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Titre : Approche hiérarchique bayésienne pour la prise en compte d’erreurs de mesure 

d’exposition chronique et à faibles dose aux rayonnements ionisants dans l’estimation du 

risque de cancers radio-induits. Application à une cohorte de mineurs d’uranium. 

Mots clés : Erreurs de mesure, modélisation hiérarchique, statistique bayésienne, cohorte 

professionnelle, radon, cancer du poumon 

 

Résumé : En épidémiologie des rayonnements ionisants, les erreurs de mesure d’exposition 

et l’incertitude sur le calcul de la dose absorbée à l’organe constituent des sources 

d’incertitude importantes entrant en jeu dans la modélisation et l’estimation des relations 

dose-réponse d’intérêt.  Celles-ci peuvent être de nature très complexes dans le cadre d’études 

de cohortes professionnelles et sont ainsi rarement prises en compte dans ce 

domaine.  Pourtant, lorsque les erreurs de mesure d’exposition ne sont pas ou mal prises en 

compte, elles peuvent mener à des estimateurs de risque biaisés, à une perte de puissance 

statistique ainsi qu’à une déformation de ces relations dose-réponse.   L’objectif de ce travail 

est de promouvoir l’utilisation de l’approche hiérarchique bayésienne pour la prise en compte 

explicite et simultanée des erreurs de mesure d’exposition et des incertitudes de dose 

intervenant dans les estimations de risques sanitaires radio-induits dans les études de cohortes 

professionnelles. Plus spécifiquement, des modèles hiérarchiques ont été proposés et inférés 

afin d’affiner l’estimation actuelle du risque de décès par cancer du poumon associé à une 

exposition chronique et à faibles doses au radon et ses descendants à vie courte à partir de 

données issues de la cohorte française des mineurs d’uranium. Ces modèles, connus pour leur 

souplesse et leur pertinence pour la prise en compte de sources d’incertitude multiples et 

complexes, sont basés sur une combinaison de sous-modèles probabilistes conditionnellement 

indépendants.  Afin de quantifier l’impact de l’existence d’erreurs de mesure d’exposition 

partagées et non-partagées sur l’estimation du risque et sur la forme de la relation exposition-

risque dans les études de cohortes professionnelles, une étude par simulations a été conduite 

dans laquelle différentes structures complexes mais réalistes d’erreurs de mesure (pouvant par 

ailleurs varier dans le temps) ont été considérées. Une élicitation de lois a priori reflétant 

l’incertitude relative au débit respiratoire -  un paramètre important intervenant dans le calcul 

de la dose absorbée au poumon – a été conduite auprès de trois experts des conditions 

d’exposition dans les mines d’uranium française et des méthodes de combinaison de dires 

d’experts ont été mises en œuvre et comparées. Enfin, des algorithmes Monte-Carlo par 

Chaînes de Markov ont été implémentés sous Python pour mener l’inférence bayésiennes des 

différents modèles hiérarchiques proposés et ainsi, obtenir des estimations corrigées du risque 

de décès par cancer du poumon radio-induit dans la cohorte française des mineurs d’uranium.  
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Abstract : In radiation epidemiology, exposure measurement error and uncertain input 

parameters in the calculation of absorbed organ doses are among the most important sources 

of uncertainty in the modelling of the health effects of ionising radiation. As the structures of 

exposure and dose uncertainty arising in occupational cohort studies may be complex, these 

uncertainty components are only rarely accounted for in this domain. However, when 

exposure measurement is not or only poorly accounted for, it may lead to biased risk 

estimates, a loss in statistical power and a distortion of the exposure-response relationship. 

The aim of this work was to promote the use of the Bayesian hierarchical approach to account 

for exposure and dose uncertainty in the estimation of the health effects associated with 

exposure to ionising radiation in occupational cohorts. More precisely, we proposed several 

hierarchical models and conducted Bayesian inference for these models in order to obtain 

corrected risk estimates on the association between exposure to radon and its decay products 

and lung cancer mortality in the French cohort of uranium miners. The hierarchical appraoch, 

which is based on the combination of sub-models that are linked via conditional 

independence assumptions, provides a flexible and coherent framework for the modelling of 

complex phenomena which may be prone to multiple sources of uncertainty. In order to 

compare the effects of shared and unshared exposure uncertainty on risk estimation and on 

the exposure-response relationship we conducted a simulation study in which we supposed 

complex and potentially time-varying error structures that are likely to arise in an 

occupational cohort study. We elicited informative prior distributions for average breathing 

rate, which is an important input parameter in the calculation of absorbed lung dose, based on 

the knowledge of three experts on the conditions in French uranium mines. In this context, we 

implemented and compared three approaches for the combination of expert opinion. Finally, 

Bayesian inference for the different hierarchical models was conducted via a Markov chain 

Monte Carlo algorithm implemented in Python to obtain corrected risk estimates on the lung 

cancer mortality in the French cohort of uranium miners associated with exposure to radon 

and its progeny.   
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Chapter 1

Introduction

Exposure measurement error poses one of the most important threats to the validity of statistical

inference in epidemiological studies [3, 4, 5]. It arises whenever an exposure cannot be measured

accurately, but only an imperfect surrogate exposure measurement is available. When it is not or

only poorly accounted for, exposure measurement error can lead to biased risk estimates, a loss

in statistical power and to a distortion of the exposure-risk relationship [6, 7, 8]. Despite these

deleterious consequences and despite its ubiquity in observational research [9, 10, 11], exposure

measurement error is only rarely accounted for in the estimation of risk coefficients in epidemio-

logical studies [12, 13]. One of the main reasons why measurement error is often discussed, but

rarely accounted for in epidemiology, may be that classical methods which are routinely used

to correct for measurement error, like simulation extrapolation or regression calibration, lack

the flexibility to account for complex patterns of exposure uncertainty. Methods to account for

more complex error structures, on the other hand, are neither easy to implement nor readily

available in standard software packages.

In occupational cohort studies, for instance, one is commonly interested in the association be-

tween the time until the diagnosis or the time until the death by a certain disease and cumulative

exposure to a specific chemical or physical agent. In this situation, cumulative exposure is ongo-

ing and time-dependent, rather than being a fixed point exposure [14], which could be determined

at study entry. Owing to this time-dependent nature, the exposure history of workers may be

collected using different strategies according to the period of exposure. Thereby, the changes in

the methods of exposure assessment can create rather complex patterns of exposure uncertainty,

where the type and magnitude of measurement error can vary over time. For recent exposure

periods, it is common to dispose of a method of prospective, and possibly individual, exposure

monitoring in these studies. In these periods, technical advances in measurement devices may

imply more and more precise measures of exposure, which can translate into a decrease in the

variance of measurement error over time. On the other hand, it is very rare to dispose of a sys-

tematic exposure assessment for the earliest years of exposure in an occupational cohort study,

simply because there was often a lack of awareness of the deleterious health consequences of the

exposure of interest in these years. As a consequence, the exposure values received in this period

often have to be reconstructed retrospectively. As it is virtually impossible to reconstruct the

exposure values for each individual worker in a retrospective fashion, one usually has to estimate

the exposure levels for different job categories for the earliest exposure periods. In this context,
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the same exposure level is affected for all workers in a given job category. If there is an error

in the estimation of this common exposure level, it will affect all workers in that job category

in the same way. In other words, a retrospective exposure reconstruction may give rise to error

components that are shared among several workers. Additionally, when cumulative exposure

is modelled as a time-dependent variable and a method of group-level exposure estimation is

used, individual job conditions and worker practices may create statistical dependencies between

measurement errors in the exposure history of a worker [15, 16]. These dependencies can be

described by a measurement error component that is shared within workers, that is, an exposure

uncertainty component that affects all exposure values received by a worker in the same way.

While there is a vast literature on the topic of unshared measurement error, statistical methods

for the treatment of shared error components are scarce and the effects of these error components

on statistical inference remain largely unknown. At the same time, it is likely that the complex

patterns of measurement error that arise in occupational cohort studies pose serious threats to

the validity of statistical inference in these studies. In particular, they may induce systematic

distortions of the exposure-response relationship, because both average exposure and the mag-

nitude of measurement error in an occupational cohort tend to decrease over time [17, 14].

In occupational cohort studies in radiation epidemiology, the problem of measurement error

may be further exacerbated by the fact that the health effects of radiation are associated with

radiation dose, rather than with radiation exposure [18, 19]. The values of radiation dose do not

only depend on the exposure to radioactive material, but also on the exposure conditions. In

particular, when we are interested in doses to internal organs that can be due to the inhalation

or the ingestion of radioactive material, these doses do not only depend on the exposure to this

radioactive material but also on the rate at which this material was inhaled or ingested. The

different rates at which radioactive material is inhaled, for instance, can be modelled by param-

eters like average breathing rate, which are typically introduced as additional input parameters

intervening in dose calculation. As the input parameters in dose calculation which modify the

relation between radon exposure and radon dose are rarely measured in occupational cohorts,

the calculation of radiation doses is uncertain when estimating the health effects of radiation

exposure in occupational cohort studies. A current methodological challenge in radiation epi-

demiology is therefore to be able to account for dose uncertainty in risk estimation.

Finally, the field of radiation epidemiology is particularly interested in the estimation of the

effects of chronic low-dose radiation on health. If the effects of exposures received at high to

moderate doses, which occurred for instance in the earliest exposure periods in most occupational

cohort studies or in the Life Span Study1, have to be extrapolated to low-dose and low-dose

rate exposures, the adequacy of this extrapolation depends on an accurate estimation of the

dose-response relationship. If, on the other hand, the effects of chronic low-dose radiation are

directly estimated on populations that are exposed at low-dose and low-dose rates, there may

be only a weak association between radiation exposure and its health effects. In this situation,

the potential consequences of measurement error, in particular bias in risk estimates and loss

1The Life Span Study, which consists of the survivors of the atomic bombings of Hiroshima and Nagasaki, is

an important source of information on the health effects of radiation exposure. While it played, and continues to

play, an important role in the establishment of radiation protection guidelines, it primarily provides information

on the health effects observed on a population that received an instantaneous exposure to ionizing radiation at

high to moderate doses.
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of statistical power, may lead to erroneous conclusions, as these studies may fail to detect the

already weak associations between a chronic low-dose exposure to ionising radiation and the

health outcomes of interest, or maybe even worse, mistakenly detect significant associations

where there are none.

In summary, it is important to account for exposure and dose uncertainty in studies in radia-

tion epidemiology in order to obtain reliable estimates concerning the health effects of radiation

exposure and to avoid distortions of the dose-response relationship. However, this task is very

challenging and requires advanced modelling and statistical methods. Indeed, we may be faced

with complex error structures including changes in the type and magnitude of measurement er-

ror over time, components of measurement error that may be shared between individuals, within

individuals or both and uncertainty in other parameters intervening in dosimetric modelling.

This work will be concerned with the analysis of the association between exposure to radon and

its progeny (denoted radon hereafter) and lung cancer mortality in the French cohort of uranium

miners. Radon is a noble and radioactive gas that naturally occurs in the decay of uranium-238,

which is omnipresent in soils and rocks. The major source of exposure to radiation in most

countries is due to natural background radiation and the most important component of this

background radiation is exposure to radon [20]. Radon was classified as a pulmonary carcinogen

in humans by the International Agency for Research on Cancer in 1988 [21]. It is considered to

be the second leading cause of lung cancer after smoking [22, 20], causing around 2% of cancer

deaths in Europe every year [23]. Radon can be seen as the biggest geological hazard to humans

worldwide, causing more deaths than earthquakes, hurricanes and tsunamis together. A variety

of techniques to reduce radon concentration in existing and new buildings [22] is available, in-

cluding underfloor ventilation and the installation of radon proof barriers at ground level [23].

However, the exact knowledge of the risk associated with radon exposure is necessary to deter-

mine the cost effectiveness of possible radon reduction policies [22].

Much of the evidence on the health effects associated with radon originates from epidemiologi-

cal studies on cohorts of occupationally exposed underground miners. The problem of exposure

measurement error in the association between radon exposure and lung cancer mortality has

attracted considerable attention [24, 25, 26, 27, 28, 29, 30, 31, 23, 32, 33, 34, 35, 36]. However,

previous studies addressing the problem of measurement error in radon exposure in cohorts of

uranium miners have made a number of simplifying assumptions. Bender et al. (2005) [31] and

Küchenhoff et al. (2007) [32], who studied the impact of measurement error in radon exposure

on risk estimation in the German cohort of uranium miners, neglected the time-varying nature

of cumulative exposure by assuming that the sum of the annual exposure values received during

the entire working career of a miner is known at study entry. While it is common to make this

assumption when treating the problem of exposure measurement error in occupational cohort

studies [17, 14], it impedes the modelling of measurement error on its natural level of occur-

rence, namely on the weekly, monthly or annual exposure values, rather than on the sum of these

values. Moreover, they assumed that errors arising in an exposure assessment via job-exposure

matrices can be described by unshared measurement error, thereby neglecting the potential of

individual job characteristics or worker practices to lead to an error component shared within

workers. Likewise, Allodji et al. (2012) [34, 35], who studied the impact of exposure measure-

ment error when estimating the association between radon exposure and lung cancer mortality
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in the French cohort of uranium miners, assumed unshared measurement error. Moreover, he

promoted the use of simulation extrapolation and regression calibration, which arguably lack

the flexibility to account for complex structures of measurement error that typically arise in

occupational cohort studies.

The main aim of this work was to promote the use of the Bayesian hierarchical approach to

account for exposure and dose uncertainty in radiation epidemiology. More specifically, our aim

was to build different hierarchical models accounting for exposure and dose uncertainty in radon

exposure in the French cohort of uranium miners and to conduct Bayesian inference for these

models in order to obtain corrected estimates on the lung cancer risk that is associated with

radon exposure in this cohort. The hierarchical approach, which is based on the combination

of sub-models via conditional independence assumptions, provides a coherent framework for the

treatment of complex phenomena which may be prone to multiple sources of uncertainty. The

choice to conduct Bayesian inference to fit the proposed hierarchical models is not only based

on its coherence when it comes to the estimation of complex probability models that are based

on conditional independent sub-models, but also on its flexibility and the possibility to integrate

expert knowledge through the elicitation of informative prior distributions. While a number of

sensitivity analyses have studied the impact of dosimetric uncertainties in the association be-

tween radon exposure and lung cancer mortality [2, 37, 38, 39], to our knowledge this is the first

time that shared exposure uncertainties and dosimetric uncertainties are accounted for when

studying the association between radon exposure and lung cancer mortality in a cohort of ura-

nium miners.

The outline of this manuscript is as follows:

Chapter 2 gives a short introduction to ionising radiation, followed by a more detailed presen-

tation of radiation exposure in cohorts of uranium miners, dose estimation for radon exposure

and results on the association between radon exposure and lung cancer mortality.

Chapter 3 provides an overview of the literature on different types of measurement error, their

potential effects on risk estimates in epidemiological studies and of standard approaches to cor-

rect for these effects.

Chapter 4 gives a brief overview of both the Bayesian framework to statistical inference and

the Bayesian hierarchical approach with a particular focus on its ability to account for exposure

uncertainty in epidemiological studies and on the possibility to elicit prior distributions on un-

known parameters based on expert knowledge.

Chapter 5 describes the different methods we used in this work and the simulation studies

we conducted. It presents the different hierarchical models that were proposed to account for

exposure and dose uncertainty in the French cohort of uranium miners and the algorithms that

were implemented to conduct Bayesian inference for these models. It presents the methods that

we proposed to derive informative prior distributions for the most important input parameters in

the dose model. In particular, it will present an elicitation approach that we developed to assign
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a prior distribution on a specific input parameter. Finally, it describes two simulation stud-

ies that were conducted in order to study the effects of different types of measurement error on

statistical inference in occupational cohort studies when measurement error is not accounted for.

Chapter 6 presents the results we obtained in the two simulations studies that we conducted

in the context of this work, as well as the informative prior distributions that were obtained

when eliciting the opinion of three experts on the exposure conditions in French uranium mines.

Moreover, it provides the risk estimates that were obtained for lung cancer mortality when ac-

counting for dose uncertainty and different types of shared and unshared exposure uncertainty

in the French cohort of uranium miners.

Chapter 7 presents a general discussion of the strengths and limitations of this work. More-

over, it discusses possible implications for radiation protection and the potential of the Bayesian

hierarchical approach to account for exposure and dose uncertainty in radiation epidemiology.
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Chapter 2

Radon exposure and dose estimation

in cohorts of uranium miners

The high mortality rate associated with working in underground mines was documented as early

as the 15th century in the Ore mountains in Central Europe [40, 41], long before the discovery

of radioactivity. Around 1530, the famous Swiss physician and scientist Philippus Aureolus

Theophrastus Bombastus von Hohenheim (also known as Paracelsus) studied the health con-

ditions of underground miners in the Ore mountains and reported that many of them died of

lung disease [41, 42]. In 1879, Harting and Hesse identified the cause of this lung disease as

lung cancer and it became known as the ‘Schneeberger Bergkrankheit” [43, 44] (German for

“mountain disease from the snow mountain”). After this discovery, it took 70 years to recognise

that this high lung cancer mortality might be caused by the inhalation of short-lived radon

progeny [45, 40] and almost another 40 years before the International Agency of Research on

Cancer classified radon as known pulmonary carcinogen in humans [21]. While the lung cancer

mortality rates that occurred in the mines in Schneeberg and Joachimmsthal in the Ore moun-

tains during the 19th century were estimated to be around 50% [46] and up to 75% [41], the

conditions in mines nowadays generally result in an annual exposure to radon progeny compa-

rable to the exposure level experienced in a large number of houses [47]. This chapter gives a

short introduction to ionising radiation, followed by a more detailed presentation of radiation

exposure in cohorts of uranium miners, dose estimation for radon exposure and results on the

association between radon exposure and lung cancer mortality.

2.1 Ionising radiation

While the Ore mountains are relatively unknown, both the term Dollar (derived from Thaler

as a reference to Joachimsthal), which is used for more than twenty currencies nowadays, and

the discovery of radioactivity can be traced back to this region, which separates Saxony and

Bohemia [42, 48].

Martin Heinrich Klaproth discovered uranium in pitchblende1 from this area in 1789 [42]. Over

1Pitchblende, from German “Pechblende”, is a uranium-rich mineral that may contain copper, bismuth, bar-

ium, lead and rare earth elements [42]. “Pech” means bad luck in German, thereby referring to the fact that it
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a century later, in 1896, Henri Becquerel conducted experiments on uranium salts from the

Ore mountains and famously discovered evidence of radioactivity by a happy accident. He

was looking for X-ray-like radiation, which had been discovered by Wilhelm Conrad Röntgen

one year earlier [49]. As an expert in fluorescence, he supposed that the radiation emitted by

uranium salts needed to be activated by sunlight [48, 42]. He exposed the salts to the sun and

placed them on photographic plates to detect radiation. As the sky of Paris was cloudy on

the 26th and 27th of February 1896, he postponed his experiment and kept the salt and the

photographic plates in a drawer, only to discover to his astonishment that the radiation seemed

to arise spontaneously from the uranium salts [48].

In his serendipity, and without understanding its origin, he had discovered ionising radiation,

that is radiation that can interact with matter and free electrons by transferring the energy it

carries to an atom or a molecule [50]. Fascinated by this discovery, Marie Sklodowaska-Curie

decided to select this topic for her PhD thesis [51, 42]. In 1898, she and her husband examined

pitchblende from the Joachimsthal mines and reached the conclusion that unknown compounds,

even more radioactive than uranium, were present in the ores [51].

2.1.1 Radioactive decay

The origins of ionising radiation can be found in the atomic nucleus, which was discovered by

Ernest Rutherford in 19112 [52]. According to the currently accepted view of the atomic struc-

ture [53], the atomic nucleus is built of subatomic particles, which are called nucleons. These

nucleons are surrounded by an electron cloud, as illustrated in Figure 2.1, where the position

of each electron can be described in terms of a probability distribution. There are two types

Proton

Neutron

Electron 
cloud

Figure 2.1: The modern atomic model

of nucleons: protons and neutrons [54]. Protons have a positive electric charge and neutrons

have no charge [50], resulting in an overall positive charge of the nucleus, while the electrons

was a sign of bad luck for the silver miners in Saxony to find this uranium rich ore, as it meant that the silver

deposits were running out [42].
2Rutherford is considered to be the founder of nuclear physics [52]. Ironically, Rutherford was awarded the

Nobel prize in Chemistry in 1908 but never received the Nobel Prize in Physics. Marie Curie, on the other hand,

received the Nobel Prize in Physics in 1903 and the Nobel Prize in Chemistry in 1911. She is the only person

having received a Nobel Prize in two different sciences as well as the first woman to receive a Nobel Prize.
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are negatively charged [49]. Based on the electromagnetic interactions between the positively

charged protons in the nucleus, one would expect these protons to repel each other, resulting in

extremely unstable nuclei. However, this electromagnetic force is balanced by what is called the

strong and the weak nuclear force. These forces are of shorter range than the electromagnetic

force, but they are in general sufficiently strong to overcome the electromagnetic repulsion be-

tween protons [52].

The nucleus is commonly characterised by its number of neutrons and its number of protons. A

nucleus containing Z protons and N neutrons is expressed as A
ZX, where A is the sum of Z and

N, i.e., the total number of nucleons or the atomic mass number and X is the chemical symbol

of the element with Z protons [55]. Each element is uniquely defined by its number of protons.

Atoms that have the same number of protons, but a different number of neutrons are called

isotopes. Isotopes of the same element have usually very similar chemical properties but they

may exhibit very different nuclear properties.

These nuclear properties mainly depend on the proton-neutron ratio of a nucleus and its mass

number [50]. In particular, if a nucleus is too heavy or if the ratio between protons and neutrons

in the nucleus is not optimal it can be unstable. In the following, we will refer to the unstable

isotopes of an element as radioisotopes. Radioisotopes can spontaneously change its configura-

tion by emitting α- or β- particles or γ-radiation. This process is known as radioactive decay.

