum number of selected rules.algorithm stops
whenever any of them is satisfied.

5.2 Results and discussion

Tables 2 and 3 summarize the results for original and mod@ie8 on test sub-
sets, for each data set. The original OLS algorithm is agphé&h only a slight

modification: the conjunction operator in rule premiseshis tinimum operator
instead of the product. Tests have been carried out to chetkrésults are not
significantly sensitive to the choice of the conjunctionraper. The choice of the
minimum allows a fair comparison between data sets with fer@ift number of
input variables.

Both tables have the same structure: the first column givesibBrage number of
membership functions per input variable, the following ®aee grouped by three.
Each group of three corresponds to a different value of floevatd maximum num-
ber of rules, ranging from unlimited to five. The first one oé tthree columns
within each group is the average number of rules, the secoadh® average per-
formance indexP/ and the third one is the average coverage indéx, which
corresponds to the activation threshalgiven in the row label between parenthe-
ses. The first group of three columns corresponds to an uelimumber of rules,
the actual one found by the algorithm being given in the #Rmool.

#R Perf. CoV
39.8 69.78 1.0
39.8 32.52 0.7
39.8 32.30 0.5

#MF
27.8
27.8
27.8

#R
QL5
515
1.5

Perf. Coj#R Perf. CoVj#R Perf.
74.54 1.0010 98.11 1.006
33.32 0.4010 46.65 0.2%
40.67 0.2110 61.99 0.0¢4

Cov,.
150.38 1.00
113.26 0.08
113.26 0.08

orig. OLS (0)
orig. OLS (0.1)
orig. OLS (0.2)

mod. OLS (0)
mod. OLS (0.1
mod. OLS (0.2

2.7
2.7
2.7

11.341.950.9
11.341.950.9
11.341.92 0.9

1.3 41.95 0.9
011.3 41.95 0.9
311.3 41.92 0.9

210 46.01 0.9}

5
10 45.57 0.975
i3
310 45.07 0.915

69.27 0.4(

Table 2

Cpu data comparison of original and modified OLS (averagetiConuns)

71.96 0.47
71.71 0.4%

#MF

#R  Perf. Co

#R Perf. Cov

#R Perf. Cov

#R Perf. Cov

#R Perf.

Cow.

orig. OLS (0)
orig. OLS (0.1)
orig. OLS (0.2)

86.8
86.8
86.8

182.93.31 1.0
182.9 2.91 0.8
182.9 2.75 0.7

0 3.88 1.0(
@0 3.08 0.4(

20 2.92 0.37

)15 4.32 1.0(
)15 3.22 0.34
215 3.11 0.2]

)10 5.47 1.005
110 3.35 0.2%
(10 3.21 0.215

9.35
3.55
3.22

1.0
0.18
0.15

mod. OLS (0)
mod. OLS (0.1

mod. OLS (0.2

3.3
3.3
3.3

19.3 3.03 1.0
19.3 3.03 1.0
19.3 3.03 1.0

019.3 3.03 1.0
019.3 3.03 1.0
19.3 3.03 1.0

015 3.05 1.0(
5 3.05 1.0(¢
5 3.05 1.0(

)10 2.99 0.995
10 2.99 0.995

)10 3.00 0.985

3.33
3.36
3.36

0.9(¢
0.85
0.81

Table 3

Auto-mpg data comparison of original and modified OLS (agedaon 10 runs)
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The discussion includes considerations about complesatyerage and numerical
accuracy of the resulting FIS.

Let us first comment the FIS structures. Clearly the origidhb yields a more
complex system than the modified one, with a much higher nuofteembership
functions per input variable. When the number of rules islinoted, the original
OLS systematically has many more rules than the modified As¢o the perfor-
mances, let us focus on rows one and four, which correspomd+00, and on
the first three columns, to allow an unlimited number of rulEsis configuration
allows a fair comparison between both algorithms. We set filiaboth data sets,
the modified algorithm has an enhanced performance. Fopthdata set, this has
a slight coverage cost, with a loss of one percent, meanaigatih average of two
items in the data set is not managed by the systems obtaini Ioyodified algo-
rithm.

Examination of the next rowsy= 0.1) shows that the modified algorithm systems
have the samé&/ and(C], than for the zero threshold. It is not at all the case for
the original algorithm systems, where the coverage los®eamportant (from 16
to 25 percent). This well demonstrates the lack of robustoéshe original algo-
rithm, as a slight change in input data may induce a signifioatput variation.
The modified algorithm does not have this drawback.

Figure 6 shows the evolution @f/, and PI with the number of rules for each
data set. As expected, the coverage in@dy is always equal to 1 for the original
version. For the modified versio@/, quasi linearly increases with the number of
rules. It means that each newly selected rule covers a setaftéms, so that rules
are likely to be used for knowledge induction, as will be shawmore details in
section 6.

For a reasonable number of rules (0), we see that, whil€'[, ~ 1, the modified
OLS has a much better accuracy than the original one.