Alpha decay

Alpha decay, denoted α-decay in the following, mainly occurs in heavy radioisotopes [55]. In

this form of radioactive decay, the nucleus emits an α-particle, which is equivalent to a helium

nucleus, consisting of two protons and two neutrons, carrying a double positive charge (see

Figure 2.2). By emitting an α-particle, the nucleus changes its atomic mass number by four and

𝞪-particle

Nucleus

Figure 2.2: Alpha decay

its atomic number by two. As α-particles are relatively heavy and charged, they tend to interact

with other atoms very quickly and therefore have a very limited ability to penetrate matter. For

instance, they can be absorbed by a piece of paper or the outer layer of the skin and travel only

a few centimetres in air. Consequently, this type of radiation only presents a radiation hazard

if radioisotopes enter the body through the inhalation or the ingestion of radioactive material.
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Beta decay

Beta decay, denoted β-decay in the following, is a phenomenon that changes the ratio between

protons and neutrons in a nucleus. In this type of decay, either an electron (β− decay) or its

antiparticle, a positron (β+ decay) [55], is emitted from the nucleus, transforming a neutron into

a proton or vice versa [50]. As electrons and positrons are less heavy and carry less charge than

α-particles, they react less readily with matter, resulting in a maximum path length of beta

radiation that is larger than for α-radiation with some milimeters in tissue and a few meters in

air [50].

Gamma radiation

After the emission of an α- or a β-particle, a nucleus may remain in an excited state, characterised

by a high energy level. In this situation, a common phenomenon is the emission of a Gamma-

ray to further decay to the ground state [55]. Gamma radiation, denoted γ-radiation in the

following, is highly energetic electromagnetic radiation. γ-rays have zero rest mass and zero

electric charge, they are more penetrating than α- and β-radiation [50].

2.2 Radon exposure in cohorts of uranium miners

In the context of their work, underground miners are exposed to α-, β- as well as γ- radiation,

as all three types of radiation arise in the decay of uranium. Uranium is a chemical element,

which is ubiquitous in the earth’s crust with low levels of uranium that can be found in most

rocks, soils and water [56]. With 92 protons and between 141 and 146 neutrons, the nucleus of

uranium is too heavy to be stable and therefore all isotopes of uranium are radioactive. The

most common isotope of uranium found in nature is uranium-238 (238
92 U). This isotope makes up

over 99% of natural uranium and it has a half-life3 of 4.468 billion years. Due to the ubiquity of

uranium, all underground miners, regardless of the type of mine, are exposed to the daughter

products of uranium, but the uranium concentrations in the ore mined in uranium mines is

typically higher than in other types of mines. We will see in the following that radon plays a

central role when it comes to the radiation exposure of uranium miners.

2.2.1 The uranium decay series

The uranium-238 decay series is one of the three decay series that occur naturally on Earth

[57]. Figure 2.3 shows the radioisotopes in the uranium decay series from uranium-238 to

radon-222, their most probable type of radioactive decay and their half-life. Uranium, thorium,

protactinium and radium decay by emitting α- or β-radiation. As α- and β-decay are often

followed by γ-radiation, the decay from uranium-238 to radon-222 may be accompanied by

γ-radiation. Since uranium, thorium, protactinium and radium are all in a solid state under

the conditions which are typically encountered in underground mines and given the very short

range of α- and β-radiation, the α- and β-radiation emitted by these radioisotopes does not

3The half-life of a radioisotope is the average time it takes half of the nuclei of this radioisotope to decay [50]
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Figure 2.3: Radioactive decay chain from uranium-238 to radon-222. Uranium-238 decays into

thorium-234 (234
90 Th), protactinium-234 (234

91 Pa), uranium-234 (234
92 U), thorium-230 (230

90 Th),

radium-226 (226
88 Ra) and radon-222 (222

86 Rn).

pose a noteworthy exposure to ionising radiation4, whereas it can cause external exposure to

γ-radiation. Contrary to the other daughter products of uranium-238, radon-222 (222
86 Rn) is a

222Rn86

218Po84

214Pb82

𝞪

𝞪

𝞪

3.8 
days
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minutes

22.3 
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214Bi83
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Figure 2.4: Radioactive decay chain from radon-222 to lead-210. Radon decays into

polonium-218 (218
84 Po), lead-214 (214

82 Pb), bismuth-214 (214
83 ), polonium-210 (214

84 Po), lead-210

(210
82 Pb) and long-lived radionuclides, which are not shown.

noble gas. As a gas, it can be inhaled by the workers in a mine. However, as a noble gas, radon

has a very low chemical reactivity [58], making it colourless, tasteless and odourless. Due to

4Except when these radioisotopes are inhaled, for instance in the dust present in uranium mines.
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this very low chemical reactivity, when inhaled, most of the gas will be subsequently exhaled

[59]. At the same time, radon-222 decays into a series of short-lived radioisotopes, which are

again solid, shown in Figure 2.4. These short-lived radioisotopes can form clusters, attach to

ambient aerosol particles in the atmosphere [60] and, when inhaled, deposit in the lung where

there can decay by emitting α-, β- and γ- radiation. In particular, polonium-218 (218Po) and

lead-214 (214Po) can give rise to high lung doses from α-particle radiation [61]. To be precise, it

is therefore not so much radon exposure, which is hazardous to humans and lung carcinogenic,

but rather the exposure to radon decay products, also referred to as radon progeny. For sake of

simplicity and because it is common in the literature to do so, we will discuss radon exposure in

cohorts of uranium miners in the following, but it is important to note that we generally refer

to radon progeny.

2.2.2 International cohorts of uranium miners

In order to study the association between radon exposure and lung cancer mortality, a number

of cohorts of underground miners have been initiated and followed, including nine cohorts of

uranium miners: the Czech cohort, the French cohort, the Radium Hill cohort (Australia), three

Canadian cohorts (the Ontario, the Beaverlodge and the Port Radium Cohort), two US cohorts

(the Colorado Plateau and the New Mexico cohort) and a German cohort (called the Wismut

cohort). Lubin et al. (1995) [62] studied the association between radon exposure and lung cancer

mortality in the pooled data of eight of these nine cohorts (excluding the Wismut cohort, which

was established after the other eight cohorts). Moreover, in their analyses, the authors included

data on three occupational cohorts of radon exposed miners who were not uranium miners: tin

miners in China, iron miners in Sweden and fluorspar miners in Canada. The results of this

pooled data are presented in detail in the BEIR VI report [63].

The French cohort of uranium miners

The French cohort of uranium miners is a prospective cohort that was initiated in the early

1980s. The current cohort consists of 5086 males, who were employed as uranium miners for

at least one year at the group Commissariat à l’Énergie Atomique - COmpagnie GÉnérale des

MAtières nucléaires (CEA-COGEMA) between 1946 and 1990. The follow-up began in 1946

and ended on the 31st December 2007. The date of cohort entry was defined as the date of

first employment as uranium miner plus one year. The date of cohort exit was defined as the

earliest among the following: date of death, date of loss to follow-up, date of 85th birthday

and 31st December 2007. Information on vital status was obtained via the Répertoire National

d’Identification des Personnes Physiques (RNIPP). Causes of death were recorded both through

the follow-up by the occupational medicine department and by the information available through

the French National Mortality Database, which contains all the information on death certificates

in France. For deaths occurring between 1946 and 1968, the information concerning the cause

of death came from the occupational medicine department, while after 1990, all information

came from the National Mortality Database. For deaths between 1968 and 1990, information

from both sources was available [64]. Miners were censored at the age of 85 years because the

determination of the exact death cause can become imprecise after this age [65]. The cause of
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death was coded according to the International Classification of Disease (ICD) code in use at

the time of death. Table 2.1 and 2.2 summarise the vital status and the main characteristics of

Table 2.1: Vital status in the French cohort of uranium miners on the 31st December 2007.

Vital status N (%)

alive < 85 years 2924 (57.5%)

alive ≥ 85 years 187 (3.7%)

dead (lung cancer) 211 (4.2%)

dead (other cause) ha 1724 (33.9%)

lost to follow-up 40 (0.8%)

Table 2.2: Main characteristics of the French cohort of uranium miners on the 31st of

December 2007.

Mean Standard deviation (Min, Max)

Age at study entry (in years) 28.8 7.7 (16.0, 68.4)

Duration of follow-up (in years) 35.4 12.5 (0.1, 61.0)

Duration of employment (in years) 17.0 10.6 (1.0, 43.3)

Cumulated radon exposurea (in WLM) 36.1 71.2 (0.003, 960.1)

Duration of radon exposure (in years) 11.8 8.4 (1.0, 37.0)

Age at first radon exposure (in years) 29.6 7.8 (15.2, 64.0)

aOnly calculated on exposed miners.

the French cohort of uranium miners on the 31st of the December 2007. Overall, 2924 (57.5%)

miners were still alive at the end of the follow-up, 1935 (38.0%) had died, 40 (0.8%) were lost to

follow-up and 187 (3.7%) had reached the age of 85. Cause-of-death information was available

for 1876 deaths (97.0%). Miners started working at a mean age of 28.8 years and worked for

an average duration of 17.0 years. The follow-up was relatively long with a mean duration of

35.4 years. Of 5086 miners, 4133 were exposed to radon, and the average cumulated exposure

among exposed miners was 36.1 working level months5 (WLM), respectively. The mean age at

first exposure to radon was 29.6 years, and the average duration of radon exposure was 11.8

years.

2.2.3 Methods of radon exposure estimation in cohorts of uranium miners

Measuring radon exposure is an error-prone process, not only because of technical or human er-

ror, but also because radon levels are inhomogeneous in both space and time, while measurement

methods tend to be in fixed locations at fixed times. Moreover, when modern uranium mining

began in the late 1940s [67], there was little thought for the protection of the environment and

5The Working Level Month (WLM) is a historical unit to express exposure to radon progeny in cohorts of

uranium miners. One working level (WL) is equivalent to any combination of short-lived radon progeny in one

litre of air that results in the ultimate emission of 13 · 1011 electron volt of energy from alpha particles. The unit

of working level month is defined as the product of the accumulated exposure to radon decay products (expressed

in WL) and one working month (defined as 170 hours) [66].
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the protection of workers and therefore there was no systematic exposure assessment in uranium

mines for either radon or its decay products [33, 68]. Most of the exposure values received in

these early years of uranium mining therefore had to be reconstructed for the purpose of the

epidemiological studies conducted on the international cohorts of uranium miners.

In most cohorts, exposure estimates were mainly based on three different techniques, which will

be described in more detail in this section. In the earliest years, exposure values were frequently

obtained by retrospective exposure reconstruction, followed by area sampling methods in more

recent years. Moreover, individual exposure measurements were obtained via personal dosimetry

in the most recent years of exposure in the French cohort of uranium miners [33] and in a Czech

mine, which is still in operation today [69]. While exposure estimates became more and more

precise over time, there was a gradual decrease in the radon levels received by uranium miners

in most countries due to technical improvements and to the introduction of radiation protection

standards [46]. The different methods of exposure assessment and the gradual decrease in radon

levels can be seen in Figure 2.5, which shows the annual radon exposure of exposed miners in

the French cohort of uranium miners.
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Figure 2.5: Annual mean radon exposure of exposed miners with 0.25 and 0.75 quantiles in the

French cohort of uranium miners

Retrospective exposure reconstruction

In the early days of uranium mining, there was little awareness of the health risks that might

be associated with the exposure to radon. Consequently, miners were not monitored for their

radon exposure and all received exposure had to be reconstructed retrospectively [70, 33, 71] or

extrapolated using exposure data collected in more recent years [72, 73]. In the French cohort of

uranium miners, for instance, the exposure reconstruction for the years before 1956 was based

on the knowledge of a group of experts, who were familiar with the exposure conditions during

this period [74, 75]. In particular, the experts estimated the monthly exposure levels to radon

for different mining sites based on the characteristics of the ore, the type of ventilation at the
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different mining sites and a few measurements of radon concentration, that were available for

the period before 1956. The monthly exposure estimates were then multiplied by the number of

months a miner had worked at each mining site to derive individual annual exposure estimates

[75].

Area sampling methods

Around 1950, indirect methods to measure the exposure to radon were developed and introduced

in uranium mines in several countries for the purpose of radiation protection [46, 33, 72, 71, 68,

73]. In particular, these methods were introduced in 1949 in the Czech cohort of uranium miners

[72], in 1955 in the Wismut cohort [71], in 1956 in the French cohort of uranium miners (see

Figure 2.5) and in 1958 in the Ontario uranium miners cohort [73]. These indirect methods

of exposure estimation were based on an area sampling strategy, where a certain number of

measurements of either radon gas or radon progeny were taken in several areas of the mines

[33, 73]. In the Wismut cohort, these ambient measurements were used to derive a job exposure

matrix6 [71]. In the other cohorts, they were generally used to derive individual exposure

estimates by multiplying the time a miner had spent in a certain area of a mine by the exposure

that was estimated in this area. Annual estimates for cumulated radon exposure were obtained

by summing these terms over all areas a miner had worked during the year [68]. The number

of measurements taken per year typically increased over time, leading to more and more precise

estimates of radon exposure [72, 33, 73]. At the same time, other measures of radiation protection

were introduced in uranium mines in the 1950s. In particular, it was decided in many countries

to increase the ventilation or air flow in the mines in order to reduce the exposure levels, leading

to a sharp decrease in the exposure to radon progeny in the early 1950s [46, 33, 77] for some

cohorts and in the late 1960s [73] for others. The introduction of forced ventilation in the French

uranium mines explains the sharp decrease in the average annual exposure to radon progeny,

which can be observed in Figure 2.5.

Personal dosimetry

A program to develop personal dosimeters to measure radiation exposure in uranium mines was

initiated in France in 1974 by the CEA [78]. These individual dosimeters, which permit to

derive precise individual exposure estimates [69], were worn on the belt of a worker and allowed

to simultaneously measure the worker’s exposure to radon progeny, to long-lived radionuclides

and to external gamma radiation. They were introduced in French uranium mines in 1983 (see

Figure 2.5) and in the last operating mine in the Czech Republic in 2000 [69].

2.2.4 Results on the association between observed radon exposure and lung

cancer mortality in cohort of uranium miners

6Job exposure matrices are used to estimate exposure to chemical and physical agents in occupational cohorts

in the absence of individual measurements [76]. When developing a job exposure matrix, exposure levels are

estimated for different job titles based on the tasks that are typically performed [15].
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Current approach and risk estimates

Although the excess in lung cancer mortality in miners has been known for a long time [40, 41],

the first systematic epidemiological studies to investigate the association between radon exposure

and lung cancer in cohorts of uranium miners were only initiated in the early 1960s [79, 80].

Traditionally, when conducting statistical inference on the association between radon exposure

and lung cancer mortality in cohorts of uranium miners, the most common approach is to adopt a

grouped Poisson regression model. In this vein, the data are stratified into homogeneous groups

of person-time according to variables like calendar period, attained age, duration of employment

and cumulated radon exposure [81]. The number of lung cancer deaths that occurred in each

stratum can then be modelled by a Poisson distribution with a rate parameter that is a function

of the average cumulated radon exposure in the stratum [82]. In this context, the expected

lung cancer mortality rate λ in a homogeneous category of person-years is defined as λ =

λ0 · (1 + ERR(Xcum)), where λ0 is the expected “baseline” lung cancer mortality rate and the

Excess Relative Risk (ERR)7 is modelled as a linear function of cumulated radon exposure Xcum

(typically expressed in WLM): ERR(Xcum) = βXcum [83, 66]. β is the increase in ERR of lung

cancer mortality that is associated with an increase in cumulated radon exposure of 1 WLM.

Table 2.3 gives information on the association between radon exposure and lung cancer mortality

in the most important cohorts of uranium miners. While studies conducted on these cohorts

consistently show a significant association between radon exposure and lung cancer mortality, it

is interesting to note that there is a substantial variability in the risk estimates for the different

cohorts. In particular, the exclusion of all miners which were exposed during exposure periods

characterised by retrospective exposure estimation leads to a marked increase in risk estimates

in the French, the Czech and the Wismut cohort. In the French cohort of uranium miners, the

exclusion of all miners exposed in the period before 1956 leads to the so-called “post-55” cohort

[88, 81]. For the Ontario and the Eldorado cohort, estimates concerning lung cancer incidence

are available, but they are very similar to the estimates for lung cancer mortality (1.30 [1.23;1.37]

per 100 WLM for the Ontario cohort and 0.55 [0.37;0.81] per 100 WLM for the Eldorado cohort).

In view of the low 5-year survival rate of patients suffering from lung cancer, it is not surprising

that the analysis of lung cancer incidence and the analysis of lung cancer mortality result in

virtually the same risk estimates [68].

Effect modifying variables

While the association between lung cancer mortality and radon exposure is classically described

by a simple linear excess relative risk model, there is evidence that a number of variables modify

this association [89]. In particular, the most important effect modifying variables of the associ-

ation between radon and lung cancer include time since exposure [90, 47], attained age [47], age

at exposure [72, 91], smoking [62] and exposure rate [70].

Concerning time since exposure, it was found in most cohorts of uranium miners that recent

exposures (i.e., received in the last 15 years) were associated with higher risk estimates than

exposures that were received long ago [80]. Analyses on sub-cohorts for which the smoking his-

7In other domains of epidemiology, it is common to model the Relative Risk (RR) via Poisson regression. The

link between RR and ERR is RR = 1 + ERR. The parameters in an ERR model are constrained by the relation

ERR > −1.
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Table 2.3: Main characteristics and Excess Relative Risk (ERR) estimates for lung

cancer mortality per 100 WLM of radon exposure obtained on the six most important

cohorts of uranium miners

Study Number Number of Number (percentage) Average ERR per

(Follow-up) of miners deceased of miners deceased exposurea 100 WLM

miners by lung cancer (Min, Max) [95% CIb]

Czech cohort [80] 9,978 5,286 1,141 73 WLM 0.97

(31 Dec 2010) (21.6%) [0.74;1.27]c

Post-68 cohort [80] 5,626 1,637 214 7.5 WLM 2.0

(31 Dec 2010) (13.1%) [-0.1;5.3]c

French cohort [81] 5,086 1,935 211 36.6 WLM 0.71

(31 Dec 2007) (10.9%) (0.01-960.1) [0.31;1.30]

Post-55 cohort [81] 3,377 871 94 17.8 WLM 2.42

(31 Dec 2007) (10.8%) (0.01-128.4) [0.90;5.14]

Colorado Plateau [63] 3,347 334 578.6 WLM 0.42

(31 Dec 1990d) [0.30;0.70]

Eldorado cohort [68] 16,234 618 117 WLM 0.55

(31 Dec 1999) [0.37;0.78]

Ontario cohort [73] 28,546 8,318 1230 21.0 WLM 1.34

(31 Dec 2007) (14.8%) (0.0-875.1) [1.27;1.42]

Wismut [86] 58,987 20,920 3,016 280 WLM 0.19e

(31 Dec 2003d) (13.8%) (0-3224) [0.16;0.21]

Post-60 cohort [87] 26,766 3,820 334 17 WLM 1.3

(31 Dec 2008) (8.7%) (0-334) [0.7;2.1]

aAverage cumulated radon exposure, calculated on exposed miners
b95% confidence interval
c90% confidence interval.
dThere are more recent follow-ups for these cohorts ([84] for the Colorado plateau cohort and [85] for

the Wismut cohort), but we did not find published ERR estimates for these updated cohorts.
eWhen accounting for effect modification by age at median exposure, time since median exposure and

exposure-rate, the central estimate is 1.08 per 100 WLM with a confidence interval of [0.69; 1.47].

tory of workers is available have observed a significant association between radon exposure and

lung cancer mortality for both smokers and for non-smokers with an estimated risk coefficient

that tends to be higher for non-smokers than for smokers [92, 47, 91]. Furthermore, case-control

studies nested in the French cohort of uranium miners [93] and in two other European cohorts

of uranium miners [94], found that, when adjusting for smoking, the effect of radon exposure

on lung cancer risk persisted and the adjustment did not substantially alter the estimated risk
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coefficient associated with radon exposure. Finally, the so-called inverse exposure rate effect

describes the phenomenon that, for a given total cumulated exposure, the risk estimated for a

worker is higher when this cumulated exposure is received over a long period of time than when

it is received over a shorter period of time. While this effect is observed in most cohorts of

uranium miners [66], it is not observed when restricting analyses to low levels of radon exposure

[72, 71, 47, 80] or to subsamples for which precise exposure estimates are available [95, 70]. As

the exposure levels generally decreased over time in cohorts of uranium miners while exposure

estimates became more and more precise, it has repeatedly been suggested that the inverse

exposure-rate effect may at least partly be due to exposure measurement error or exposure

misclassification [96, 66, 97, 80]. In line with this hypothesis, Stram et al. (1999) found that

the inverse exposure-rate effect observed in the Colorado plateau uranium miners cohort was

weakened after the correction for measurement error [25].

2.3 The estimation of absorbed lung doses from radon progeny

While it is in theory possible to obtain precise radon exposure estimates, it is important to note

that the potential health effects of this exposure heavily depend on the exposure conditions,

for example on the type of physical activity an individual was engaged in during the exposure

to radon. In particular, concerning the association between radon exposure and lung cancer

mortality, it is more important how much energy is imparted to sensitive cells in the lung, which

can be expressed via the concept of radiation dose, rather than how many decays occur outside

of the body (which is the information that we may obtain by a radiation exposure value). In

order to estimate the energy imparted to lung tissue, we need to model the deposition and the

clearance of radioactive material in the lung, i.e. the mechanism by which radioisotopes deposit

in the lung and by which they are transported to other organs. This section will give a brief

overview of the concept of radiation dose and the estimation of absorbed lung dose from radon

progeny.

2.3.1 The concept of radiation dose

Ionising radiation can give rise to a variety of adverse health effects on living organisms. The

traditional unit to measure radioactivity is named Becquerel after Henri Becquerel. However,

this unit, which corresponds to the expected number of decays of a radioactive material per

second [50], is not always suitable to reflect the potential health effects of radiation exposure.

Indeed, the harm caused by ionising radiation may depend on a number of factors, including

exposure conditions, the radiosensitivity of cells within the organism and the type of ionising

radiation [98]. In order to account for these differences, three different dose quantities are

commonly used in radiation protection to reflect the biological effects of ionising radiation,

namely organ absorbed dose, equivalent dose and effective dose.

Organ absorbed dose

Organ absorbed dose is a quantity representing the mean energy per unit mass imparted to

tissue being irradiated by ionising radiation [99, 29]. The unit of absorbed dose is gray (Gy)

with one gray being equivalent to 1 joule per kilogram.
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Equivalent dose

While the unit of organ absorbed dose is more suitable to reflect the biological effects of different

radioisotopes than Becquerel, one can only achieve a limited comparability of different types of

radiation with this dose quantity. Indeed, different types of radiation vary in the way that they

interact with matter. Therefore, a given energy deposited by α- and γ-radiation, for instance,

will not have the same biological effectiveness, since α-particles are more heavily charged and

deposit their energy more densely. In order to derive a dose quantity that allows to compare

different types of radiation, absorbed dose has to be multiplied by a so-called radiation weighting

factor. Equivalent doses are classically expressed in sievert (Sv) [100].