For a low number of rules, the performance indekhas a very different behaviour
for the two OLS versions. The poor accuracy (high value# 6f of the original
algorithm can be explained by a low cumulated explainedanae, and the good
accuracy observed for the modified algorithm must be put paicpective of its
poor C'l,. As the number of rules increases, both systems display gasibe-
haviour.

Another advantage of the modified OLS noticed in the benchmesults is the
reduced execution time. When averaged over ten runs witmbamited number
of selected rules, for the CPU and auto cases, it respectvek 1.16 s and 5.65
s CPU on a 32 bit Xeon 3.2 GHz processor for the original OL®réigm to
complete, while it respectively took 1.03 s and 3.72 s fortiuglified version.

Table 4 compares the results of the modified OLS method andhef onethods
used in the literature (see [23]), in terms of Mean AbsoluteiEe criterion used in

that reference paper), computeddsiE = % > |9 — yi|, n being the number of
=1
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active samples. The first method is a multivariate lineareggjon (LR), the second
one is aregression tree (RT) and the third one is a neurabnlke{iMN). In all cases,
the modified OLS average error is comparable to those of congpmethods, or
even better.

Data set Mod.OLSLinear regressiamecision tre@Neural networ
CPU-Performancg 28.6 35.5 28.9 28.7
Auto-mpg 2.02 2.61 2.11 2.02

Table 4
Comparison of mean absolute error of the modified OLS and otle¢hods on test sets

We showed in this section that the proposed modificationk®fQLS algorithm
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Name Description

pH pH in the reactor

vfa volatile fatty acid conc.
qGas biogas flow rate

qgIn input flow rate

ratio alkalinity ratio

CH,Gas|C H4 concentration in biogqis

qCO9 CO, flow rate

Table 5
Input variables

yield good results on benchmark data sets. We will thus usentbdified OLS to
deal with a real world case.

6 A real world problem

The application concerns a fault diagnosis problem in a evestier anaerobic di-
gestion process, where the "living” part of the biologicalg@ess must be monitored
closely. Anaerobic digestion is a set of biological proesdsking place in the ab-
sence of oxygen and in which organic matter is decomposedingas.

Anaerobic processes offer several advantages: capadityabslowly highly con-
centrated substrates, low energy requirement and useeeadle energy by methane
combustion. Nevertheless, the instability of anaerobmcesses (and of the at-
tached microorganism population) is a counterpart thatadisages their indus-
trial use. Increasing the robustness of such processegdintzing fault detection
methods to efficiently control them is essential to make ttmeane attractive to
industrials. Moreover, anaerobic processes are in gemergllong to start, and
avoiding breakdowns has significant economic implications

The process has different unstable states: hydraulicaag@rbrganic overload, un-
derload, toxic presence, acidogenic state. The preseny &houses on the acido-
genic state. This state is particularly critical, and goagk to a normal state is
time consuming, thus it is important to detect it as soon a&sipte. It is mainly
characterized by a low pH value:(7), a high concentration in volatile fatty acid
and a low alkalinity ratio (generally 0.3).

Our data consist of a set of 589 samples coming from a pilafesap-flow anaer-
obic fixed bed reactor (volume=0.984). Data are provided by the LBE, a labo-
ratory situated in Narbonne, France. Seven input variahlesmarized in table 5
were used in the case study.

The output is an expert assigned number from 0 to 1 measwinhat extent the
actual state can be considered as acidogenic.
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Fig. 7. Fuzzy partitions for wastewater treatment appglcat

Fault detection systems in bioprocesses are usually basexpmert knowledge.
Multidimensional interactions are imperfectly known byerts. The OLS method
allows to build a fuzzy rule base from data, and the rule itidaccan help experts
to refine their knowledge of fault-generating process state

Before applying the OLS, we select the fuzzy partition whk tefinement algo-
rithm described in section 4, which yields the selectiorooffinput variablespH,
vfa, Qin andC H,Gas. The membership functions are shown in Figure 7. Notice
that each membership function can be assigned an intebpeditaguistic label.

Results and discussion

We apply the OLS procedure to the whole data set, obtainintgdbase of 53 rules
and a global performand@/ = 0.046.

Rule base analysis

Analyzing a rule base is usually a very long task, and musbioe énew with each
different problem. Here are some general remarks:

¢ Rule ordering: amongst the 589 samples, only 35 have an output value greate
than 0.5 (less thai%), while there are 12 rules out of 53 that have a conclusion
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greater than 0.5 (more th&0%). Moreover, 8 of these rules are in the first ten
selected ones (the first six having a conclusion very closeng&). This shows
that the algorithm first select rules corresponding to ‘tigusituations. It can
be explained by the fact that the aim of the algorithm is taioedvariance, a
variance greatly increased by a "faulty” sample. This higjtitls a very interest-
ing characteristic of the OLS algorithm, which first selattes related to rare
samples, often present in fault diagnosis.

e Out of range conclusionseach output in the data set is between 0 and 1. This is
no more the case with the rule conclusions, some of them lygeager than 1 or
taking negative values. Itis due to the least-square opétian method trying to
improve the accuracy by adjusting rule conclusions, witlamy constraint. This
is one of the deficiencies of the algorithm, at least from &erpretability driven
point of view.