Effective dose

Finally, different biological tissues can be more or less sensitive to ionising radiation. Therefore,

it is indispensable to derive a dose quantity that can account for this radiosensitivity in order

to be able to compare the health risks caused by different radioisotopes. This dose quantity is

called effective dose and it accounts for both the biological effectiveness of radiation and the

radiosensitivity of the organ or tissue being irradiated [100].

2.3.2 The human respiratory tract model

Absorbed lung doses from radon cannot be observed directly but have to be modelled using

mathematical models [101]. The estimation of absorbed lung dose due to the inhalation of radon

is commonly based on the so-called human respiratory tract model [102], which is illustrated in

Figure 2.6. This model is used to describe the deposition and the clearance of radioisotopes in

the respiratory tract in order to derive absorbed radiation doses delivered to different regions of

the lung. It divides the human respiratory tract into the extrathoracic airways and the thoracic

airways. The latter can be divided into the bronchial region (BB), the bronchiolar region (bb)

and the alveolar-interstitical (AI) region [104].

While radon can also give rise to doses absorbed to other organs, absorbed lung doses will

dominate these doses, as most of the inhaled radon progeny will decay in the lung before clearance

to other organs can take place.

2.3.3 Uncertain input parameters in dose estimation

As in many occupational and environmental settings involving dose estimation [105, 106, 107],

the estimation of absorbed organ doses in uranium miners is subject to many sources of un-

certainty. A number of studies have been conducted to identify the most influential input

parameters in absorbed lung dose calculation for radon progeny [108, 37, 38, 109]. The input

parameters which are most likely to influence the estimation of absorbed lung dose include the

unattached fraction [37], breathing rate [108, 101, 37, 60, 110], the target cell depth [37] and the

activity size distribution of attached and unattached radon progeny [101, 60, 111, 104]. As these

input parameters are in general not measured, they are highly uncertain, thereby introducing

uncertainty in the calculation of absorbed lung dose.
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Figure 2.6: The human respiratory tract model dividing the lung into the extrathoracic

airways (ET1 and ET2), the bronchial region (BB), the bronchiolar region (bb) and the

alveolar-interstitial regions (AI). Source: [103]

Unattached fraction

As mentioned in section 2.2.1, when inhaled, almost all radon gas will subsequently be exhaled

[59]. At the same time, radon decays into a series of short-lived radioisotopes, which have higher

chemical reactivity and can therefore react rapidly with trace gases and vapours and form clusters

of around 1 nanometer [60]. Commonly, these particles are referred to as the unattached fraction

of radon progeny. Unattached particles can attach to aerosol particles, which are present in the

mine atmosphere. In this case, they are referred to as the attached fraction of radon progeny

[60]. Attached and unattached radon progeny can deposit in the respiratory tract [112], but the

deposition probability and the regions in which the particles will deposit are very different for

attached and unattached radon progeny. The deposited progeny will either decay in the lung or

be transferred to the gastrointestinal tract or to other organs via clearance mechanisms [113],

but due to their relatively short half-lives, most of the radon progeny decays in the lung before

clearance can take place [59, 88, 114, 40].
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Average breathing rate

Breathing rate is an important input parameter in the estimation of absorbed lung dose, as

the number of radioisotopes inhaled by a miner can be assumed to be directly proportional to

his breathing rate [39, 60]. At the same time, it is very rare to dispose of direct and individual

measurements of breathing rate in underground miners. Several approaches exist to estimate the

average breathing rate of an individual in the absence of direct measurements. As the average

breathing rate depends on the level of physical activity, it is common to estimate the fraction of

time a miner spent in different activities and to multiply the determined proportions of time by

a fixed value for breathing rate that is assumed to be known for this type of activity [109, 40, 60].

Target cell depth

A large part of lung dose is delivered by α-particles [88], in particular due to the disintegration

of 218Po and 214Po [61] . As α-particles have a very short range, travelling only some millimetres

in tissue, the depth of target cells is an important parameter in dose calculation. The fraction

of alpha particle energy deposited in the target cells, and hence the absorbed dose, will depend

on their depth and on the thickness of different layers that separate these cells from the interior

of the human lungs [40].

Activity size distribution

The fraction of radon progeny that are attached to ambient aerosol particles and the activity

size distribution of the attached and the unattached radon progeny play an important role in

the estimation of absorbed dose [115]. Indeed, the deposition of an inhaled particle in the lung

strongly depends on the particle size [37, 111, 40]. The activity size distribution depends on the

exposure conditions in the mines, in particular the presence of diesel engines [116, 60].

Summary

In conclusion, when analysing the association between the exposure to radon and its progeny

and lung cancer mortality in cohorts of uranium miners, one is faced with a certain number of

uncertainties. The main sources of uncertainty, which are summarised in Figure 2.7, do not only

include exposure measurement error and other uncertain input parameters in dose calculation,

but also the potential for a modification of the exposure-response relationship by time since

exposure, smoking and the exposure rate effect. If our aim is to account for these sources of

uncertainty, we are faced with an additional source of uncertainty, namely our uncertainty on

the models to describe the relationship between the different quantities shown in Figure 2.7.

There were substantial changes in the methods of exposure assessment and in the exposure

conditions over time in almost all the cohorts of uranium miners. It has been suggested some

of the effect modifying variables, in particular exposure rate, may at least partially be a result

of measurement error [96, 66, 97, 80]. In other words, if we do not account for the uncertainty
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Figure 2.7: Main sources of uncertainty in the analysis of the association between radon

exposure and lung cancer mortality in cohorts of uranium miners. Modified from BEIR VI [63].

in the association between observed radon exposure and absorbed lung dose (on the left-hand

side in Figure 2.7), these uncertainties may create apparent distortions of the dose-response

relationship (on the right-hand side in Figure 2.7).
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Chapter 3

Measurement error in

epidemiological studies

The aim of most epidemiological studies is to evaluate the association between a disease outcome

and a number of risk factors or exposure variables, which are not all known perfectly. Indeed,

epidemiology is primarily an observational science where the exposure conditions of study par-

ticipants are not under experimental control [3, 117], contrary to many other disciplines. In this

situation, the determination of the true exposure of study participant i, Xi, may be difficult,

expensive or even impossible and it is common to use questionnaires, interviews or a strategy of

group-level exposure assessment in order to obtain an error-prone surrogate Zi for true exposure

Xi. The association between the surrogate, or observed exposure, Zi and the disease outcome

Yi, described by a so-called disease model, is then studied to infer the association between true

exposure Xi and Yi, resulting in a measurement error problem. While the term “measurement

error” is traditionally reserved to describe a lack of precision in a measuring device in the phys-

ical sciences, it has a very broad definition in epidemiological studies [118, 119]. Measurement

error of study participant i, denoted Ui hereafter, refers to the discrepancy between the observed

exposure value Zi, i.e., the exposure value assumed in an epidemiological study, and the true

(and unknown) exposure value Xi, regardless of the reasons for this discrepancy. Another speci-

ficity of measurement error in epidemiological studies arises from the fact that the exposure to

a certain chemical or physical agent is typically not constant over time [120, 14]. Therefore, it

may be more adequate to describe the discrepancy of true Xi(t) and observed exposure Zi(t) of

study participant i at time t by the measurement error term Ui(t), depending on time t.

The aim of this chapter is to give an overview of the literature on the different types of measure-

ment error, their potential effects on risk estimates in epidemiological studies and of standard

approaches to correct for these effects. Measurement error has attracted considerable attention in

the epidemiological and in the statistical literature. While problems related to exposure measure-

ment error occur in all areas of epidemiology, the study of the effects of measurement error in risk

estimation and the development of methods to account for it have received the greatest attention

in nutritional epidemiology [121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134],

radiation epidemiology [27, 26, 28, 135, 29, 136, 137, 138, 107, 32, 35, 139] and the study of the

health effects of air pollution [140, 141, 142].

The popularity of this topic in radiation epidemiology might be linked to the fact that the main
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risk factor of interest in many studies in this domain is radiation dose (see section 2.3.1) [137].

Radiation dose is an abstract concept to express the biological effects of radiation exposure. The

dose absorbed to critical organs, for instance cannot be measured directly, but has to be calcu-

lated by combining physical or biological measurements with mathematical models involving a

number of uncertain input parameters which have to be assumed to be known for this purpose

[143, 118]. In this chapter, we will adopt a broad definition of the term measurement error to

describe both exposure and dose uncertainty in epidemiological studies. Moreover, we will limit

our discussion to cases where the exposure variable is prone to error, although measurement

error can also occur in the disease outcome.

3.1 Measurement error and its consequences on inference

It is widely acknowledged that exposure measurement error can lead to misleading results in

observational studies when it is not or only poorly accounted for, potentially causing bias in risk

estimates, a reduction in statistical power and a distortion of the exposure-response relationship

[105, 8, 144]. However, the term measurement error is extremely broad [118, 119] and its exact

consequences on statistical inference depend both on the type of error and on the type of disease

model.

As can be seen in the following, many important properties of measurement error can be resumed

by independence assumptions. In particular, in the case of independence between measurement

error of study participant i at time t, Ui(t), and the corresponding value of true exposure Xi(t),

we will call this error term classical measurement error. On the other hand, if Ui(t) is in-

dependent of observed exposure Zi(t), the error term is called Berkson error. The condition

of non-differential measurement error is satisfied if the error term Ui(t) is independent of the

outcome Yi. Finally, if both the error terms of different participants at a certain time t are inde-

pendent (i.e. Ui(t) |= Ui′(t) ∀i 6= i′) and the error terms of a certain participant i are independent

over time, (i.e. Ui(t) |= Ui(t′) ∀t 6= t′), then the error term is said to be unshared.

3.1.1 Different types of measurement error

Multiplicative and additive measurement error

Depending on whether one assumes an additive or a multiplicative measurement model, the

error term Ui(t) will either describe the difference or the ratio between true Xi(t) and observed

exposure Zi(t). While it is common to assume an additive model and a normal distribution

to describe the variability of Ui(t) in the statistical literature [145, 8, 146], this model may

be problematic in epidemiological studies as both true and observed exposure typically take

non-negative values. Moreover, the empirical distribution of observed exposure [31] and the

nature of error sources may often suggest a multiplicative model and a log-normal distribution

of Ui(t) [147, 148, 137, 149, 150, 151, 152, 29, 153]. Consequently, we will in general adopt a

multiplicative error model in the following to account for the nature of exposure measurement

error in epidemiological studies, but this work can easily be extended to the case of additive

measurement error.
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Berkson and classical measurement error

The most common distinction that is made in the literature to classify measurement error is the

difference between Berkson error and classical measurement error [8, 106, 10].

In the classical measurement model, we assume that true exposure Xi(t) of study participant

i at time t is observed via its error-prone surrogate Zi(t). Zi(t) is considered to be a random

variable that can be modelled as a function of true and unknown exposure Xi(t) and an error

term Ui(t) that is independent of true exposure Xi(t). For a study participant i at time t, the

multiplicative classical measurement model is given by:

Zi(t) = Xi(t) · Ui(t). (3.1)

Classical error arises naturally in cases where exposure is measured individually for each study

participant via a measurement device. Thereby, the classical measurement model is used to

describe the fact that if we used several devices to measure the exposure of a given study

participant at the same time, the observed values on different measuring devices would usually

indicate slightly different values [105].

Berkson error, on the other hand, arises in cases where the true exposure values Xi(t) of study

participants deviates from a fixed and known exposure value Zi(t):

Xi(t) = Zi(t) · Ui(t), (3.2)

where the measurement error term Ui(t) is independent of Zi(t). Originally proposed by Berkson

(1950) [154], this model is primarily intended to describe the error occurring in an experimental

setting with a predefined exposure value Zi(t) where the true exposure value Xi(t) deviates

from this prefixed value due to imprecisions in the realisation of the experiment [155, 156]. For

instance, one can imagine a X-ray machine, which is programmed to deliver a certain radiation

dose in medical imaging. The actual dose received by a patient will slightly vary depending

on the exposure conditions, for instance as a function of his size or of his exact position with

respect to the machine.

In epidemiological studies, this model is also commonly assumed in situations, where a group-

based strategy is used to determine individual exposure [14, 147, 31, 32, 29, 106, 119]. The idea

behind this assumption is that, in the case of a group-based strategy, we observe an exposure

value Zj(t) which is common to all participants i in a group j. The individual exposure value

of participant i in group j at time t, Xij(t), will in general randomly deviate from this observed

exposure value Zj(t). This view has been repeatedly criticised, however, because it suggests

that the value measured at the group-level is known without error [26, 105, 157]. In order

to obtain a more realistic model to describe measurement error occurring in a group-based

exposure assessment strategy, it has been suggested to use a mixture of Berkson and classical

measurement error [26, 10, 158], where the classical component is intended to reflect the error

in the measurement process of the group-based exposure value, while the Berkson component

describes the deviation of the individual exposure values from this group-based exposure value.

Differential and non-differential measurement error

Another fundamental distinction that can be made to describe measurement error in epidemi-

ological studies is the difference between differential and non-differential measurement error.
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Measurement error is called non-differential when the error term is independent of disease sta-

tus [159]. In other words, the assumption of non-differential error describes the conditional

independence of observed exposure Zi(t) and disease outcome Yi given true exposure Xi(t). The

assumption of non-differential measurement error seems reasonable when exposure is assessed

in a prospective fashion, or in other words before the occurrence of a disease. In case-control

studies, where the values on exposure variables are obtained after the diagnosis of the disease,

differential measurement error may arise because of recall bias, i.e. cases and controls do not

remember their exposure histories in the same way [160, 161, 127, 162]. In particular, it is

possible that cases spent more time trying to remember their past exposures, because they are

trying to find explanations for their present disease and this could lead to smaller measurement

errors for cases than for controls. On the other hand, it is also possible that cases overestimate

their past exposure while controls could have a tendency to underestimate their exposure.

Systematic and random error

When treating measurement error, it is common to assume that there is only a random error

component Ui(t), i.e. Zi(t) = Xi(t) ·Ui(t) with E(Zi(t)|Xi(t)) = Xi(t) for classical measurement

error or Xi(t) = Zi(t) ·Ui(t) with E(Xi(t)|Zi(t)) = Zi(t). Apart from this random error compo-

nent, we can also assume that there is a systematic bias in the discrepancy between true Xi(t)

and observed exposure Zi(t). For instance, we can assume in a classical measurement model

that we are not only faced with the random classical measurement error component Ui(t), but

also with a bias term a, i.e. :

Zi(t) = a ·Xi(t) · Ui(t) with (3.3)

E(Zi(t)|Xi(t)) = a ·Xi(t).

This bias affects the exposure measurements of all study participants in the same way and will

lead to a systematic over- or underestimation of true exposure for the whole sample [163, 164].

Systematic measurement error may arise because of errors in the calibration of a measurement

device which is used for all study participants [164].

Heteroscedastic measurement error

In epidemiological studies, exposure values for different study populations may be measured with

varying degrees of precision. In particular, in occupational cohort studies, it is common to use

different methods of exposure assessment for different exposure periods. In this case, exposure

uncertainty can be adequately modelled by a heteroscedastic measurement model to describe

differences in the error variances for different exposure periods. More generally, we can assume

a heteroscedastic measurement model whenever the error variance depends on a covariate Vi(t).

For instance, in a multi centre study taking place in several hospitals, we can imagine that the

machines and the procedures for the measuring of the explanatory variables in the centres differ.

In this case, we can describe the resulting differences in the magnitude of measurement error for

the patients in these centres by a heteroscedastic error structure.
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Shared measurement error

Recently, there has been growing interest in measurement error components, which are shared

for several individuals in radiation epidemiology [165, 105, 106, 118, 119, 138, 107, 153]. These

shared measurement errors arise when the discrepancy between true and observed exposure

depends on an error component that affects the exposure or dose estimates for several study

participants in the same way. These error components may often arise in the retrospective

reconstruction of radiation doses received by a study population. Indeed, a retrospective dose

reconstruction typically involves many unknown quantities, which have to be estimated. For

instance, in the reconstruction of thyroid dose estimates for a cohort of Belarusian children ex-

posed due to the Chernobyl accident, mathematical models are used to reconstruct the transport

of iodine-131 from the ground to a child’s thyroid [107]. In this situation, input parameters like

the daily deposition of iodine-131 in a given settlement or the daily grass consumption of a cow

have to be estimated to derive thyroid doses. Errors in the estimation of the first parameter

will affect all children of a given settlement in the same way. According to Drozdovitch et al.

(2015), the errors occurring in the second parameter will even affect all study participants in

the cohort simultaneously [107].

While researchers in radiation epidemiology are mainly interested in measurement errors that

are shared between individuals, there has long been awareness of measurement error components

that are shared for several exposure values of the same individual in nutritional epidemiology

[123, 124, 125, 166, 132]. For instance, if a study participant has a tendency to underestimate

his calorie intake in a questionnaire, it is likely that he will show this tendency every time

he completes the questionnaire, thereby creating a subject-specific error component. Likewise,

error components that are shared for several years of exposure may arise in occupational co-

hort studies when a method of group-based exposure assessment is used, for instance when

assessing exposure via job-exposure matrices. As described in section 2.2.3, when developing

a job-exposure matrix, exposure levels are estimated for different job titles based on the tasks

that are typically performed [15] and all workers with a given job title are affected the same

exposure value. However, differences in working conditions, individual worker practices and

other worker characteristics may lead to varying exposure levels within a given job category. As

these working conditions and worker characteristics typically remain constant for several expo-

sure measurements [16, 15], this may lead to subject-specific error components. For instance,

workers in a car manufacturing plant have been reported to receive very different long term

average exposures to isopropyl alcohol as a result of their differences in body length, although

they performed basically the same tasks [16].

In summary, shared measurement errors can either describe a statistical dependence of errors

occurring for different study participants or a statistical dependence of errors of the same study

participant at different time points. In the following, we will consider that an error component

is shared for all years of exposure of the same individual if Ui(t) = Ui ∀t. A Berkson error shared

for several years of an individual can thereby be expressed in the following way:

Xi(t) = Zi(t) · Ui. (3.4)
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Similarly, an error component shared for all individuals in a study can be expressed by Ui(t) =

U(t) ∀i. We could express a classical measurement error shared between individuals by:

Zi(t) = Xi(t) · U(t). (3.5)

However, in general, it is more convenient to assume that an error component shared within

individuals is shared for a certain sub-group rather than for all individuals in a study. In the

same way, we can assume that an error component shared within individuals, i.e. for several

years of the same individual, is only shared for the exposure years in a specific exposure period,

rather than for all exposure years of an individual.

3.1.2 The effects of measurement error on statistical inference

When effect size is tiny and measurement error is huge, you’re essentially trying to use a bath-

room scale to weigh a feather - and the feather is resting loosely in the pouch of a kangaroo that

is vigorously jumping up and down. - Andrew Gelman in a post on his blog (21 April 2015)

Despite the variety of types of measurement error that can occur in epidemiology, studies

that assess the effects of measurement error on statistical inference and methods to correct for

measurement error mainly focus on errors that are homoscedastic, non-differential and unshared

[153, 167]. Moreover, many of the assumptions that are generally made concerning the effects

of measurement error on statistical inference are shaped by analytical results that are available

for the simple linear regression model with only one covariate that is prone to additive error.

This model, which describes the conditional expectation of a continuous outcome variable as

a function of an error-prone covariate, has received great attention in the measurement error

literature [145, 168, 169, 26, 128, 8]. However, in epidemiology, as the study of the patterns

and the causes of disease, the relevance of this model is extremely limited since it is only rarely

possible to model disease outcomes as uncensored continuous variables [170]. Disease outcomes
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are more commonly described by binary variables (e.g. presence or absence of disease), failure

times (e.g. time until the disease is declared) or count variables (e.g. number of cases of a certain

decease). Consequently, the effects of measurement error in logistic regression, proportional

hazards and Poisson regression models are of more interest in epidemiological studies [171, 137].

In this section, we will give a brief overview of the analytical results available in linear regression

and then focus on logistic regression and proportional hazards models. Finally, we will briefly

mention some results concerning the effects of measurement error in Poisson regression and the

possibility of measurement error to lead to an attenuation of the exposure response relationship

in occupational cohort studies.

Measurement error in simple linear regression

Consider the simple linear regression model:

Yi = β0 + β1Xi + εi, (3.6)

where the continuous outcome of study participant i, Yi, is modelled as a function of the value

he takes on the explanatory variable Xi. β0 and β1 are unknown regression coefficients and the

error terms εi are independently and identically distributed with E(εi) = 0 and variance σ2
ε .

Suppose Xi can merely be observed through Zi which is a surrogate for Xi that is prone to

non-differential and additive classical measurement error, i.e. Zi = Xi + Ui, implying that the

error term Ui is independent of both Xi and Yi. We will further assume that the error terms

Ui are independently and identically distributed for different study participants and denote the

variance of Ui as σ2
u and the variance of Xi as σ2

x. The standard approach to estimate β1 consists

in neglecting measurement error by fitting the model:

Yi = β∗0 + β∗1Zi + ε∗i (3.7)

where Xi is replaced by its surrogate Zi. In this model, the ordinary least squares estimate of

β1 is given by β̂∗1 = Cov(Zi,Yi)
V ar(Zi)

. As Ui is independent of Xi, the denominator takes the value

V ar(Zi) = V ar(Xi) + V ar(Ui) = σ2
x + σ2

u. Moreover, Cov(Zi, Yi) = Cov(Xi, Yi) + Cov(Ui, Yi).

Due to the assumption of non-differential measurement error the second term is zero, resulting

in β̂∗1 = Cov(Xi,Yi)
σ2
x+σ2

u
. When comparing this expression with the ordinary least square estimate of

β1 given by β̂1 = Cov(Xi,Yi)
σ2
x

, which is known to be unbiased in cases where Xi is observable, we

remark that the estimator β̂∗1 is biased towards the null by an attenuation factor λ, i.e. β̂∗1 = λβ̂1

where λ = σ2
x

σ2
x+σ2

u
.

Additive and non-differential Berkson error, on the other hand, does not bias risk estimates

in the simple linear regression model [8, 160]. In this case, we have Xi = Zi + Ui with Ui

independent of Zi and E(Ui|Zi) = E(Ui) = 0. We can write

Yi = β0 + β1Xi + εi (3.8)

= β0 + β1(Zi + Ui) + εi (3.9)

= β0 + β1Zi + β1Ui + εi (3.10)

= β0 + β1Zi + ε∗i . (3.11)

The new error term ε∗i = β1Ui + εi is centred at zero since E(ε∗i ) = E(β1Ui + εi) = β1E(Ui) +

E(εi) = β1 · 0 + 0 = 0. Under the hypothesis that Ui and εi are independent, the variance of ε∗i
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can be expressed as V ar(β1Ui + εi) = V ar(β1Ui) + V ar(εi) = β2
1σ

2
U + σ2

ε . Therefore, estimating

β1 in 3.11 or in 3.8, for instance via ordinary least squares, will yield an unbiased estimate of

β1. However, as β2
1σ

2
U +σ2

ε > σ2
ε for β1 6= 0 and σ2

U , Berkson error in the simple linear regression

model may lead to a widening of confidence intervals and thereby to a loss in statistical power.

In summary, when there is only one error-prone covariate in the simple linear model, non-

differential classical measurement error will lead to an underestimation of the regression co-

efficient β1, where the bias depends both on the variance of measurement error σ2
u and the

variance of true exposure σ2
x. In the case of Berkson error, however, the estimator β̂∗1 is unbi-

ased. These results are regularly repeated in the discussion of results of epidemiological studies

[172, 173] and in papers that give recommendations concerning measurement error in epidemiol-

ogy [3, 174, 175, 147, 160, 105, 118, 119]. Unfortunately, they are only rarely accompanied with

the warning that these statements are only valid in the simple linear regression model, which

is hardly ever used in epidemiological studies and under the condition that only one covariate

is prone to error. If more than one covariate is prone to measurement error, which is virtually

always the case in epidemiological studies, it is more difficult to predict whether measurement

error will attenuate or inflate risk estimates [122, 126, 129]. More specifically, in multiple linear

regression, measurement error in one covariate can induce bias in the estimates of all regression

coefficients, including the coefficients associated with covariates that are not measured with er-

ror [162]. In many epidemiological studies, the effects of measurement error will therefore rather

resemble Andrew Gelman’s kangaroo jumping vigorously up and down on a bathroom scale,

while you are trying to weight a feather that is in its pouch, than the very predictable effects

that are often assumed. Despite the efforts of many researchers to unveil this misunderstanding

[167, 176, 177, 4, 178, 129], it seems as if there was still a wide-spread belief in epidemiology

that Berkson error does not cause bias, while classical measurement error can only bias risk

estimates towards the null [4, 12].

Measurement error in logistic regression

The logistic regression model describes the conditional probability of a binary outcome Yi for

study participant i given the values he takes on a covariate Xi as

P (Yi = 1|Xi) =
exp(β0 + β1Xi)

1 + exp(β0 + β1Xi)
. (3.12)

Contrary to the simple linear regression model, both Berkson and classical measurement error

can lead to biased risk estimates in logistic regression [26, 28, 4]. There are no general formulas

indicating the exact magnitude of bias that is introduced by measurement error in logistic

regression [8]. Heid et al. (2002) [28] provide approximate expressions, showing that, in the case

of classical additive error, the bias introduced in risk estimates in logistic regression depends

on the measurement error variance and the variance of true exposure. Moreover, Burstyn et

al. (2014) [179] perform a simulation study that demonstrates that non-differential exposure

misclassification can not only attenuate risk estimates, but also lead to an increase in false

positive findings in logistic regression, i.e., it increases the chance of erroneously observing a

significant association between the exposure and the disease outcome of interest in cases where

this association does not exist.
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Measurement error in proportional hazards models

The outcome of many epidemiological studies can be best described as a failure time, e.g. as

the time until the occurrence of a certain event (typically the occurrence of or the death by a

certain disease). This type of outcome is commonly right-censored, i.e., we do not observe the

failure time of interest Ti for all study participants. Instead, we observe Yi = min(Ti, Ci), where

Ci is the censoring time of study participant i and a censoring indicator δi: δi = 1 if Ti ≤ Ci

and δi = 0 otherwise. The most popular choice to describe the association between an exposure

and a right-censored failure time is the proportional hazards model. In its standard form, this

model describes the instantaneous hazard rate of experiencing the event of interest for study

participant i, hi(t), by:

hi(t) = h0(t)ϕ(Xi, β) (3.13)

where h0(t) is the so-called baseline hazard, which usually corresponds to the instantaneous

hazard rate for an unexposed study participant (i.e. Xi = 0). ϕ(Xi, β) is a positive term

representing the hazard ratio between a study participant who received an exposure of Xi and

a non-exposed study participant. This model was first introduced by Cox (1972) [180], who

proposed a log-linear model by specifying ϕ(Xi, β) = exp(Xiβ). Moreover, he proposed a semi-

parametric method of partial likelihood maximisation, which allows to maximise the likelihood

with respect to the risk coefficient β, without having to specify the baseline hazard h0(t).

The most fundamental result concerning the effect of measurement error in the proportional

hazard model is that this partial likelihood method can no longer yield valid inference in general

in the presence of measurement error, because the baseline hazard and the effect of the expo-

sure variables are no longer separable [181, 182, 183]. Moreover, similar to logistic regression,

both Berkson and classical measurement error can lead to biased risk estimates in proportional

hazards models [4, 32]. Hugh (1993) shows that in the case of a single explanatory variable

which is observed with non-differential and additive classical measurement error that is nor-

mally distributed, the attenuation factor λ is approximately equal to the attenuation factor in

linear regression (i.e. σ2
x

σ2
x+σ2

u
) for cases when the disease is rare (i.e. the failure times of a high

percentage of the sample are censored). Concerning the shape of the exposure-response asso-

ciation, Keogh et al. (2012) [184] conducted a simulation study and found that when the true

association between an exposure and the outcome is nonlinear, unshared classical measurement

error makes this association appear more linear.

Measurement error in Poisson regression

When analysing cohort data to evaluate the association between the exposure to a certain chem-

ical or physical agent and a disease outcome, some advocate Poisson regression as the method of

choice [185]. This approach, which is particularly popular in radiation epidemiology [139], typ-

ically entails the tabulation of person-time and events in order to model the number of disease

cases in a certain sub-group or stratum. To achieve this tabulation, all explanatory variables

have to be categorised [186]. On the first glance, the categorisation of an error-prone exposure

variable may seem a simple and straightforward solution to alleviate the impact of measure-

ment error. Tielemans (1998) [175], for instance, argues that the categorisation of error-prone

exposure should lead to Berkson type measurement error and therefore result in almost unbi-
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Figure 3.1: Illustration of the problems arising in the categorisation of a error-prone

continuous exposure variable

ased risk estimates. As mentioned earlier, the assumption that Berkson type measurement error

leads to unbiased risk estimates is only true in simple linear regression and this model is only

very rarely suitable for the description of disease outcomes in epidemiological studies. More

importantly, there is some evidence that the categorisation of error-prone exposure variables

can actually aggravate the problem of exposure measurement error in epidemiological studies. If

the exposure of interest is associated with the outcome, the true exposure distribution will not

be the same for cases and for controls. As the probability of misclassification depends on true

exposure (being higher around the category limits), the categorisation of a continuous exposure

variable presenting non-differential measurement error is very likely to lead to differential mis-

classification [187, 82, 188]. Figure 3.1 illustrates this phenomenon. Although the probability of

misclassification in this example is comparable for cases and for controls, there is a tendency to

underestimate the exposure for cases and to overestimate the exposure of controls when the error

prone exposure variable is categorized. Differential misclassification can create substantial bias

in risk estimates [186] and, in this case, methods that assume non-differential misclassification

can yield highly misleading results [187].

The potential of measurement error to lead to an attenuation in the exposure-

response relationship

In occupational cohort studies, one frequently observes an attenuation of the exposure-response

curve for high exposure values [17]. It has been suggested that this phenomenon could be

explained by the fact that exposure uncertainty and the magnitude of exposure are both highest

for the earliest exposure periods, which are often characterised by a method of retrospective

exposure assessment [189, 17, 14]. Steenland et al. (2015) [14] recently examined this hypothesis

on simulated data and merely found a modest attenuation at high exposure values. However,

the authors treated cumulative exposure in an occupational cohort as time fixed variable known

at baseline, thereby ignoring its time-varying nature and the possibility of exposure uncertainty
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components to be shared for several workers or for several exposure values of the same worker.

3.2 Standard methods to correct for measurement error

In light of the severeness of the potential consequences of exposure measurement error on sta-

tistical inference, it seems surprising that measurement error is only rarely accounted for in

epidemiological studies [12, 190, 191]. At the same time, there is a plethora of approaches that

have been proposed in the statistical literature to account for non-differential measurement er-

ror. Examples range from simple methods, like regression calibration, which only allow for an

approximate correction of parameter estimates in nonlinear regression models [192, 144], to elab-

orate methods, which can produce consistent parameter estimates in both linear and nonlinear

models if the assumed models are specified correctly.

The starting point of basically all methods to account for measurement error is the specification

of a response model and a measurement model. In epidemiology, the response model is also

frequently referred to as disease model [193, 194, 160]. It relates disease outcome Yi of study

participant i to his true and unknown values of exposure Xi(t) at time t. In the case of Berkson

error, the measurement model describes the distribution of the true exposure of study partici-

pant i at time t, Xi(t), conditional on the corresponding observed value Zi(t) (see equation 3.2).

In the case of classical measurement error, on the other hand, the measurement model describes

the distribution of the observed exposure of study participant i at time t, Zi(t), conditional on

the corresponding true exposure value Xi(t) (see equation 3.1). So-called functional methods

only specify a disease and a measurement model when correcting for classical measurement er-

ror, while structural methods additionally require a parametric model to describe the probability

distribution of the true and unknown exposure Xi(t). Thereby, they assume that the distribu-

tion of the vector of exposure values X belongs to a known family of parametric distributions

[195]. The specification of this so-called exposure model may involve some difficulty because it

involves hypotheses about a latent variable, which by definition is not observed. In functional

methods, on the other hand, the true exposure values Xi(t) are either regarded as unknown

and fixed or, if Xi(t) is considered to be a random variable, only minimal assumptions about

its distribution are made [8], for instance by modelling the expected values of Xi(t) conditional

on Zi(t). If the exposure model is specified correctly, structural methods have been shown to

outperform functional methods in terms of efficiency [160, 196, 197, 198, 199]. This section will

give a brief overview on the possible approaches by presenting regression calibration, simulation

extrapolation, likelihood-based approaches and methods based on multiple realisations of expo-

sure or dose estimates.

Alternative approaches, which are not treated in more detail here, include the instrumental vari-

ables approach [169, 198], multiple imputation [190, 200, 201], and structural equation models

[202, 203, 204].

3.2.1 Regression calibration

Regression calibration is arguably the most simple and the most popular method to account for

measurement error in regression models [118, 144, 161, 192, 134]. The basic idea behind this

functional approach is to replace the observed exposure values with unbiased expected values

33



for true exposure [144, 205, 156]. The expected values for true exposure, Xi(t), are typically

modelled as a function of observed exposure Zi(t) and of other covariates V1, . . . Vp. For instance,

assuming a linear model in this context will lead to a measurement model of the form:

E(Xi(t)|Zi(t), Vi1, . . . , Vip) = α0 + α1Zi(t) +

p∑

k=1

γkVik, (3.14)

where the unknown parameters α0, α1 and γ1, · · · γp are typically estimated on a validation

sample, i.e., a sample for which both true and observed exposure are measured accurately

[127, 205]. Regression calibration leads to consistent estimates of the association between true

exposure Xi and the outcome Yi in linear regression. It is only approximately consistent in non-

linear models, which are commonly used in epidemiological studies, such as logistic regression or

proportional hazards models [206, 131, 207, 144, 156]. In proportional hazards models, regression

calibration can result in moderate biases, even when the sample size is large [144]. Finally,

regression calibration uses disjoint steps. It first estimates the conditional expected values of

true exposure values E(Xi(t)|Zi(t)). In a second step, these values are used as plug-in estimates

for true exposure Xi(t) when conducting statistical inference on the unknown risk parameters,

implying that the uncertainty associated with the estimation of E(Xi(t)|Zi(t)) is not accounted

for in the estimation of these risk parameters. To remedy this problem, several authors have

proposed to use bootstrap techniques in order to obtain standard errors and confidence intervals

[208, 131, 209, 134], but it is questionable how common this option is in practice.

3.2.2 Simulation Extrapolation (SIMEX)

The aim of the simulation extrapolation approach (SIMEX), proposed by Cook et al. (1994)

[210], is to correct for measurement error by establishing a relation between the magnitude of

measurement error and the bias in parameter estimates. This relation is established via a series

of simulations, in which different magnitudes of measurement error are added to the observed

exposure data. For each simulation, the naive estimates for the parameter values are calculated.

In a second step, a parametric function, called extrapolation function, is fitted to describe the

relation between the magnitude of measurement error and the bias in these naive parameter

estimates. This function is then used to extrapolate to the case of no measurement error. While

SIMEX can be considered as robust in the sense that it does not rely on distributional assump-

tions on true exposure Xi(t), its performance may critically depend on the correct specification

of the extrapolation function [211]. As SIMEX consists of repeatedly fitting standard models,

it is easy to implement, but it can be computer intensive [208]. Similarly to regression calibra-

tion, standard error estimates for this functional approach can be obtained via the bootstrap

[210, 208]. However, due to the computational burden of the combination of SIMEX and the

bootstrap to obtain standard error estimates, it is again questionable to what extent this option

is chosen in practice [211].

3.2.3 Likelihood-based approaches

While regression calibration and SIMEX only result in consistent estimators in special cases,

there are more elaborate methods, which are based on the likelihood that lead to fully consis-

tent estimators [8]. These structural methods are more flexible than the functional methods
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presented so far. Indeed, in order to account for classical measurement error using a likelihood-

based approach, one merely has to specify a disease model, a measurement model and an ex-

posure model as described in the beginning of this section. These models are then linked via

conditional independence assumptions, in particular based on the assumption of non-differential

measurement error, as defined in section 3.1.1. Likelihood-based approaches have been shown

to be more efficient than regression calibration and SIMEX [196, 197, 199]. Moreover, they

provide likelihood-based confidence intervals, which are more reliable than confidence intervals

obtained for SIMEX or regression calibration [160], in particular in the case of non-linear mod-

els [8, 212]. However, in line with the well known “no free lunch” phenomenon [213, 214], this

gain in efficiency comes at the cost of additional modelling assumptions [8]. In the case of clas-

sical measurement error, the full likelihood approach relies on the correct specification of the

exposure model, i.e. of the distribution of true exposure Xi(t) [215, 148], whereas functional

methods for measurement correction at most make minimal distributional assumptions about

Xi(t). As true exposure Xi(t) is by definition unobserved, it may be difficult to specify its

distribution correctly, in particular in cases where no validation sample is obtainable. If the

exposure model is misspecified, the full likelihood approach may be biased, contrary to SIMEX

and regression calibration, which do not rely on an exposure model. Another major drawback

of these methods is their computational burden [216, 199, 217, 162, 218]. In order to obtain

the likelihood function to be maximised, one has to integrate the product of the measurement

model, the disease model and the exposure model over the true and unobserved exposure values

Xi(t), which may be high-dimensional [217, 219]. Maximising the integrated likelihood may be

challenging, mainly because it is rarely available in a closed form [217]. In a frequentist context,

it is possible to use numerical methods, for instance the EM-Algorithm [220, 212, 132], or Gaus-

sian quadrature [160, 8, 36] to maximise the integrated likelihood. However, the implementation

of likelihood-based methods in complex situations may involve severe computational difficulties

[149].

3.2.4 Methods based on multiple realisations of dose estimates

A recent approach to account for shared and unshared uncertainties in radiation epidemiology

is to base statistical inference on risk estimates on multiple realisations of dose estimates for

each cohort member [119, 107, 139]. Simon et al. (2015) [119] describe a Monte Carlo simula-

tion design to generate possible dose realisations which explicitly separates unshared sources of

uncertainty and sources of uncertainty that are shared between several cohort members. Several

approaches have been proposed to integrate these realisations of dose estimates in risk estima-

tion. In line with the idea of regression calibration, Little et al. (2014) [106, 221] have used an

approach where multiple dose realisations are averaged and these averaged dose vectors are then

used as plug-in estimates for true exposure in the disease model. A more elaborate approach

was proposed by Stayner et al. (2007) [222]. The authors propose to calculate the likelihood

for each possible dose realisation and a large number of pre-specified parameter values. These

values are then averaged over all possible dose realisations to approximate the integrated like-

lihood and the maximum likelihood estimate can be derived by taking the maximum value of

this integrated likelihood.
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Chapter 4

The Bayesian hierarchical framework

to account for uncertainty

While statisticians who chose the Bayesian approach to statistical inference still had to either

hide their views from the statistical community or to be ready to staunchly defend their point

of view some 50 years ago [223, 224, 225], there has been a remarkable surge in the popularity

of this approach in the last decades. Indeed, as can be seen in Figure 4.1, when searching for

the term “Bayesian” in PubMed, we can observe an exponential growth curve with the number

of publications doubling about every five years since 1963. One of the main reasons for this
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Figure 4.1: Number of results on PubMed when searching for the term “Bayesian” (results on

the 5th of August 2017)

development is arguably the introduction of Markov Chain Monte Carlo (MCMC) methods to

conduct Bayesian inference [226, 227] coupled with the availability of MCMC implementations

in software packages (for instance WinBUGS in 1989) and technical improvements that led

to a substantial increase in computing power [228, 229]. These improvements now make it

possible to exploit the flexibility of the Bayesian approach by conducting inference for ever more
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complex and realistic probabilistic models [230, 231, 232, 233, 234]. This chapter will give a

brief overview of the Bayesian approach to statistical inference with a particular focus on its

ability to account for exposure uncertainty in epidemiological studies and on the possibility to

elicit prior distributions on unknown parameters based on expert knowledge.

4.1 History

There’s no haters like Bayes’ haters

They spit when they see a prior

Be careful when you offer your posterior

They’ll try to kick it right through the door

But turn the other cheek it is not too sore

Of error they may yet tire!

— G. E. P. Box (who was married to R. A. Fisher’s daughter Joan Fisher)

R. A. Fisher is often considered to be the founder of statistical inference [235, 236, 237, 238].

In line with this view, the Bayesian approach to statistical inference is often conceived as a

relatively recent alternative to the frequentist approach (which is also referred to as classical

statistics to stress this point). C. R. Rao goes so far as to say that before the introduction of

the χ square test by Karl Pearson in 1900 and the t-test by Gosset in 1908, statistics meant

observed data and descriptive summary figures [235]. However, this view does not really reflect

the true sequence of events [239, 240, 241, 232, 242, 243, 244, 245, 246, 247, 248, 229]. Bayesian

methods existed long before the frequentist approach to statistical inference, even though the

term “Bayesian” is only in use since the 1950s. Before that time, what we call “Bayesian” today

was known as inverse probability [243, 224].

Bayes and Laplace

The history of what is now called Bayesian inference starts with two men. The first was a

clergyman who did not publish the one scientific paper for which he is famous today. The second,

on the contrary, tried to publish as many scientific papers as possible in order to escape his

father’s will of becoming a clergyman [224]. The first is, of course, the Reverend Thomas Bayes.

The second is Pierre-Simon Laplace. Many researchers today agree that Laplace’s contributions

to Bayesian statistics by far exceed the contributions of Bayes [249, 250, 241, 251, 246, 224].

Bayes’ famous paper entitled “An Essay Towards Solving a Problem in the Doctrine of Chances”

[252] was edited and published posthumously in 1763 by another Prebysterian minister called

Richard Price. This paper only treats a special case of what is known as Bayes’ theorem today,

applied to a thought experiment involving a flat table and balls [249, 224]. Laplace, on the

other hand, who was not aware of Bayes’ publication [250, 246, 224], came up with the general

form of Bayes’ theorem and with its scientific application [224, 229]. Among other applications,

Laplace used Bayes’ theorem in astrophysics [240], to estimate sex ratios at birth for Paris and

London in 1778 [253] and to estimate the size of the French population in 1802 [224]. It can

therefore be argued that Bayesian statistics follows what is known as Stigler’s law of eponymy
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[254]. Stigler’s law, which was first described by Merton (1957) [255] states that no scientific

discovery is named after its original discoverer1.

Fisher, Neyman and Pearson

What is nowadays referred to as the “frequentist” approach is in fact not a unique approach

to statistical inference [240, 260, 261, 262, 263] but rather an amalgam of the ideas of R. A.

Fisher on the one hand and Jerzy Neyman and Egon Pearson on the other hand [264, 265, 266]

with which both sides would probably have been displeased [267, 243]. As a statistician and

geneticist working on crop variance in Hertfordshire, England [268], Fisher promoted the ideas of

the null hypothesis and the p-value in the 1920s in the framework of what he called “significance

testing”. Neyman and Pearson saw the need to base Fisher’s ideas on a more mathematical

foundation and set out to complete Fisher’s approach in the 1930s, an endeavour which was met

with very little cordiality by Fisher [269, 241, 261, 270, 271]. While agreeing on the fact that

inverse probability, i.e., what is now called Bayesian statistics, was not a suitable approach to

conduct statistical inference [272, 224], Fisher and Neyman agreed on few other points [241, 267].

Neyman and Pearson’s theory of “hypothesis testing” featured not only a null hypothesis but

also an alternative hypothesis, the concepts of error of the first and the second kind as well

as statistical power [261]. According to Fisher, Neyman and Pearson’s theory was founded on

too strong prerequisites, thereby restricting the possibilities of application [270]. In his view,

it might adequately be applied in the context of quality control and sampling inspection, but

it would yield misleading results in scientific research [273, 274]. All in all, Fisher criticised

Neyman and Pearson for being mere mathematicians lacking any contact with real scientific

problems [241].

The renaissance of Bayesian statistics

After Neyman and Fisher had administered a “nearly lethal blow” [275] to Bayesian statistics,

it took almost a quarter of a century for Bayesian ideas to emerge again [276]. By the late

1940s, frequentist teaching dominated most universities [224, 276]. While the use of Bayesian

statistics in military applications had made spectacular successes during the Second World War,

including Alan Turing’s application in breaking the Enigma code, the documents describing

these successes were mostly classified [224]. It is therefore not surprising that Dennis Lindley

and Leonard J. Savage, who can be seen as two of the heroes associated with the “glorious

Bayesian revival” of the 1950s and 1960s, did not set out with the intention of making Bayesian

statistics respectable again. Both men merely tried to put traditional statistical techniques on a

rigorous mathematical footing [224]. While they were able to build the logical foundations and

to demonstrate the philosophical advantages of the Bayesian approach to statistical inference, in

particular by showing its internal coherence [262, 231], the main problem of this Bayesian revival

was that Bayesian methods seemed too complex for real problems. Savage, for instance, treated

abstract questions on the most probable speed of neon light through beer and on the probability

1Examples of Stigler’s law include Hubble’s law of the continuing expansion of the universe, which was first

discovered by Lemâıtre [256], the Poisson [257] and the Gaussian [258, 259] distribution, which were both intro-

duced by De Moivre, the Metropolis algorithm, which will be described in section 4.2.3, the Pythagorean theorem

[254] and, of course, Stigler’s law itself.
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that aspirin curls rabbits’ ears [224], instead of tackling real world problems. According to

Berger (2002) [277], for many years the general refrain was that “Bayesian analysis is nice

conceptually; too bad it is not possible to compute Bayesian answers in realistic situations”.