Removing outliers

The fact that rules corresponding to rare samples are fdvuorthe selection pro-
cess has another advantage: the ease with which outlietsecaentified and an-
alyzed. In our first rough analysis of the rule base, two $peailes caught our
attention :

e Rule5: If pHis A5 and vfa isA; and Qin isA; andC H, is Ay, then output is
0.999
e Rule 6:1f pHis A, and vfaisA; and Qin isA; andC H, is As, then output is 1

Both rules indicate a high risk of acidogenesis with a high which is inconsistent
with expert knowledge of the acidogenic state. Furtherstigation shows that
each of these two rules is activated by only one sample, wihdes not activate
any other rule. Indeed, one sample has a pH value of 8.5 [gleatr acid) and the
other one has a pH of 7.6, together with an alkalinity ratibi¢h should be low in
an acidogenic state) greater than 0.8.

These two samples being labeled as erroneous data (maybsa@ sksfunction),
we remove them from the data set in further analysis.

This kind of outliers cannot be managed using traditionas@oemoval filtering
techniques, it requires expert examination to decide véretey should be re-
moved from learning data.

We renew the OLS procedure on the purified data, and we aléorpea reduction
of the output vocabulary, to improve interpretability.

Performance with reduced output vocabulary
The final rule base has 51 rules, the two rules induced by eouwsdata having

disappeared. The output vocabulary is reduced from 4ndistalues to 6 differ-
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ent ones, all of them constrained to belong to the outputaalRigure 8 shows the
rule conclusion distribution before and after vocabula&guction. On the left sub-
figure, two dotted lines have been added to show the obseuntpdtaangd0 — 1].
Rules are easier to interpret, while the distribution feegare well conserved. The
new system performance is P1=0.056, which corresponds &@euracy loss of 15
percent.
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Fig. 8. Impact of vocabulary reduction on rule conclusions

To test the rule base representativity, we did some expetsrm increasing the
activation threshold.. Up toar = 0.5, only one sample amongst the 587 ones is not
covered by the rule base, which is a good sign as to the radsstf our results.

Another interesting feature is thab0% of the samples having an output greater
than 0.2 are covered by the first twenty rules, allowing on&rsd focus on this
smaller set of rules to describe critical states.

Figure 9 illustrates the good qualitative predictive qgtyadif the rule base: we can
expect that the system will detect a critical situation seough to prevent any col-
lapse of the process. From a function approximation poinief, the prediction
would be insufficient. However, for expert interpretatifigure 9 is very interest-
ing. Three clusters appear. They can be labeledeag low risk Non neglectable
risk andHigh risk. They could be associated to three kinds of action or alarms.

From a fault detection point of view, some more time shouldgpent on the few
faulty samples that wouldn't activate a fault detection triggeies®.2 or 0.3. They
have been signaled to experts for further investigationhEale fired by those five
samples (asterisk and diamond in figure 9) is also activayedbout a hundred
other samples which have a very low acidogenic state. It neagifficult to draw
conclusions from these five samples.
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7 Conclusion

Orthogonal transform methods are used to build compacthase systems. The
OLS algorithm is of special interest as it takes into accooptit data as well as
output data.

Two modifications are proposed in this paper. The first oneleed to input par-
titioning. We propose to use a standardized fuzzy partitidh a reduced number
of terms. This obviously improves linguistic interpretéigibut also avoids the oc-
currence of an important drawback of the OLS algorithm: netdunt rule selection.
Moreover, it can even enhance numerical accuracy.

The second way to improve linguistic interpretability isdeal with rule conclu-
sions. Reducing the number of distinct values used by thes ks some effect on
the numerical accuracy measured on the training sets, bytittée impact on the
performance obtained on test sets.

We have successfully applied the modified OLS to a fault dieteg@roblem. Our
results are robust, interpretable, and our predictive@apia more than acceptable.
The OLS was also shown able to detect some erroneous dataaditst brief
analysis. When dealing with applications where the mostontgmt samples are
rare, OLS can be very useful.
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We would like to point out the double interest of properly difezzy concepts in
a numerical technique. Firstly, linguistic reasoning witput data, which is only
relevant with readable input partitions, takes into actdba progressiveness of
biological phenomena which have a high intrinsic varidpilsecondly, a similar
symbolic reasoning can be used on output data. Though stitegefor knowledge
extraction, this is rarely considered.

Let us also underline the proposed modifications could betefall the simi-
lar algorithms based on orthogonal transforms, for insgtahe TLS (Total Least
Squares) method [29] which seems to be of particular interes

A thorough study of the robustness of this kind of models ii$ tet be carried
out. It should include a sensitivity analysis of both algfum parameters and data
outliers with respect to the generalization ability. Thassgvity analysis could be
sampling-based or be based on statistical techniquesn$tarrice decomposition
of variance). Similarly the rule selection procedure cdutdrefined by extending
classical backward-forward stepwise regression proestarthe fuzzy OLS algo-
rithm.

Contrary to other methods, OLS does not perform a variabéesen, which can
be a serious drawback. Future work should also focus on cuntpan efficient
variable selection method with the OLS rule selection.
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