Since the introduction of MCMC methods in the Bayesian toolbox, this situation has changed

fundamentally [277]. Simpson et al. (2015) go so far as to state that today, applied researchers

are only limited “by their data, their patience and their imaginations” when fitting increasingly

complex models using the Bayesian approach to statistical inference [278].

The two sides of probability

The interpretation of the mathematical concept of probability plays an important role in the

differences between the Bayesian and the frequentist approach to statistical inference [279]. The

birth of this concept, which can be seen as a measure of uncertainty [224, 280, 281], is commonly

traced to the year 1654 and more precisely to a correspondence between Blaise Pascal and Pierre

de Fermat [282, 280, 283, 264]. Hacking (2006) [284] states that probability was congenitally

Janus-faced. One side was epistemic and subjectivistic as a reasonable degree of belief. The

other side was aleatory and objectivistic, associated with the long-run frequency of an event and

the stochastic laws of chance processes [264, 284]. This conflated view of an objectivistic and

a subjectivistic interpretation continued for James Bernoulli, Abraham De Moivre and Pierre

Simon Laplace [280], who further elaborated the concept of mathematical probability. To them,

it was natural to interpret the probability of an event at the same time as the “degree to which

we should believe it will happen and the long-run frequency with which it does happen” [280].

According to Gigerenzer (1994) [264], it was Siméon-Denis Poisson, who first distinguished be-

tween the epistemic and the aleatory face of probability in print in 1837, thereby disrupting

the unity of its two sides. The empiricist philosophers John Stuart Mill, Richard Leslie Ellis

and Jakob Friedrick Fries subsequently decided to ban the epistemic face of probability [280],

thereby obeying the general rule in positivism to reject all ideas and concepts that can not

be observed empirically. Finally, in the 1920s and 1930s, Bruno de Finetti and Frank Ramsey

introduced a behaviourist interpretation of the subjectivistic face of probability, thereby making

it respectable within positivist philosophy [280]. In their view, the degree of belief of a person

could be observed by their willingness to bet on these beliefs. Lindley, Savage and other pro-

ponents of the subjectivistic Bayesian movement base their interpretation of probability on de

Finetti and Ramsey, while frequentism only accepts the purely objectivistic interpretation of

probability.

In line with the two possible interpretations of probability, many authors choose to distinguish

between epistemic and aleatory uncertainty [285]. In this view, epistemic uncertainty is due to

a lack of knowledge and can be reduced by gathering more information. Aleatory uncertainty,

on the other hand, is due to randomness and irreducible, no matter how much information we

gather. Textbook examples for aleatory uncertainty include the tossing of dice, the drawing of

cards from a shuffled pack and the sampling of a study participant from a population of interest.

Lindley (2006) [251] proposes examples of epistemic uncertainty, including uncertainty on the

two statements “The capital of Liberia is Morovia” and “The princes in the tower were murdered

on the orders of Richard III”. While both examples are undeniably due to a lack of knowledge,

the uncertainty on the first statement can be easily reduced by searching for “Liberia” on the
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internet, whereas it is not entirely possible to determine the veracity of the second statement.

Indeed, this statement concerns an uncertain historical event, to be more precise, the disappear-

ance of two young princes around 1483, who lived in the Tower of London and who may have

put the legitimacy of the rulership of their uncle, Richard III, in doubt. In a Bayesian frame-

work, both aleatory and epistemic uncertainty can be described by a common measure, namely

by the mathematical concept of probability. In a frequentist context, on the other hand, only

aleatory uncertainty can be described via this measure as this approach to statistical inference

only accepts a purely objectivistic interpretation of probability.

It is futile to argue over the “correct” definition of probability, as a consistent mathematical

theory of probability, as set out by Andrei Kolmogorov [280], does not depend on its interpre-

tation [240, 281]. However, there are three important implications when one choses a purely

objectivistic conception of probability. First of all, if probability is exclusively defined as the

long-run frequency of an event under identical conditions, this ban of the subjectivistic side of

probability simply reduces the types of problems that can be addressed via a probability model

[240]. For instance, when an economist preparing the research budget for the US Air Force asked

David Blackwell in 1950 to estimate the probability that a major war would occur in the next

five years, Blackwell, who had not yet become a Bayesian, is reported to have replied, “Oh, that

question just doesn’t make sense. Probability applies to a long sequence of repeatable events,

and this is clearly a unique situation. The probability is either 0 or 1, but we won’t know for five

years” [224]. Additionally, one has to be aware of the fact that the three seemingly innocuous

words “under identical conditions” may actually conceal the epistemic side of probability that

has been banned. For instance, when flipping a coin, it is generally acknowledged that there is

a fifty percent chance for “heads” and a fifty percent chance for “tails”. However, as pointed

out by Loredo (1990) [240] and Diaconis et al. (2003) [286], the motion of a coin is adequately

described by Newtonian mechanics. If we had exact information on the physical properties of

the coin and on the initial conditions of the flip, we could predict the outcome with certainty. If

we repeated the flip under the exact initial conditions, the outcome would always be the same2.

Where does the randomness come from? Loredo (1990) argues that the randomness merely

stems from our lack of knowledge of the initial conditions [240], thereby making the variability

in the outcome of repeatable events inherently subjectivistic and epistemic. In a deterministic

worldview where Laplace’s demon could predict all the future of the universe without uncer-

tainty if he had complete knowledge of the state of the universe at one time [287, 288], we can

conclude that “there is no such thing as probability” [289], like de Finetti did when he proposed

a purely subjectivistic interpretation of probability[290]3. Finally, when banning the subjectivis-

tic face of probability, one should be aware that this ban may give rise to misunderstandings

and misinterpretations. In our everyday use of the word “probability”, we generally accept that

2Diaconis even claims that his colleagues at the Harvard Physics Department built a coin flipper which always

produces the same outcome [286].
3The deterministic view of Laplace brings us back to radioactive decay and nuclear physics, which we introduced

in section 2.1. It can be argued that classical mechanics and thereby Laplace’s demon was disproven by quantum

mechanics and Heisenberg’s uncertainty principle [288]. Anyways, as mentioned earlier, we can assume that

the motion of a coin is adequately described by classical mechanics. Moreover, if the only objective probability

concerns subatomic particles, we can at least say that if objective probability exists, it is negligible in our every

day conception of the world.
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humans describe something as being rather probable or improbable when referring to a degree of

belief. For instance, during the Cold War, the probability of nuclear war was a widely debated

subject. Similarly, today, we may want to discuss the probability that humans will be extinct

in 200 years. In general, these probability statements are not understood to be grounded on the

relative frequency of nuclear wars or human extinctions in parallel universes or when repeating

the history of mankind a large number of times. They are understood to be an expression of

our degree of belief.

4.2 An overview of the Bayesian approach to statistical infer-

ence

The main purpose of statistical inference is to derive information on unknown quantities of in-

terest from observed data. Figure 4.2 illustrates the three basic ingredients that are common to

parametric statistical inference, namely the data, a vector of unknown parameters θ, and a prob-

ability model (also referred to as “likelihood”), which creates a link between the two of them. As

the aim of most epidemiological studies is to assess the association between a disease outcome

and a certain number of risk factors, we will focus in this section on the situation, where the

occurrence of a disease outcome Y = (Y1, Y2, . . . , Yn) observed for n individuals follows a prob-

ability distribution depending on a vector of unknown parameters θ and an exposure variable

X = (X1, X2, . . . , Xn)4, which is commonly considered as known and non-random. Moreover,
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Figure 4.2: The basic components of parametric statistical inference

we will adopt the notation introduced by Gelfand (1990) [291], where probability distributions

4For the sake of simplicity, we will focus on one exposure variable in the following, but the reasoning can easily

be extended to several exposure variables.
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are denoted by square brackets5. The probability model, or likelihood, denoted as [Y |θ, X],

describes the conditional probability distribution of the outcome Y given the exposure X and

the vector of unknown parameters θ. On the one hand, if we knew the value of the unknown

parameters θ, we could use this model to generate possible realisations of the outcome Y . The

variability of these realisations is thereby described by the assumed probability model. This

simulation process can be seen as a forward propagation of uncertainty from θ to Y . The aim

of statistical inference, on the other hand, is a backward propagation of uncertainty: Given the

outcome Y and the likelihood [Y |θ, X], we want to estimate the value of the unknown param-

eter θ and quantify the uncertainty associated with this estimation. In this sense, statistical

inference can be conceived as an inversion process [232, 292].

4.2.1 Using Bayes’ theorem to solve the inversion problem of statistical in-

ference

From the Bayesian point of view, the inversion problem of statistical inference can be resolved

by simply reversing the sense of the probabilistic conditioning, as illustrated in Figure 4.3. In

this framework, the uncertainty on the estimated parameters is described by the conditional

probability distribution of these parameters θ given the observed data, which is also called

posterior distribution [θ|Y,X]. The posterior probability distribution (often simply referred
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Figure 4.3: The Bayesian solution to the inversion problem of statistical inference

to as posterior or posterior distribution) can be obtained by applying Bayes’ theorem in the

5In this notation [X,Y ] denotes the joint probability distribution of the two random variables X and Y , [Y |X]

is the conditional probability distribution of Y given X and [Y ] is the marginal probability distribution of Y . [X]

denotes a probability distribution for discrete random variables and a probability density for continuous random

variables.
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following way:

[θ|Y,X] =
[θ, Y |X]

[Y |X]
=

[θ] · [Y |θ, X]

[Y |X]
(4.1)

where [θ] is the prior probability distribution (often simply referred to as prior). The prior is

assigned to the vector of parameters θ to describe our state of knowledge (or in other words our

epistemic uncertainty) about θ before analysing the data. It is important to note that the fact

that the values of θ are described by a probability distribution does not imply that the true

values of θ are considered to be random. Bayesians generally assume that the values of θ are

fixed and unknown and that it is merely the epistemic uncertainty that we have on these values

that can be described by a probability distribution. The last expression implicitly assumes

that [θ|X] = [θ], i.e. our prior uncertainty on the unknown parameters does not depend on

the exposure values X. [Y |X] can in theory be obtained by integrating the joint distribution

[θ, Y |X] over all possible values of θ. In practice, it is often treated as a superfluous normalising

constant, as it does not depend on the values of the unknown parameters θ [281]. In this case,

the recipe to conduct Bayesian inference becomes:

[θ|Y,X] ∝ [θ, Y |X]

∝ [θ] · [Y |θ, X]. (4.2)

The quantiles of the resulting posterior distribution [θ|Y,X] can then be used to express the

uncertainty associated with the estimation of the unknown vector of parameters θ. Thereby,

a Bayesian 95% credible interval (corresponding to the 2.5th and the 97.5th percentile of the

posterior distribution) can be interpreted in the following way: Given the data we observed,

there is a 95% chance that the true value of the unknown parameter θ lies in the obtained

credible interval.

It is common to present Bayesian statistics as an inductive approach to statistical inference in

which we learn about the general from the particulars [293]. In this view, Bayesian inference is

described as a smooth learning process, where the prior uncertainty about the vector of unknown

parameters, [θ], is updated through the information provided by the data (and described by the

likelihood [Y |θ, X]) to obtain the posterior distribution [θ|Y,X], which reflects the uncertainty

about θ after observing the data. In contrast, the frequentist approach, which we will present in

more detail in the next section, is associated with hypothetico-deductive inference, as advocated

by Karl Popper6. Unfortunately, the description of Bayesian inference as an inductive learning

process is somewhat reductionist, as one tends to forget that Bayesians dispose of excellent tools

for the testing of hypotheses and for model checking [294, 293]. More importantly, it can even

lead to the false impression that “Bayesianism means never having to say you’re wrong” [295].

In order to avoid such an impression, we preferred to emphasise in this section that Bayesian

inference provides us with a unique solution to the inversion problem of statistical inference and

that the epistemic uncertainty about the fixed and unknown vector of parameters θ of interest

can be expressed via a probability distribution. The choice of this prior probability distribution,

which is a crucial point when conducting Bayesian inference, will be discussed in section 4.3.

6According to this hypothetico-deductive approach, researchers start with general theories to deduce hypothe-

ses which can be tested on well-designed experiments. Contrary to inductive inference, deductive inference moves

from the general to the particulars. One of the main ideas of deductive inference is that hypotheses can never be

accepted, but only rejected or falsified [293].
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4.2.2 Comparison with the frequentist approach to statistical inference

The frequentist approach to statistical inference is based on a one-sided interpretation of prob-

ability, where probability is solely understood as the long-run frequency of an event that can

be repeated an infinite number of times under identical conditions [143]. In this framework, it

therefore makes no sense to assign a probability distribution to an unknown parameter and to

resolve the inversion problem of statistical inference by using Bayes’ theorem. To quantify their
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Figure 4.4: A sketch of the frequentist approach to statistical inference

uncertainty in the estimation of the unknown parameters when conducting statistical inference,

frequentists therefore generally rely on three additional concepts: A null hypothesis H0, a test

statistic T (X,Y ) and the possibility to repeat the data generation process a large number of

times. The test statistic T (X,Y ) is some function of the observed data. The main idea of fre-

quentist inference is to construct a hypothetical infinite population under the assumption that

the null hypothesis is true [270, 238] and to derive the distribution of the test statistic obtained

for random samples drawn from this population. This distribution can be expressed by imagin-

ing a large number of realisations of the test statistic under the null hypothesis, which we can

denote as T0(X,Y ). As illustrated in Figure 4.4, the p-value can then be seen as the relative

frequency with which these hypothetical test statistics, which could be produced under the null

hypothesis, would exceed the value of the observed test statistic T (X,Y ). Put differently, it

tells us how many times we would observe a result which is more extreme than the one that

we actually observed if we were in a world in which the null hypothesis is true and we repeated

our data collection a large number of times. Similarly, frequentist confidence regions are based

on the hypothetical repeatability of the data analysis. In accordance, the interpretation of a

frequentist 95% confidence interval is the following: If we repeated our analysis on an infinite

number of independent data sets that are subject to the same data generation mechanism as the

present data set, 95% of these intervals would cover the true value of the unknown parameter θ.
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Contrary to the Bayesian approach, which has a unique way of deriving the posterior distribu-

tion given the data, the prior and the probability model, there is no unique way to derive a

test statistic T (X,Y ) for a given probability model and data set in frequentist inference [292].

However, there are a number of principles and desirable properties of T (X,Y ) to guide its choice,

including unbiasedness, sufficiency, consistency and efficacy [296, 240, 262, 297].

In summary, the main difference between Bayesian and frequentist statistics is that Bayesians

can make probability statements about the data given the parameters and about the parameters

given the data, while frequentists choose to confine themselves to probability statements about

the data given the parameters. Moreover, the frequentist approach relies on a null hypothesis

(and an alternative hypothesis in the case of the theory of “hypothesis testings” by Neyman

and Pearson) and the idea that the data generation could be repeated a large number of times.

Bayesian inference, on the other hand, relies on the specification of a prior distribution in order

to derive the posterior distribution.

4.2.3 Markov chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms that provide a means

of drawing samples from complex probability distributions which only have to be known up to

a normalising constant [232, 298]. They achieve this sampling by constructing a discrete-time

Markov chain7, which is designed so as to generate random draws from a potentially high-

dimensional target distribution [299, 300]. When MCMC methods are used to conduct Bayesian

inference, this target distribution is typically the posterior distribution. Based on these samples,

it is straightforward to estimate various quantities, including the posterior mean and the poste-

rior median, but also the probability that the true parameters are greater than a pre-specified

threshold, for instance.

The origins of MCMC algorithms and more generally of modern Monte Carlo methods can

be found in the statistical physics literature [301, 302, 303, 227], and in particular in research

projects involving the development of the atomic bomb and the first nuclear reactors [233, 304].

Being therefore inextricably linked to the history of uranium mining, some may think that it

would have been more adequate to present MCMC methods in chapter 3. However, and in spite

of the fact that after their introduction it took almost 40 years for MCMC methods to penetrate

statistical practice [248, 224, 227], these methods have had a profound and far reaching influence

on both Bayesian methodology and its application [299, 233]. According to McGrayne (2011)

the introduction of MCMC even led Adrian F. M. Smith, who had been a student of Lindley, to

quit statistics and to become administrator of the University of London, only three years after

becoming the first Bayesian president of the Royal Statistical Society in 1995. He justified his

career choice by simply saying that with the Bayesian paradigm and MCMC all problems of

statistics had been solved [224].

As the necessary conditions for the convergence to a target probability distribution of inter-

est are given by Markov chain theory (see for instance Roberts et al (1994) [305] or Robert et

7A Markov chain is a sequence of random variables X0, X1, . . . , Xt, Xt+1, . . . that satisfies the so-called Markov

property according to which the conditional probability distribution of future states Xt+1 depends only on the

past via its present state Xt: [Xt+1|Xt, Xt−1, Xt−2, ..., X1, X0] = [Xt+1|Xt].
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al. (2002) [231]), MCMC methods provide a generic approach to conduct Bayesian inference.

Thereby, the use of these methods allow to focus on the development of models that realistically

reflect the problem instead of having to concentrate on proofs of the desirable properties of a

proposed estimator as can be the case for frequentist inference (see section 4.2.2). Moreover, for

MCMC methods, the asymptotic convergence of the generated values to the target distribution

concerns the number of iterations of the Markov chain that tend to infinity whereas the asymp-

totic properties of frequentist estimates concern the number of study participants in a sample.

While both an infinite number of MCMC draws and an infinite sample of study participants

are impossible to achieve in practice, in most studies, it appears to be easier to increase the

number of MCMC iterations than to increase the number of study participants, in particular

with technical improvements leading to increases in computer power. Finally, a remarkable as-

pect of MCMC methods is that, once the Markov chain has converged to the target probability

distribution, each iteration of the algorithm provides us with a realisation of this target distri-

bution. In this sense they can be seen as more efficient than other Monte Carlo methods such

as rejection sampling where several iterations could be necessary to obtain one realisation of the

target distribution. However, contrary to the latter method, the draws produced by an MCMC

algorithm are not independent and may present a strong autocorrelation. Moreover, particular

attention should be paid to the convergence of a Markov chain to its target distribution. There

are no diagnostic tools that can assure the convergence of the chain, but merely tools to detect

divergence. A common way to detect a potential divergence is to generate multiple Markov

chains with dispersed starting values and to compare the between and the within variability of

the values produced by the different chains as well as the extent to which they visit regions of

low posterior probability [299]. Gelman et al. [306] suggest a diagnostic to assess this difference

between the estimated between-chains and within-chain variances. This diagnostic is based on

the ratio between the pooled variability by gathering all chains and the within-chain variability.

A ratio close to 1 indicates that a sufficient burnin was removed (omitted first iterations to

forget starting values) and that all chains visit the whole of the sample space. The most popular

MCMC methods are the Metropolis-Hastings algorithm and the Gibbs sampler, which will be

briefly presented in the following.

The Metropolis-Hastings algorithm

The origins of MCMC methods can be found in the Metropolis algorithm, introduced in the

paper “Equation of State Calculations by Fast Computing Machines” [307], which is arguably

the most influential publication in the history of computational physics [308], published in the

Journal of Chemical Physics in 1953. According to Shonkwiler et al (2009), the Metropolis

algorithm has even been cited among the top ten algorithms having the greatest influence on

the development of science and engineering [304]. As mentioned in section 4.1, the Metropolis

algorithm can be seen as yet another example of Stigler’s law of eponymy. Indeed, the only real

contribution Metropolis made to the development of the algorithm for which he is famous today

is computer time [309, 308]8. In the beginning of the 1950s, he was in charge of a large com-

puting machine in Los Alamos, called the MANIAC (Mathematical Analyzer, Integrator And

Computer). On this computer, researchers like Enrico Fermi, Stan Ulam and John von Neumann

8Contrary to the Monte Carlo method, for which he at least suggested the name [302].
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made important scientific developments [309]. In particular, Metropolis collaborated with the

two married couples Marshall and Arianna Rosenbluth and Edward and Augusta Teller, who

developed what is today known as the Metropolis algorithm. As the contributor of computer

power, Metropolis co-authored the publication describing this algorithm, but he neither came

up with its idea nor did he participate in its implementation [308]. His fame today is therefore

mainly due to a convention on the alphabetical ordering of co-authors in the physical literature

[310, 311] and if Augusta Teller had kept her maiden name, the Metropolis algorithm would

probably be known as Harkányi algorithm today.

Almost twenty years after its introduction in the physical literature, the Metropolis algorithm

was generalised by Hastings (1970) in a paper in Biometrika [312], but the potential of MCMC

methods for Bayesian inference was not realised until Gelfand and Smith (1990) [291] demon-

strated its usefulness in conducting Bayesian inference [232, 227].

When conducting Bayesian inference via the Metropolis-Hastings algorithm, given a current

value θt-1, at each iteration t, the next state of the chain is chosen by first generating a candidate

value θcand from a proposal distribution [θcand|θt-1]. This candidate state is then either accepted

or rejected with a certain probability. The acceptance probability is given by

ρ(θt−1,θcand) = min

{
[θcand|Y,X]

[θt-1|Y,X]

[θt−1|θcand]

[θcand|θt-1]
, 1

}
(4.3)

where [θ|Y,X] is the posterior distribution evaluated at θ. If θcand is accepted θt = θcand.

Otherwise θt = θt-1.

An iteration t of the Metropolis-Hasting algorithm can be written in the following way:

θcand ∼ [θ|θt-1]

θt =

{
θcand with probability ρ(θt-1,θcand)

θt-1 otherwise

}
.

The successful design of a Metropolis-Hastings algorithm critically depends on the appropriate

choice of the proposal distribution [θcand|θt-1] according to which the candidate values θcand are

generated at each iteration [313]. Firstly, it is important that this probability distribution is

known analytically, at least up to a normalising constant, and that it is possible to draw samples

from this distribution in a time-efficient way. Moreover, the proposal distribution has to meet

certain minimum requirements to make sure that the limiting distribution of the Markov chain

produced by the algorithm coincides with the target distribution of interest, i.e. the posterior

distribution. In the case of a symmetric proposal distribution, the ratio given in (4.3) simplifies

and becomes the ratio of the posterior distribution evaluated at θcand and θt-1.

It is interesting to note that the algorithm systematically accepts candidate values for which

the ratio [θcand|Y,X]
[θcand|θt-1]

is greater or equal to the corresponding ratio for the current value [θt-1|Y,X]
[θt-1|θcand]

.

More importantly, a candidate value can also be accepted if this is not the case, i.e. if there is

a decrease in this ratio for the candidate value compared to the current value of the chain. The

acceptance probability (4.3) is inversely proportional to the magnitude of this decrease. This

property allows the chain to visit the tails of the target distribution. It is very important to

monitor the acceptance rate of the algorithm (i.e. the proportion of iterations for which the

proposed candidate value is accepted). In particular, this quantity can be used to guide the
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calibration of the proposal distribution, for instance, by increasing or by reducing its variability.

There are different recommendations concerning the optimal acceptance rate with a general

consensus that this quantity should be around 0.40. There are two alternative strategies to

attain an optimal acceptance rate. One can either use the algorithm after an initial calibration

phase or use an adaptive version of the algorithm. Instead of updating the whole vector of

unknown parameters θ in one step, it is often more convenient to divide θ in components and

to update these components one by one [299, 313].

Gibbs sampling

Gibbs sampling can be considered as a special case of the general Metropolis-Hastings algorithm

[314, 299, 231], or, to be more precise, as a combination of Metropolis-Hastings algorithms on

different components. In this special case, which is based on a component-wise updating of the

unknown parameter vector θ = (θ1, θ2, ...θp), the proposal distribution for each component θk

is its full conditional distribution [θtk|θt1, ...θtk−1, θ
t−1
k+1, ...θ

t−1
p ]. An iteration t of Gibbs sampling

algorithm can be written in the following way:

[θt1] ∼ [θ1|θt−1
2 , . . . , θt−1

p ]

[θt2] ∼ [θ2|θt1, θt−1
3 . . . , θt−1

p ]

. . .

[θtp] ∼ [θp|θt1, . . . , θtp−1].

As the acceptance probability in this case is one, the Gibbs sampler reduces to the sequential

sampling from the full conditional distributions. In the context of this algorithm, the discussion

concerning the optimality of acceptance rates is therefore irrelevant. This algorithm presupposes

that the full conditional distributions are calculable and that it is possible to draw samples from

these distributions. In cases where it is not possible to draw samples from some of the full

conditional distributions, it is possible to replace the updating of the corresponding component

by a classical Metropolis-Hastings step. This version of the algorithm is referred to as Metropolis-

within-Gibbs-sampling. In cases where the full conditional distributions are available, both the

general Metropolis-Hastings algorithm and Gibbs sampling are possible. On the first glance,

one might believe that Gibbs sampling is always preferable to a general Metropolis-Hastings

implementation, because in the context of Gibbs sampling all candidate values are accepted

and because it avoids the somewhat arbitrary choice of a proposal distribution. However, this

intuition may be wrong. In particular, a poor parameterisation can greatly prolong the time

until the convergence to the target distribution of the Gibbs sampler. This problem can arise

for instance when conducting inference on mixture models where one or several components of

the mixture consist of only few observations.
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4.3 The choice of the prior distribution

There’s no Theorem like Bayes theorem

Like no theorem we know

Everything about it is appealing

Everything about it is a wow

Let out all that a priori feeling

You’ve been concealing up to now.

—— George E. P. Box.

Since the introduction of Bayesian inference, there has been an ongoing debate about whether

the need to specify a prior distribution in the Bayesian approach is a bug or a feature. On the

one hand, the Bayesian approach is often praised for the ability to incorporate prior information

in statistical inference in a natural way [195, 143, 315, 316], as the use of prior information

may improve the accuracy and the reliability of the results by borrowing strength from pre-

vious analyses or from expert knowledge [317, 318, 319, 320, 321, 144]. On the other hand,

the need to specify a prior distribution is probably the most criticised point in the Bayesian

framework [292] and therefore the most important reason for not using this approach to sta-

tistical inference [322, 248, 281, 253, 234]. Indeed, opponents of the Bayesian approach to

statistical inference are often uncomfortable with the seemingly arbitrariness of the choice of

the prior distribution [323, 319]. Moreover, the possibility of a subjectivistic and epistemic in-

terpretation of probability seems to contradict the ideal of the objectivity of scientific reasoning

[239, 324, 319, 318, 281, 253]. Even Bayesians have described the necessity to define a prior

distribution as “vexing” [325] and as a “sticking point” [326].

4.3.1 Prior choices that avoid the use of external information

In light of the difficulties involved in the specification of informative prior distributions, many

applied researchers choose a Bayesian approach which explicitly excludes all available prior in-

formation [327, 328, 323, 277, 245, 315]. These prior distributions are in general constructed

with the aim to base statistical inference only on the assumed probability model and the ob-

served data [329] and to express complete ignorance on the values of the parameters a priori.

The underlying idea is to use Bayesian techniques while “letting the data speak for themselves”.

Unfortunately, there is no general agreement on the mathematical expression of ignorance via a

probability distribution [323, 326, 243, 330, 331]. An intuitive choice is to use a flat prior distri-

bution, for instance a uniform distribution defined on a large interval or a normal distribution

with a very large variance. Indeed, these choices imply that a large range of possible parameter

values are equally probable a priori (in the case of the uniform distribution) or at least that a

large range of parameter values have a similar probability a priori (in the case of the normal

distribution). In line with this intuition, Bayes and Laplace both mostly relied on uniform prior

distributions [277, 245, 224]. However, opponents of the Bayesian approach, including Fisher

[272], have legitimately criticised the choice of vague prior distributions on the grounds that they

are not robust to parameter transformations [328, 332, 333]. Based on this criticism, Harold
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Jeffreys developed the concept of “noninformative” prior distributions. These noninformative

prior distributions, which are based on the Fisher information, are robust to parameter transfor-

mation [334, 234]. Similarly, Bernardo (1979) [324] introduced the idea of a reference prior which

is also robust to parameter transformation and based on information-theoretic considerations.

However, both prior choices may turn out to be improper, i.e. they result in a prior distribution

that does not integrate to a finite number [323, 335]. Moreover, despite their objective of having

little or no impact on inference, non-informative prior distributions can be highly informative

and even overwhelm the data [323, 336, 228]. They can also lead to improper posterior dis-

tributions [328]. These problems arise in particular for variance parameters [337, 338], when

the sample size is small [228, 320, 321] and when the posterior distribution is high-dimensional

[323]. Gelman (2013) argues that this phenomenon can be explained by the fact that vague and

noninformative prior distributions put too much probability on extreme values, which are never

going to be plausible, thereby disturbing the posterior probabilities [339].

Finally, another common strategy to avoid the use of external information in the derivation of

the prior distribution is the use of empirical Bayes techniques, where the parameters of the prior

distribution are estimated by using the observed data [292, 340].

4.3.2 Informative prior distributions

There are a number of authors who advocate the use of informative prior distributions [341, 317,

262, 319, 342, 343]. As mentioned above, the integration of external information in the form

of prior distribution can increase the precision in the estimation of unknown parameters and

improve predictive accuracy of the outcome Y [319, 315, 321]. Moreover, Albert et al. (2012)

point out that when constructing complex probability models, there may be sub-models that

are well informed by the observed data and other sub-models for which it is necessary to use

expert opinion to supplement the information provided by the data [344]. In this vein, when

using complex models with a large number of uncertain input quantities, for instance in climate

modelling, the subjective Bayesian approach appears almost as the only feasible option [319],

synthesising historical data, the observed data and expert opinion in a coherent framework.

Finally, Stephen Senn (2011) [345] argues in his paper “You may believe you are a Bayesian but

you are probably wrong” that there are a number of appealing features that are often brought

forward when using Bayesian techniques, but which are only valid when a subjective Bayesian

approach is used. For instance, the Bayesian hierarchical approach to account for measurement

error, which we will present in the next section, can be praised for being a coherent approach

to account for both exposure and parameter uncertainty. However, as pointed out by Senn,

“the degree of uncertainty must be determined by the degree of certainty and certainty has to

be a matter of belief so that it is hard to see how prior distributions that do not incorporate

what one believes can be adequate for the purpose of reflecting certainty and uncertainty”

[345]. Senn also argues that subjective Bayesianism is perfect in theory, but difficult to apply

in practice. In particular, to him “Bayesian theory is a theory of how to remain perfect but it

does not explain how to become good” [345]. Despite the advantages of the subjective Bayesian

approach, it is rarely used in scientific applications. The main reasons for the reluctance to use a

subjective perspective are maybe the idea to ensure a certain “objectivity” of scientific analyses

[239, 324, 318, 319, 343, 281, 253] and a lack of domain knowledge. An appealing solution to these
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two problems of the subjective Bayesian approach is to specify informative prior distributions

through expert prior elicitation, where probability distributions on the unknown parameters are

derived based on expert knowledge. If the elicitation of expert knowledge is performed in a

transparent and repeatable manner, it can be argued that it allows to derive prior distributions

informed by experts in the domain in an objective manner. Section 4.3.3 will give a brief overview

of the literature concerning the elicitation of prior distributions based on expert knowledge.

4.3.3 The elicitation of prior distributions by expert knowledge

While the translation of the judgements of experts into probability distributions plays an im-

portant role when the aim is to derive informative priors in the Bayesian framework, expert

elicitation is far from being limited to this application. Indeed, methods for the elicitation of

expert knowledge are also used to define uncertainty on input parameters in mechanistic mod-

els which are used to predict complex processes, for instance, climate change, the risk of an

accident in a nuclear installation or to include parameter uncertainty in other risk analyses

[346, 347, 279, 348, 349, 350, 351, 352, 353, 354]. Despite this broad range of applications, there

is no consensus in the literature on the best way to elicit a prior distribution. It is generally

acknowledged that it is difficult to translate uncertainty in a probability distribution and that

there are a number of cognitive biases, which we will briefly discuss in the next section, which

should be accounted for in the design of an elicitation task. Consequently, we will summarise

some general recommendations for the design of elicitation tasks. Moreover, it is challenging to

derive informative prior distributions based on the elicited data, in particular when it comes to

the combination of the opinion of several experts. Various approaches exist in this context but

there is no general consensus on the approach to adopt in given situation. We will describe and

compare several approaches for the combination of expert opinion in chapter 5.

Cognitive biases in expert prior elicitation

Research on expert elicitation has been strongly influenced by a series of papers published by

Tversky and Kahneman [355, 356] in the early 1970s in the context of their “heuristics and

biases” research program in cognitive psychology [357, 264, 358, 359, 347, 360, 361]. In their

research program, Tversky and Kahneman described human inadequacies when assessing proba-

bilities and asserted that humans made probability judgements based on heuristics [360]. These

heuristics, which are common-sense or rule of thumb decisions based on experience [359], do

not necessarily comply with probability theory and may lead to systematic and predictable bias

in probability judgements. They include availability, adjustment and anchoring, and overcon-

fidence [279]. The availability heuristic describes the fact that assessors tend to be influenced

in their probability judgments by the frequency with which they can recall an event [359, 279].

According to Wolfson et al. (2016), assessors will for instance overestimate the probability to

die from causes receiving a lot of media attention, such as botulism, and to underestimate the

probability to die from more common but less notorious causes such as stomach cancer [361].

According to the adjustment and anchoring heuristic, assessors tend to start with an initial esti-

mate, or anchor value, and then to adjust this initial estimate when asked to estimate a quantity

or to assess an uncertainty [279]. This initial estimate is then adjusted up or down. However,
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these further adjustments are often insufficient, resulting in an assessment that is biased to-

wards the anchor value [359, 361]. Finally, overconfidence describes the fact that assessors tend

to be more confident about their individual answers than their overall number of correct answers

suggests [360].

General recommendations for the design of an elicitation task

In light of the possible biases that may arise in the elicitation of prior distributions, there is

a general consensus in the literature that the elicitation of prior information based on expert

knowledge is essentially difficult [357, 347] and that no straightforward reliable procedure is yet

available [361]. However, there is evidence that experts perform better at elicitation tasks than

non-experts [279, 361] and there are a number of general recommendations which can minimise

the impact of cognitive biases. The most fundamental principle is maybe that experts should

only be asked questions that they can understand and that they can answer [343]. While this

principle may seem self-evident and superfluous on the first glance, it entails a certain number

of constraints. First of all, it implies that experts should only be asked to provide information

on quantities that are observable [358, 350]. Moreover, they should not be asked to quantify the

variance or other moments of a distribution [230], except possibly the first moment, i.e. the mean

[358, 361]. More generally, it is recommended to ask for the quantiles of a distribution rather

than asking for its moments [362, 279, 363, 361]. In principle, the quantiles of a distribution can

be elicited in a direct or in an indirect manner. Elicitation methods that infer the probability

distribution of an uncertain variable via comparative judgments are generally referred to as

indirect methods whereas direct methods ask experts to explicitly state the moments or the

quantiles of a probability distribution [279, 351]. According to Budescu et al. (2011), indirect

methods are considered more natural and less demanding cognitively than direct elicitation

methods [351]. One of the most popular choices when using an indirect method for the elicitation

of expert knowledge is via a thought experiment in which experts can either spin a fortune wheel

or make a bet on the values of a quantity of interest [279, 1, 351]. For instance, Abbas et al.

(2008) [1] asked students in an online questionnaire to assess the high temperature in Pablo Alto

on a fixed day in the following week. In this online questionnaire, the students were confronted

with the screen shown in Figure 4.5, where they could either choose to spin the fortune wheel

presented on the left or make a bet on the maximum temperature in Pablo Alto on the 12th of

December 2006.

Finally, a strategy to avoid heuristics and biases in the design of an elicitation task may be

to ask about the observed variability concerning several realisations of an uncertain variable

rather than to ask questions about the probability of values that could be observed for a single

realisation of this variable. In line with this, several experiments showed that the cognitive

biases and the heuristics identified by Tversky and Kahneman can disappear when probability

statements are formulated in a frequency format [364, 365, 366, 367]. Fischer et al. (2015)

[76], for instance, employed methods for the elicitation of expert knowledge to develop a job-

exposure matrix by confronting experts with the hypothetical experiment of assembling 100

workers in a room who are asked to raise their hand if they have experienced a certain exposure

condition during their working career. Finally, there is a general consensus on the fact that the

elicitation of the quantities of interest should be preceded by a training phase and that frequent
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Figure 4.5: Elicitation screen proposed by Abbas et al. (2008) [1]

feedback on the information provided by the expert should be given during the elicitation process

[368, 369, 361]. It is recommended that this feedback is presented in a graphical form [359, 279].

Ideally, it should also allow the expert to modify the information he provided so far in cases

where he considers that it is after all not in accordance with his opinion.

4.4 The Bayesian hierarchical approach to account for exposure

uncertainty

The most convenient way to construct complex probability models is via a hierarchical approach

[370]. In the following, we will present the Bayesian hierarchical focusing on the specific aim to

account for measurement error in an epidemiological study. Hierarchical models, which are often

used to describe complex phenomena, allow to distinguish the different levels of information in

a model [371]. More precisely, hierarchical models are composed of sub-models that are linked

via conditional independence assumptions [372, 373, 370].

As described in chapter 3, in epidemiological studies, the data we observe are almost always

imperfect and contaminated by missingness and mismeasurement. While this is generally true

for both the exposure X and the outcome Y , the effects of the mismeasurement of the former

will in general be more severe than the effects of the mismeasurement of the latter [6, 8]. As

in chapter 3, we will therefore limit our discussion to exposure measurement error. In the sit-

uation, where instead of true exposure X, we merely dispose of observed exposure Z, which is

contaminated by measurement error, it is no longer possible to describe the occurrence of the

disease outcome Y by a probability model that is as simple as the model presented in section

4.2.1. Figure 4.6 illustrates how the different levels of the hierarchical model can be repre-

sented for the case of Berkson error. Following the terminology introduced by Clayton (1992)

[374], and subsequently employed by Richardson [193, 194, 372, 9] in a series of papers treating

measurement error in epidemiological studies, the probability model [Y |θ,X] is now denoted as

disease model. It describes the probability of the occurrence of the disease outcome Y given

true exposure X. In the hierarchical structure presented in Figure 4.6, we can account for the
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Figure 4.6: A sketch of the Bayesian hierarchical approach to account for Berkson error in an

epidemiological study.

fact that we do not observe the values of X by treating true exposure as a latent variable, i.e. a

variable that is not observed directly but only informed through observed exposure Z. Thereby,

we can consider true exposure as part of an ideal data set, which we could have observed if we

could measure exposure X without measurement error. The relationship between true X and

observed Z exposure is described by the measurement model [X|θ, Z]. It is interesting to note

that the treatment of measurement error can be seen as part of the more general framework of

incomplete data problems, which also encompasses the treatment of missing and censored data

[9, 6, 190].

The most natural way to represent the conditional independence assumptions of a hierarchical

model is arguably via a Directed Acyclic Graph (DAG) [375]. Figure 4.7 shows a DAG cor-

responding to Berkson error. In this DAG, the vector of unknown parameters is split in two

sub-vectors θ = (θ1,θ2), all unknown quantities are represented in circles and observed quan-

tities are represented in boxes. Arrows are used to indicate dependencies between the different

quantities. This DAG illustrates how we can link the disease model, i.e. the conditional dis-

tribution of the outcome given true exposure and θ1, [Y |X,θ1] and the measurement model,

i.e. the conditional distribution of true exposure X given observed exposure Z, [X|Z,θ2]. Ad-

ditionally, the DAG highlights certain conditional independence assumptions, for instance the

55



𝜽1

Y

X

Z

𝜽2

disease outcome

true 
exposure

observed exposure

Figure 4.7: Directed Acyclic Graph (DAG) to describe Berkson error arising in an

epidemiological study.

conditional independence of Y and Z given X ([Y |X,Z,θ1] = [Y |X,θ1]), which we described as

the condition for non-differential measurement error in section 3.1.1.

In the case of classical measurement error, which is illustrated in the DAG presented in Figure

𝜽1

Y

X

𝜽3

Z

𝜽2

disease outcome

true 
exposure

observed exposure

Figure 4.8: Directed Acyclic Graph (DAG) to describe classical measurement error arising in

an epidemiological study.

4.8, the situation is slightly more complex. Similarly to Berkson error, we have to specify a

disease model [Y |X,θ1] and a measurement model. However, contrary to Berkson error, where

observed exposure Z is considered as a fixed covariate, for classical measurement error observed
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exposure Z is now considered to be a random variable (see section 3.1.1). In this case, the

measurement model describes the conditional distribution of observed exposure Z given true

exposure X, i.e. [Z|X,θ3]. To complete the specification of the hierarchical model, we need a

third sub-model. This third sub-model, which is called exposure model, describes the distribu-

tion of unknown true exposure X as a function of the parameter vector θ2. i.e. [X|θ2]9.

In the Bayesian hierarchical framework, it is not straightforward to derive the posterior distribu-

tion [θ|Y, Z], i.e., the conditional distribution of the unknown parameters θ given the observed

data Y and Z. In the case of classical measurement error, this posterior distribution is defined

as the following potentially high-dimensional integral:

[θ|Y, Z] =

∫

X
[θ, X|Y,Z]dX (4.4)

∝
∫

X
[θ, X, Y, Z]dX. (4.5)

This integral often does not lead to an analytical expression of the posterior distribution. In

this case, MCMC methods (presented in section 4.2.3) can be employed to generate samples

from the posterior distribution and to marginalise over the values of the latent variable X [376],

even though the sampling from this high-dimensional posterior distribution can be very time-

consuming. Using the information in the DAG (Figure 4.8), we can rewrite the joint distribution

for classical measurement error [θ, X, Y, Z] in the following way:

[θ, X, Y, Z] = [Y |X,θ1][Z|X,θ3][X|θ2][θ1][θ2][θ3]. (4.6)

Similarly to classical measurement error, we can rely on the assumption of non-differential error,

to express the joint distribution [θ, X, Y |Z] in the case of Berkson error as:

[θ, X, Y |Z] = [Y |X,θ1][X|Z,θ2][θ1][θ2]. (4.7)

In contrast to classical functional approaches like regression calibration, where disjoint steps

are used to estimate true exposure and unknown risk parameters, the Bayesian hierarchical ap-

proach allows to jointly estimate true exposure and all unknown parameters in a unique, global

and coherent framework. Moreover, the Bayesian hierarchical approach to statistical inference

is very flexible [9, 377, 203, 191], making it particularly suitable when the aim is to account for

different sources of uncertainty. Indeed, in a structure resulting from the conditional linking of

sub-models, we can complexify one of the sub-models without having to modify the other parts

of the model and without compromising the validity of statistical inference. In particular, we

can also introduce new levels in the hierarchical model, for instance a dose model if the aim is

to simultaneously account for exposure and dose uncertainty.

9In the terminology introduced in section 3.2., the Bayesian hierarchical approach to account for measurement

error is therefore a structural approach for measurement error correction.
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Chapter 5

Methods

5.1 Presentation of the hierarchical models

We built several hierarchical models to account for exposure and dose uncertainty when mod-

elling the association of radon exposure and lung cancer mortality in the French cohort of

uranium miners. As described in section 4.4, this approach is based on the combination of

sub-models, which are linked via conditional independence assumptions. When accounting for

measurement error in radon exposure in the French cohort of uranium miners, the starting

point is a disease model, which relates the right-censored variable time until death by lung can-

cer Yi of miner i, i ∈ {1, . . . , n} to his true radon exposure Xi(t) at time t and to p covariates

Vi1(t), . . . Vip(t). In the case of unshared classical measurement error, we can combine this dis-

ease model with a measurement model describing the conditional distribution of observed radon

exposure of miner i at time t, Zi(t), given his true exposure Xi(t), and with an exposure model,

which specifies the distribution of true radon exposure Xi(t). For Berkson error, on the other

hand, we merely need to combine the disease model with a measurement model describing the

conditional distribution of true radon exposure of miner i at time t, Xi(t), given his observed

exposure Zi(t) (see section 3.1.1 for the definitions of Berkson and classical measurement error).

Owing to the flexibility of the Bayesian hierarchical approach, we can choose to complexify

one of the sub-models without having to change the methods we employ to conduct statistical

inference. In this vein, we can combine the disease model with different measurement models,

which describe different types and magnitudes of error according to period of exposure in order

to reflect changes in the methods of exposure assessment. Additionally, we can define measure-

ment models which present a hierarchical structure themselves to describe more complex error

structures, potentially including different components of shared or unshared measurement error

(see section 3.1.1).

In order to account for dose uncertainty, on the other hand, the disease model can be combined

with a dose model, which calculates absorbed lung dose as a function of the most important

input parameters described in section 2.3.3.

Finally, it is possible to combine the disease model, the measurement model, the exposure model

and the dose model in order to account for both exposure and dose uncertainty in a unique and

coherent inferential framework when estimating the parameters of interest. In this section, we

will present the different sub-models we assumed in this work, describe how to combine them in
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a hierarchical structure and specify the chosen prior distributions which are necessary to conduct

Bayesian inference for the full hierarchical model.

5.1.1 The disease model

When modelling lung cancer mortality in the French cohort of uranium miners, the outcome

of interest is the time until death by lung cancer of miner i (i = 1, ..., n), where n = 5086 is

the total number of uranium miners in the cohort. As not all workers in the French cohort of

uranium miners died of lung cancer, this outcome is a censored variable. To be more precise, it

is right-censored, being defined as the earliest among time until death by lung cancer of miner i,

Ti and a censoring variable Ci. The censoring variable Ci is again defined as the earliest among

time until death by a cause other than lung cancer, time until loss to follow-up, time until the

31st December 2007 and time until the 85th birthday (see section 2.2.2). The observed outcome

can therefore be represented by the n pairs of random variables (Yi, δi), where Yi = min(Ti, Ci)

is a non-negative continuous variable and δi is a binary variable with δi = 1 if miner i died of

lung cancer at time Yi (i.e., Ti ≤ Ci) and δi = 0 if he “would have died of lung cancer” after

time Ci (i.e., Ti > Ci).

As mentioned in section 2.2.4, when conducting statistical inference on the association between

radon exposure and lung cancer mortality in cohorts of uranium miners, the most common

approach is to adopt a grouped Poisson regression model. In theory, this modelling approach,

which is also known as the life table approach to survival analysis [378] is equivalent to the

analysis of survival times via proportional hazards models in the case of a piecewise exponential

survival distribution and categorical covariates [379]. This approach has many advantages over

the classical choice to analyse survival times via proportional hazards models including greater

flexibility in the modelling of multiple events and the fact that it allows to analyse survival times

in the context of a generalised linear model. However, when analysing the association between

radon exposure and lung cancer mortality it involves the categorisation of radon exposure and

the fact that all information has to be averaged over the person-years in a stratum may imply

a substantial loss of information on the variance in each stratum. Moreover, we have seen in

section 3.1.2 that the categorisation of a continuous exposure variable which is prone to non-

differential measurement error can result in differential misclassification. Finally, a stratified

Poisson regression model impedes the modelling of measurement error at the individual level,

which is often its natural level of occurrence [136]. Based on these arguments, we chose to model

the individual survival and failure times of the 5086 miners in the French cohort of uranium

miners via a proportional hazards model. In this context, we model the instantaneous hazard

rate of death by lung cancer of miner i at time t, hi(t). If fi(t) and Fi(t) denote the probability

density function and the cumulated density function of Ti, respectively, the instantaneous hazard

rate is defined as:

hi(t) = lim
∆t→0

P (t < Ti ≤ t+ ∆t|Ti > t)

∆t
=

fi(t)

1− Fi(t)
=
fi(t)

Si(t)
(5.1)

where Si(t) = 1 − Fi(t) =
∫∞
t fi(u)du is called the survival function of miner i at time t.

∆t · hi(t), is the approximate probability for miner i to die of lung cancer in the time interval

[t, t + ∆t] given that he survived until time t [380]. Based on (5.1), we can easily express fi(t)
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as fi(t) = hi(t) ·Si(t). Moreover, given that fi(t) = d
dtFi(t) = − d

dt(1−Fi(t)) = − d
dtSi(t), we can

derive

hi(t) =
− d
dtSi(t)

Si(t)
= − d

dt
logSi(t). (5.2)

Finally, this result leads to the following expression for the survival function Si(t) and the

probability density function fi(t):

Si(t) = exp

(
−
∫ t

0
hi(u)du

)
(5.3)

and

fi(t) = hi(t) exp

(
−
∫ t

0
hi(u)du

)
. (5.4)

If we denote gi(c) and Gi(c) = P (Ci > c) the probability density and the survival function for

the censoring variable Ci, and under the assumption that Ci and the failure time variable Ti are

independent, the contribution of the pair of observed random variables (Yi, δi) to the likelihood

is given by:

[Yi = yi, δi = δi] = [Ti = yi;Ci > yi]
δi [Ci = yi;Ti > yi]

1−δi (5.5)

= fi(yi)
δiGi(yi)

δigi(yi)
1−δiSi(yi)1−δi . (5.6)

In order to avoid the specification of gi(c) and Gi(c), it is common in survival analysis to make

the assumption of non-informative censoring [381, 382], according to which the distribution of

Ci provides no information about the distributions of Ti. In this case, we can treat both Gi(c)

and gi(c) as constants and consider

[Yi, δi] ∝ fi(yi)δiSi(yi)1−δi = hi(yi)
δiSi(yi). (5.7)

The most popular approach to analyse survival data is to assume a proportional hazards model

[383]. In the case of the French cohort of uranium miners, we can assume the following semi-

parameteric model:

hi(t;θ) = h0(t)ϕ(Xcum
i (t), Vi1(t), ..., Vip(t);θ), (5.8)

where θ and the so-called hazard ratio ϕ(Xcum
i (t), Vi1(t), ..., Vip(t);θ) is multiplied by the base-

line hazard h0(t) which is assumed to be the same for all miners. The hazard ratio is a positive

term expressing how the instantaneous hazard rate varies as a function of cumulated exposure

to radon of miner i at time t, Xcum
i (t) (expressed in 100 WLM) and of a number of potential

effect modifying variables Vi1(t), . . . , Vip(t), that will be specified in the next section.

Cumulated exposure Xcum
i (t) was lagged by five years in order to allow for a latency period

between a received exposure value and its potential impact on health outcomes [384, 385, 386],

thereby excluding exposure values that were received immediately before the death by lung can-

cer. This exposure lag implies that the instantaneous hazard rate of miner i at time t, hi(t), is

not modelled as a function of the cumulated exposure received until time t, Xcum
i (t), but as a

function of the cumulated exposure received until five years before time t. Note that this expo-

sure lag would unduly complicate the notation of the proportional hazards models presented in

this section. For ease of readability, this exposure lag of five years will therefore not appear in
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the following expressions. Concerning the choice of time-scale in proportional hazards models,

time-on-study and age are the most common options. Inasmuch as we model occupational expo-

sure, the use of time-on-study as time-scale may seem to be a plausible choice, but Kleinbaum

[381] suggests to favour age as time-scale whenever age at event is likely to have a larger effect

on the hazard than time-on-study. Based on previous findings on cohorts of uranium miners, we

can assume that, contrary to the attained age of a miner [83], the timing of study initiation has

no inherent meaning in terms of the risk of lung cancer mortality in the cohort. Furthermore,

several authors recommend to favour age as time-scale whenever possible [387, 388, 389] since

the modelling of the effect of age can be complex and prone to misspecification errors. Based on

these arguments, we chose attained age as time scale. This choice leads to a left-truncation of

both Ti and Ci [390], implying the same left-truncation for the minimum of these two variables,

Yi. Indeed, all variables must take values greater than the age at study entry into the cohort.

In other words, P (Ti < r0
i ) = 0, P (Ci < r0

i ) = 0 and P (Yi < r0
i ) = 0, where r0

i is the age of

miner i at entry into the French cohort of uranium miners. Additionally, the choice to censor

workers at their 85th birthday implies that Ci is not only left-, but also right-truncated, thereby

resulting in a right-truncation of Yi, whereas Ti can of course take values greater than 85 years.

As we merely disposed of information on the annual radon exposure of each miner, it may seem

reasonable to choose a rather coarse modelling of survival times by choosing a time-scale of age

in years. As this choice may imply a substantial loss of information, we preferred to model age

in days. In this context, we had to choose a date on which this annual exposure was received

every year. To avoid the overestimation of cumulated radon exposure of a miner at a given time,

we chose the 31st December for this purpose. Thereby, the time-varying pattern of cumulated

radon exposure of miner i at time t was assumed to follow a step function with jumps on the

31st December of each year a miner received an exposure. While it may appear more reasonable

to interpolate values or to assume smaller intervals of time, Therneau et al. (2000) discuss this

point and conclude that these refinements make little difference in practice [391]. In contrast,

it is very important to properly account for the nature of time-varying variables in proportional

hazard models by linking the full exposure history to the instantaneous hazard rate. In this vein,

it would induce a bias in risk estimates if we considered the total cumulated radon exposure a

miner received during his career to be known at study entry, i.e. if we pretended to be able to

look into the future [392]. This bias, which is common in the medical literature [393, 394, 390],

is classically known as time-dependent bias [395]. It occurs whenever the future exposure status

of a study participant is analysed as being known at the beginning of follow-up [394].

Both the left-truncation of Ti and the time-varying nature of cumulated exposure can be ac-

counted for via the survival function Si(t;θ). In the case of a left-truncation at time r0
i as

defined before, the survival of miner i until time t can be expressed as

exp

(
−
∫ t

r0i

hi(u;θ)du

)
= exp

(
−
∫ t

0
hi(u;θ)du+

∫ r0i

0
hi(u;θ)du

)
=

exp
(
−
∫ t

0 hi(u;θ)du
)

exp
(
−
∫ r0i

0 hi(u;θ)du
) =

Si(t;θ)

Si(r0
i ;θ)

.

(5.9)

To account for the time-varying pattern in cumulated exposure, we only have to apply this

reasoning for the different time periods during which cumulated radon exposure is constant for

miner i. Let r0
i < r1

i < . . . < rMi
i = yi be a finite partition into Mi intervals of the time interval

(r0
i , yi]. Let ωi,m be the constant value of the cumulated exposure to radon of miner i on the
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mth time-interval (rm−1
i , rmi ] and S

ωi,m
i denote the survival function of miner i with a cumulated

radon exposure of ωi,m. In this context, following the same reasoning as (5.9), the survival

function of miner i at time yi can be expressed as:

Si(yi;θ) = exp

(
−
∫ yi

r0i

hi(u;θ)du

)

=

Mi∏

m=1

exp

(
−
∫ rmi

rm−1
i

hi(u;θ)du

)

=

Mi∏

m=1

S
ωi,m
i (rmi ;θ)

S
ωi,(m−1)

i (rm−1
i ;θ)

(5.10)

In line with this reasoning, statistical inference in proportional hazards models in the presence

of time-varying covariates is commonly based on so-called “pseudo subjects” where each period

of a subject which is associated with a constant value of a time-varying covariate is represented

as an independent row (which represents a pseudo subject) in the data set [391, 392]. In the

French cohort of uranium miners, the expression of the time-varying exposure history of miners

via pseudo miners resulted in a data frame with 58447 rows for the 5086 miners in the full cohort

and in 40162 rows for the 3377 miners in the post-55 cohort.

Modelling the hazard ratio

When describing the hazard ratio ϕ(Xcum
i (t), Vi1(t), ..., Vin(t),θ), we considered the two model

structures

ϕ(Xcum
i (t), Vi1(t), ..., Vin(t),θ) = 1 + βXcum

i (t) (5.11)

ϕ(Xcum
i (t), Vi1(t), ..., Vin(t),θ) = exp (β ·Xcum

i (t)) , (5.12)

where β is an unknown parameter that quantifies the risk of lung cancer mortality associated

with cumulated radon exposure Xcum
i (t). The first model (5.11), referred to as Excess Hazard

Ratio (EHR) model in the following, presents a linear structure, which is commonly used to

describe the association between solid cancer mortality and exposure to radon and to other

sources of ionising radiation. This model will be denoted as D1 or as linear EHR model in the

following. The second model (5.12), is a log-linear model and presents the more classical form

of proportional hazards model proposed by Cox (1972) [180]. It will be referred to as D2 or the

Cox model in the following. Note that the Cox model inherently respects the condition that

the instantaneous hazard rate hi(t;θ) = h0(t) ϕ(Xcum
i (t), Vi1(t), ..., Vin(t),θ) must be positive,

while for the EHR model the parameter values are subject to the constraint βXcum
i (t) > −1

∀t∀i.
Apart from model D1, we considered several other structures for the excess hazard ratio to

account for potential effect modifying variables. Vacquier et al. (2009) [70] identified period

of exposure (until 1955 and after 1955) as the most important effect modifying variable in the

French cohort of uranium miners. The corresponding model (D3) for the excess hazard ratio

is ϕ(Xcum
i (t), Vi1(t), ..., Vin(t),θ) = 1 + β1 · Xcum

i,≤1955(t) + β2 · Xcum
i,>1955(t) with Xcum

i,≤1955(t) and

Xcum
i,>1955(t) the cumulated radon exposure until time t that miner i received until 1955 and after
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1955, respectively. The associated effect modifying variable V1i(t) = 1>1955(t) indicates whether

an exposure for miner i at time t was received after 1955 or not. Xcum
i,>1955(t) can be expressed

through V1i(t) by Xcum
i,>1955(t) =

∑t
l=r0i

V1i(l)Xi(l), where Xi(l) is the radon exposure a miner i

received at time l. Likewise, Xcum
i,≤1955(t) can be expressed by Xcum

i,≤1955(t) =
∑t

l=r0i
(1−V1i(l))Xi(l).

Note that the exposures of a miner have to be summed over all times l at which a miner received

a radon exposure before time t, l = r0
i , ..., t.

We also chose to include time since exposure as modifying variable (D4). In this context, the

hazard ratio associated with radon exposure is modelled as ϕ(Xcum
i (t), Vi1(t), ..., Vin(t),θ) =

1+β1X
cum
i,5−14(t)+β2X

cum
i,15−24(t)+β3X

cum
i,25+(t), where Xcum

i,5−14(t), Xcum
i,15−24(t) and Xcum

i,25+(t) are the

cumulated radon exposure at time t that miner i received in the last 15 years, 15 to 25 years

ago or more than 25 years ago, respectively. Xcum
i,5−14(t) does not include exposures received in

the last 5 years to respect the exposure lag of five years defined earlier. In the same way as

for period of exposure, two indicator variables V2i(t) and V3i(t) can be defined to express the

effect modification by time since exposure. Note that when considering time since exposure

as effect modifying variable, we have to account for all changes in the time-varying variables

Xcum
i,5−14(t), Xcum

i,15−24(t) and Xcum
i,25+(t), for instance by considering the different exposure periods

for which all three exposure variables were constant as pseudo miners as described earlier. In

the French cohort of uranium miners, accounting for the time-varying nature of these three

exposure variables via pseudo miners resulted in a data frame with 119073 rows for the 5086

miners in the full cohort and in 77919 rows for the 3377 miners in the post-55 cohort. As we

chose attained age as timescale, the variables age at exposure and time since exposure contain

essentially the same information [72]. Finally, we compared these models with two piecewise

linear EHR models with breakpoints at 50 WLM (D5) and 100 WLM (D6) in order to assess the

linearity of the EHR model D1. Depending on the disease model, the vector of unknown risk

coefficients β therefore either consisted only of β (D1 and D2), of β1 and β2 (D3, D5 and D6) or

of β1, β2 and β3 (D4).

Modelling the baseline hazard

When conducting frequentist inference on the unknown parameter in a proportional hazards

model, the baseline hazard h0(t) is usually unspecified and inference is based on the partial

instead of on the full likelihood [382, 381, 183]. As described in section 3.1.2, this approach no

longer yields valid statistical inference on risk parameters in the presence of measurement error

[181, 182, 183]. A convenient solution in this situation is to specify a parametric model for the

baseline hazard h0(t;θ). In the context of frequentist inference it is difficult to simultaneously

estimate the parameters describing the baseline hazard and the parameters describing the hazard

ratio [383, 396]. While it is therefore common to obtain the parameters of the baseline hazard

via plug-in estimates in the frequentist approach to statistical inference, the Bayesian approach

allows to simultaneously estimate all unknown parameters in a coherent framework [383, 396].

When specifying the baseline hazard, one of the most convenient and popular choices is to use

a semi-parametric model where the baseline is supposed to be piecewise-constant [397, 380,

383, 149, 398, 396, 399], as illustrated in Figure 5.1. Given a finite partition of the time axis
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Figure 5.1: Example of a piecewise constant model for the baseline hazard in a proportional

hazards model

0 = s0 < s1 < s2 < . . . < sJ with sJ = max
i=1,...,n

Yi we define the baseline hazard h0(t;θ) as

h0(t;θ) = λj ∀t ∈ Ij = (sj−1, sj ] (5.13)

where Ij denotes the jth time interval (j = 1, ..., J). When assuming a piecewise-constant

model on baseline hazard and a linear EHR model on the hazard ratio (i.e. model D1), the

survival function at time t for a miner i with constant cumulated radon exposure ω and without

left-truncation can be written as:

Si(t;θ) = exp


−(1 + βω)

J∑

j=1

νij


λj(t− sj−1) +

j−1∑

g=1

λg(sg − sg−1)




 (5.14)

where θ = (λ1, · · · , λJ , β) and νij = 1 if yi ∈ (sj−1, sj ] and 0 otherwise.

In the context of this model, one has to choose cut-points s1, . . . , sJ to define the intervals for

which the values of the baseline hazard are constant. Heidenreich et al. [36], who analysed lung

cancer mortality in a large cohort of uranium miners, chose nine age intervals for this purpose,

i.e., one for the baseline hazard before 40 years of age, one for the baseline hazard after the

age of 70 and intervals of five years in between these two boundaries. We used the same lower

boundary of 40 years of age, but decided for a more parsimonious model with steps of 15 years,

given the small number of miners deceased by lung cancer in our study compared to Heidenreich

et al. [36] (i.e. 211 vs. 1538). The cut-points of the time-axis s1, s2, s3, s4 we chose were thus

40, 55, 70 and 85 years.

We used data on the general French male population [400] in order to investigate the way in

which the baseline hazard of lung cancer mortality might have changed over time. Figure 5.2

illustrates the time trend in the lung cancer mortality rate in French males for four different

time periods. As general lung cancer mortality rate changed substantially in the time period of

our follow-up, i.e. between 1946 and 2007 [401], it might seem natural to model the baseline

hazard not only as a function of attained age, but also of calendar period. Figure 5.2 shows

marked difference between the first time period (1968-1977 in red in figure 5.2) and the three

subsequent time periods for the age groups over 70 years. There are only two subjects in the

cohort of French uranium miners who died of lung cancer at an age over 70 and before 1978.
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Figure 5.2: Lung cancer mortality rate

in French males for the periods 1968-1977
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Figure 5.3: Average hazard rate of lung cancer

mortality in French males for the period

1968-2005 with associated 95% intervals of

values for this time period

For the sake of parsimony, we thus decided to model baseline hazard solely as a function of age

and not of calendar period. Figure 5.3 summarises the empirical distribution of the mortality

λ

Xicum(t)

β

Yi, δi

Xi(t)V1i(t),…, 
Vpi(t)

time until death 
by lung cancer

true annual
exposure

true cumulated
exposureadditional

covariates

Figure 5.4: Directed acyclic graph of the disease model. Circles indicate unknown quantities

and rectangles indicate observed variables. Single arrows indicate a probabilistic dependency

while double arrows indicate a deterministic dependency. λ and β are the vector of baseline

parameters and the vector of risk parameters intervening in the baseline hazard and the

hazard ratio, respectively.

hazards calculated on all available values in the time period 1968-2005. We used this exter-

nal data to specify an informative prior probability distribution on the unknown parameters

λ = (λ1, λ2, λ3, λ4) as will be described in section 5.1.6. The probabilistic dependencies between

the variables in the disease model are represented in the Directed Acyclic Graph (DAG) in Fig-
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ure 5.4.

5.1.2 Measurement models

In this section, we will present the different measurement models that we considered to describe

the shared and unshared exposure uncertainty components that can be assumed for the French

cohort of uranium miners. As described in section 2.2.3, the methods of exposure assessment in

the cohort changed over time. Between 1946 and 1956, annual radon exposure values were recon-

structed retrospectively by a group of experts. In this reconstruction, a monthly exposure value

was estimated for each mining division and each year of exposure between 1946 and 1956. These

estimates were based on environmental measurements performed in the mines and on informa-

tion concerning the working conditions in the different mining divisions. In 1956, measurements

of ambient radon gas concentration at work sites were introduced for the purpose of radiation

protection. These ambient measurements of radon exposure allowed for a prospective method

of exposure assessment in the mines. Finally, in 1983, personal dosimetry was introduced in the

mines. Based on these changes in the methods of exposure assessment, measurement models

describing the exposure uncertainty characteristics in the cohort have to account for potential

changes in the nature and magnitude of exposure measurement error.

In all measurement models presented in this section, we will denote Xq
i (t) and Zqi (t) the true

and the observed exposure of miner i at time t in the qth exposure period, respectively. When

accounting for unshared measurement error, we assumed five different exposure periods follow-

ing the characterisation of measurement error in the French cohort of uranium miners made

by Allodji et al. (2012) [33, 34]. Thereby, q ∈ {1, 2, 3, 4, 5} corresponds to the exposure peri-

ods 1946-1955, 1956-1974, 1975-1977, 1978-1982 and 1983-2007, respectively. When modelling

shared measurement error, on the other hand, our aim was to account for the fact that there

were components of error that might be shared for a miner for the exposure years between 1956

and 1982, as they all relied on a group-exposure assessment strategy based on the measurements

of ambient radon gas concentrations. We therefore considered the exposure years between 1956

and 1982 as a homogeneous exposure period when accounting for shared exposure measurement

error. In this situation, we assumed q ∈ {1, 2, 3} corresponding to the exposure periods 1946-

1955, 1956-1982 and 1983-2007.

A large part of the measurement error literature is based on additive error. It has been repeat-

edly suggested, however, that a multiplicative measurement error model may be more realistic

in occupational and environmental epidemiology in general [147] and to describe uncertainty

in airborne exposure in particular [31, 152, 189]. In the following, we will therefore postu-

late a log-normal and multiplicative error structure to represent the measurement of radon

exposure in the French cohort of uranium miners. This error structure guarantees the posi-

tivity of both true and observed exposure and the hypothesis of log-normal measurement er-

rors is in accordance with much of the literature on exposure uncertainty in radon exposure

[24, 25, 402, 28, 29, 30, 151, 40, 36, 33, 34, 35]. In line with this hypothesis, repeated measure-

ments of radon concentrations provide evidence for a multiplicative structure of measurement

error in radon exposure [26, 403]. Heid (2002) [402] gives a further justification of this error

structure based on the fact that many factors modifying radon concentration affect a proportion
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of radon atoms in a given environment. We will thus describe the distribution of the measure-

ment error term U qi (t) concerning miner i at time t during the exposure period q by specifying

the mean and the variance of log (U qi ( t)) as −σ2
U,q

2 and σ2
U,q, respectively. This parametrisation

implies that E (U qi (t)) = 1 and thereby that the measurement error term does not introduce a

systematic under- or overestimation of exposure.

Accounting for unshared measurement error

When characterising exposure uncertainty in the French cohort of uranium miners, Allodji et al.

(2012) [33] identified the variation in airborne radon gas concentration as the most important of

six sources of uncertainty associated with the measurement of radon exposure between 1956 and

1982. The remaining sources of uncertainty include the precision of the measurement device,

human errors made by radiological protection operators, the estimation of working time, the

estimation of a factor describing the chemical equilibrium between radon and its progeny and

errors occurring during record-keeping and data transcription. Concerning the exposure years

between 1956 and 1982, which were characterised by a prospective method of group level expo-

sure assessment through ambient measurements, the authors identified three distinct exposure

periods with varying magnitude of uncertainty associated with radon exposure measurement.

The definition of these periods was based on factors including the number of measurements, the

measurement device used as described above and the type of ventilation present in the mines.

Moreover, they described the measurement errors occurring in these exposure periods, as well as

the measurement errors occurring in the first exposure period, which was characterised by the

exposure estimations by experts as Berkson error with E(U qi (t)|Zqi (t)) = 1, ∀q 6= 5 [34, 35]. This

can be justified by the fact that in these four exposure periods, an estimate of radon exposure

for a certain position in a mine was assigned to all miners present at a given place and time. The

true exposure Xq
i (t) of a miner i might differ from this assigned exposure value Zqi (t) , mainly

due to variations in airborne radon concentration.

Exposure measurements produced by individual dosimetry in the fifth exposure period (1983-

2007), on the other hand, are supposed to produce independent classical measurement error:

E(U5
i (t)|X5

i (t)) = 1. Indeed, for this time period, it is plausible to assume that the true individ-

ual radon exposure of miner i is merely assessable with errors, which are essentially caused by a

lack of precision of his individual measurement device, i.e., his personal dosimeter. In line with

the assessment of exposure uncertainty in the cohort [33, 34, 35], we considered the following

measurement model for the five exposure periods:

M1 :





X1
i (t) = Z1

i (t) · U1
i (t)

X2
i (t) = Z2

i (t) · U2
i (t)

X3
i (t) = Z3

i (t) · U3
i (t)

X4
i (t) = Z4

i (t) · U4
i (t)

Z5
i (t) = X5

i (t) · U5
i (t).

In other words, we assumed heteroscedastic and unshared measurement error to account for the

fact that the type and the magnitude of error changed over the years.
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When accounting for unshared measurement error in the cohort, we will thus suppose five differ-

ent variance parameters σ2
U,1, σ

2
U,2, σ

2
U,3, σ

2
U,4, σ

2
U,5 of log (U qi (t)) associated with the five distinct

exposure periods identified by [33]. In this case, we will denote σ2
U = (σ2

U,1, σ
2
U,2, σ

2
U,3, σ

2
U,4, σ

2
U,5)

the vector of unknown variance parameters of log (U qi (t)).

Accounting for shared measurement error due to individual job conditions and

worker practices

As described in section 3.1.1, measurement errors may be shared between individuals or for

several years of exposure of the same individual. In particular, the methods of group expo-

sure assessment which were employed in the French cohort of uranium miners before 1982 are

likely to give rise to error components that are shared for several exposure years of the same

miner. Indeed, when occupational exposure estimation is based on a strategy of group-exposure

assessment, individual job conditions and worker practices can create a statistical dependence

between the measurement errors in the exposure history of a worker [15, 16]. For instance, a

comparison between exposures obtained through ambient measurements and through individual

dosimetry in the French cohort of uranium miners revealed that some miners received consider-

ably higher individual monthly exposure values than what would be expected through ambient

measurements [78]. This discrepancy might be explained by the fact that some of the workers

sought relief from the strong airstream produced by a ventilation system in their break hours,

thereby exposing themselves to very high radon concentrations. As the areas where the airflow

was weak were officially established as forbidden areas in the mines, no ambient measurements

were taken in these areas. The habit of miner i to spent his break hours in these forbidden

areas can therefore lead to an individual error component, which remains constant for several

exposure years when exposure measurement is based on a group exposure assessment strategy,

i.e. U qi (t) = U qi ∀t. Likewise, the specific job conditions of a miner may also influence this

subject-specific error component U qi . If miner i habitually works in a specific place in the mine

where ambient measurements are commonly taken, it is likely that his subject-specific error

component U qi , which is common to all years of exposure in a given period q, is smaller than for

a miner habitually working in a place in the mine where ambient measurements are more rare.

Moreover, as mentioned earlier, Allodji et al. (2012) [33] identified the natural variations in

airborne radon gas concentration as the most important source of exposure uncertainty before

1983. Several authors have shown that radon concentrations in homes and in mines present

important diurnal and seasonal fluctuations [404]. As the work in the mines was organised by

shifts, the habitual shift of a miner may influence his subject-specific measurement error com-

ponent U qi . In the same way, a habit to take his holidays in a certain month of a year may

influence U qi , at least for the exposure period before 1956 when monthly exposure values were

estimated for a given mine and year, i.e. for q = 1. To describe the influence of these individual

worker practices and job conditions, we proposed a second measurement model in which the

Berkson error occurring in the period before 1983 is shared for several years of exposure of the

same miner. In particular, we assumed a common error component U1
i for miner i for all years

of retrospective exposure assessment and another common error component U2
i for miner i for

the exposure years that were characterised by ambient measurements. Since exposure estimates

after 1983 were based on personal dosimetry, there is no reason to assume a shared error com-
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Figure 5.5: DAG of the full hierarchical model accounting for shared Berkson error until 1982

and neglecting unshared measurement error for the exposure period 1983-2007. B takes values

1 or 2.

ponent for this exposure period. Consequently, we only assumed three periods q ∈ {1, 2, 3}
when accounting for shared measurement error corresponding to the exposure years 1946-1955,

1956-1982 and 1983-2007. Moreover, as the magnitude of exposure measurement error which

occurred during the last exposure period (1983-2007) can be considered to be much smaller

than in earlier periods, we neglected the measurement error occurring in this last period when

accounting for shared measurement error. The radon exposure observed between 1983 and 2007

may be considered to be the true exposure and we will merely focus on the modelling of the

error components which occurred between 1946 and 1982.

The second measurement model that we assumed in this work can thereby be expressed as

follows:

M2 :





X1
i (t) = Z1

i (t) · U1
i

X2
i (t) = Z2

i (t) · U2
i

Z3
i (t) = X3

i (t).

In this model, we assumed log(U1
i ) ∼ N (−σ2

U,1

2 , σ2
U,1) and log(U2

i ) ∼ N (−σ2
U,2

2 , σ2
U,2), implying

E(U1
i |Z1

i (t)) = 1 and E(U2
i |Z2

i (t)) = 1 for all t occurring in the first and in the second exposure

period, respectively. When accounting for the shared components of Berkson error due to

individual job conditions and worker practices, the vector of variance parameters of log (U qi )

therefore becomes σ2
U = (σ2

U,1, σ
2
U,2). In a first attempt to account for shared Berkson error

in the French cohort of uranium miners, we assumed these variance parameters to be known

and equal to the values derived by Allodji et al. (2012) [33, 34], i.e. σ2
U,1 = 0.932 = 0.86 and

σ2
U,2 = 0.392 = 0.15. The directed acyclic graph for the full model, which results from the

combination of the disease model and the measurement model M2 is shown in Figure 5.5.
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5.1.3 The exposure model

As described in section 3.2 and in section 4.4, we need to specify an exposure model if we choose

a structural approach for classical measurement error correction. The exposure model specifies

a family of distributions for the true and unknown values of exposure Xq
i (t). In the case of

Berkson error, on the other hand, the distribution of true exposure Xq
i (t) is fully specified by

the measurement model. Occupational exposures [14] and in particular occupational exposures

that are airborne [152] are often assumed to follow a log-normal distribution. In line with

this assumption, numerous residential and occupational studies have observed a log-normal

distribution for radon exposure [78, 24, 27, 26, 40, 28, 69] and it is common to make this

distributional assumption for true exposure Xq
i (t) when modelling measurement error in radon

exposure [151, 34]. Based on these arguments, we assumed a log-normal distribution to describe

true and unknown radon exposure Xq
i (t) in the last period of exposure assessment in the French

cohort of uranium miners, which was characterised by individual dosimetry (1983-2007) when

accounting for unshared classical measurement error in this period (see measurement modelM1

in section 5.1.2).

However, based on changes in radiation protection and on technical improvements concerning
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Figure 5.6: Directed acyclic graph for the full hierarchical model accounting for unshared

measurement error. For the sake of clarity, we split the vector σ2
U into

σ2
U,B = (σ2

U,1, σ
2
U,2, σ

2
U,3, σ

2
U,4) for the exposure periods with unshared Berkson error and σ2

U,5

for the exposure period with unshared classical. Likewise, we denoted ZBi (t) the observed

exposure values for the exposure periods with unshared Berkson error and Z5
i (t) the observed

exposure values for the exposure period with unshared classical error.

the work in the mines, the true radon exposure can be assumed to have decreased in the period
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between 1983 and 2007. To allow different exposure distribution parameters depending on the

period of exposure, we modelled the mean and variance parameters µx,p and σ2
x,p of the normal

distribution for log(X5
i (t)) as a function of period of exposure p. Period p takes values in

{1, 2, 3, 4, 5} corresponding to the exposure periods 1983-1984, 1985-1986, 1987-1989, 1990-1994

and 1995-2007, respectively. These exposure periods were chosen so as to obtain a comparable

number of measurements in each period. µx = (µx,1, µx,2, µx,3, µx,4, µx,5) therefore denotes

the vector of unknown mean parameters of the natural logarithm of true exposure and σ2
x =

(σ2
x,1, σ

2
x,2, σ

2
x,3, σ

2
x,4, σ

2
x,5) denotes the corresponding vector of variance parameters. The DAG

for the full model, which results of the combination of the disease model, measurement model

M1 and the exposure model (described in section 5.13), is shown in Figure 5.6.

5.1.4 The dose model

As described in section 2.3, the concept of detriment-weighted absorbed lung dose is more

suitable to reflect the potential health effects of exposure to radon and its progeny than expo-

sure values expressed in working level months (WLM). However, there are a certain number

of uncertain input parameters involved in the calculation of absorbed lung dose. One of the

objectives of this work was to account simultaneously for the uncertainty on these input pa-

rameters and for exposure measurement error when estimating the risk of lung cancer mortality

associated with radon exposure in the French cohort of uranium miners. For this purpose, we

both needed to determine a dose model which allows to calculate detriment-weighted absorbed

lung dose and to specify prior distributions that reflect our uncertainty on these input param-

eters. For this purpose, we needed to derive a simplified but realistic mathematical expression

of the Human Respiratory Tract Model (HRTM), which is commonly used to model detriment-

weighted absorbed lung dose as presented in section 2.3.2. Our goal was to be able to both

easily combine this so-called “dose model” with the disease model, the measurement model and

the exposure model as defined previously and to be able to conduct Bayesian inference for the

resulting full hierarchical model. To this end, we additionally had to specify prior distributions

for the input parameters intervening in this dose model. To specify the dose model, as well

as the prior distributions on the uncertain input parameters intervening in this model, were

worked in collaboration with experts on the calculation of radiation doses for radon progeny

both at the laboratory of internal dosimetry at IRSN and at Public Health England (PHE)

[405, 37, 38, 116, 39, 59, 60, 104]. A general defintion of the approximated detriment-weighted

absorbed dose Di(t) (in mGy) received by miner i at time t can be given by:

Di(t) =
bri(t)

cbr
· (fpi(t) · cunati(t) + (1− fpi(t)) · cati(t)) ·Xi(t) (5.15)

where cbr is a proportionality constant that is equal to 1.2 m3h−1, Xi(t) is the true radon

(progeny) exposure that miner i received at time t, bri(t) denotes the average breathing rate of

miner i at time t in m3h−1 and fpi(t) is the unattached fraction of radon progeny to which miner

i was exposed at time t (see section 2.3.3 for a more detailed presentation of these input pa-

rameters). The two dose conversion coefficients cunati(t) and cati(t) (expressed in mGy/WLM)

are a function of the Activity Median Diameter (AMD) of the unattached (Auati(t)) and the

attached radon progeny (Aati(t)) to which miner i was exposed to at time t, respectively. Public

Health England provided us with a certain number of AMD values given in nanometer (nm)
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Figure 5.7: Values of the Activity Median Diameter (AMD) and the corresponding dose

conversion coefficients of unattached and attached radon progeny.

for the unattached radon progeny Auat and for the attached radon progeny Aat as well as with

the corresponding dose conversion coefficients, which were obtained through a more complex

and more realistic implementation of the HRTM. Figure 5.7 shows these values for the attached

and unattached fraction of radon progeny. We used cubic splines to interpolate the relation

between these quantities, resulting in the interpolated functions ĝ1 and ĝ2 plotted in Figure 5.8.

These cubic spline functions were fitted in Python and subsequently used to determine a dose

conversion coefficient corresponding to a given value of the AMD for attached and unattached

radon progeny, respectively.

In order to achieve a more parsimonious version of the dose model defined in (5.15), we made
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Figure 5.8: Cubic spline interpolation of the relation g1 and g2 between the Activity Median

Diameter (AMD) and the corresponding dose conversion coefficients of unattached and

attached radon progeny.

the hypothesis that the uncertain input parameters in the dose model, i.e. bri(t), fpi(t), Aati(t)

and Auati(t) remain constant for all exposure years characterised by a manual type of work

(i.e. until 1977) and all exposure years characterised by mechanised type of work (i.e. after
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Figure 5.9: DAG for the full hierarchical model accounting for uncertainty on the input

parameters in the dose model and for shared Berkson error for the period 1956-1982 while

neglecting unshared classical measurement error for the period 1983-2007 in the post-55 cohort.

1977)1. Indeed, the working conditions of a miner in the French cohort of uranium miners can

be supposed to have stayed more or less constant over the years in each of these two periods. In

the French cohort of uranium miners, only the working conditions in the years after 1955 have

been characterised thoroughly with the aim to inform dosimetric calculations [116, 88]. When

accounting for dose uncertainty, we therefore restricted our analyses to the so-called “post-55”

cohort, i.e. all miners in the French cohort of uranium miners employed after 1955 (see section

2.2.2). With this restriction and under the hypothesis that the input parameters for a miner

i remain constant in a dose period qd, where qd = 1 for exposures received until 1977 and

qd = 2 for exposures received after 1977, the approximated detriment-weighted absorbed lung

dose Dqd
i (t) received by miner i at time t corresponding to dose period qd can be given by the

following model, which we will denote as dose model A1:

Di(t) =
brqdi
cbr
· (fpqdi · cunat

qd
i + (1− fpqdi ) · catqdi ) ·Xq

i (t) (5.16)

where q ∈ {2, 3} corresponding to the exposure years between 1956 and 1982 and between

1983 and 2007, respectively. In order to account simultaneously for the uncertainty on the

input parameters intervening in dose calculation and for shared exposure measurement error,

we combined dose model A1 with the following measurement model:

M∗
2 :





X2
i (t) = Z2

i (t) · U2
i

Z3
i (t) = X3

i (t).

that accounts for Berkson error shared within miners in the second exposure period, that was

characterised by a prospective method of group-exposure assessment via ambient measurements.

1See Allodji et al. (2012) [33] for more details on the changes in working conditions in French uranium mines.
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The DAG of the full hierarchical model, which results of the combination of the disease model,

the measurement model M∗2 and the dose model is shown in Figure 5.9. It is interesting to

note that, in contrast to the disease model, the measurement model and the exposure model,

which have been presented earlier, the dose model we considered in this work is a deterministic

model. In other words, a given set of input parameters will always result in the same dose value

Dqd
i (t). The epistemic uncertainty on the input parameters for each miner i, on the other hand,

is expressed via prior distributions on these unknown quantities that we will define in the next

section. In Figure 5.9 the deterministic dependence between the dose estimate Dqd
i (t) and the

input parameters is expressed via double arrows.

5.1.5 Defining prior distributions

As described in section 4.1 and illustrated in the different DAGS presented in the last section

(see Figure 5.6, Figure 5.5 and Figure 5.9), we need to specify prior distributions in order to

conduct Bayesian inference for all unknown quantities. Table 5.1 summarises the parameters in

all sub-models.

Table 5.1: Summary of the unknown quantities in the sub-models for which prior distributions

have to be specified

Sub-model Unknown quantity Description Details

Disease model

β = (βr)r=1,...,R Risk association R = 1 for the simple linear models (D1, D2)

R = 2 for the piecewise linear models (D5, D6)

and the period of exposure model (D3)

R = 3 for the time since exposure model (D4)

λ = (λj)j=1,...,J Baseline hazard J = 4 age periods:

< 40, 40-55, 55-75 and 75-85 years

Measurement model

σ2
U = (σ2

U,q)q=1,...,Q Measurement error Q = 5 for unshared measurement error (M1) with

variance calendar periods (46-55, 56-74, 75-77, 78-82, 83-07)

Q = 3 for shared measurement error (M2) with

calendar periods (46-55, 56-82, 83-07)

Exposure model

(unshared classical µx = (µx,p)p=1,...,P Mean of the logarithm

error for 1983-2007) of true exposure P = 5 calendar periods

σ2
x = (σ2

x,p)p=1,...,P Variance of the (83-84, 85-86, 87-89, 90-94, 95-07)

logarithm of true exposure

Dose model

(for exposure values fp = (fpqdi )qd=1,...Qd
i=1,...,3377 Unattached fraction

received after 1956) of radon progeny

Aat = (Aatqdi )qd=1,...Qd
i=1,...,3377 Activity Median Diameter

of attached radon progeny Qd = 2 calendar periods (56-82, 83-07)

Auat = (Auatqdi )qd=1,...Qd
i=1,...,3377 Activity Median Diameter

of unattached radon progeny

br = (brqdi )qd=1,...Qd
i=1,...,3377 Average breathing rate
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Disease model

We chose independent prior distributions for β and λ. In particular, we opted for vague prior

distributions for the vector of unknown risk coefficients β in the form of centred normal distribu-

tions with large variances (104). As mentioned in section 5.1.1 and following Ibrahim et al. (2001)

[380], we used the external data on the yearly lung cancer mortality rate in French males between

1968 and 2005 [400] to specify independent and informative gamma priors for the components of

λ. In accordance with these mortality rates, we defined gamma priors λj ∼ G(α0j , β0j) with α0j

taking values 23.66, 35.53, 88.10 and 29.75 and β0j taking values 4.90 · 108, 2.58 · 107, 1.61 · 107

and 3.25 · 106 for the four time intervals j = 1, 2, 3, 4.

In order to test the influence of these informative prior distributions, we estimated the param-

eters of the disease model assuming flat uniform distributions between zero and one for the

parameters λ2, λ3 and λ4. For the parameter λ1 describing baseline hazard before 40 years, we

always assumed the informative gamma distribution defined earlier, since only one miner died of

lung cancer before 40 years in the cohort. As there was very little information on this parameter

in the data, it would have been inadequate to estimate its value based on a flat uniform prior

distribution.

Measurement model

Concerning the parameters σ2
U,1, σ

2
U,2, σ

2
U,3, σ

2
U,4 and σ2

U,5, describing the variance of the log-

transformed values of measurement error in the five exposure periods, we did a parameter trans-

formation. Instead of modelling these variance parameters directly, we specified informative

prior distributions on their square roots, i.e. on the corresponding standard deviation param-

eters σU . We assigned independent normal distributions that were centred at the values 0.93,

0.47, 0.42, 0.33 and 0.10, respectively. These values correspond to the values determined by Al-

lodji et al. (2012) [33, 34] when characterising exposure measurement error in the French cohort

of uranium miners. The standard deviation parameters of the prior distributions on σUwere set

to 0.03, 0.005, 0.005, 0.005 and 0.0005.

Exposure model

To account for unshared classical measurement error after 1983 through measurement modelM1,

we have to specify prior distributions on the vector of values describing the mean µx and the

variance σ2
x of the log-transformed true exposure values X5

i (t) received in this period. These

prior distributions were defined in accordance with data on radon exposure in a sub-cohort

of the Wismut cohort consisting of 11.000 miners that were first employed by the Wismut

company between 1971 and 1989 [406]. The miners in this sub-cohort can be supposed to

have been exposed to radon in a similar way as the miners in the French cohort after 1983,

since their exposure conditions were subject to similar technological developments and the same

guidelines for radiation protection. Among exposed miners in this sub-cohort, the median value

of cumulated radon exposure was around 5 WLM and mean radon exposure was 9 WLM [406].

If we divide these values by the average duration of exposure in this cohort, which was seven
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years, we obtain a yearly median exposure of 0.71 WLM and a yearly mean exposure of 1.29

WLM. Using the properties of the log-normal distribution we can deduce a geometric mean of

-0.34 and a geometric variance of 1.18 for this sub-cohort.

We therefore assumed the prior expected value of σ2
x in the French cohort of uranium miners

to be 1.18 for all elements of σ2
x. To respect this condition, as well as a 95th percentile of 2.89

(which was determined via plots of the resulting log-normal distributions for different values

of µx) we chose an inverse gamma prior for σ2
x with shape parameter ασ2

x
= 1.75 and scale

parameter βσ2
x

= 0.88 for all elements of σ2
x. The resulting prior credible intervals for σ2

x are

CI95%: [0.17; 5.22]. Inverse gamma distributions as prior distributions for variance parameters

are a classical choice for Bayesian inference to respect their positivity and to obtain analytically

tractable full conditional distributions for these parameters.

The steady decrease in annual mean radon exposure that is observed in cohorts of underground

miners after 1965 make the elicitation of the prior distribution for µx based on the sub-cohort of

the German cohort of uranium miners more difficult. Indeed, all information on radon exposure

based on this cohort is valid for the period between 1971 and 1989. The exposure model we

want to specify, on the other hand, concerns the period between 1983 and 2007 in the French

cohort, characterised by classical measurement error. To account for this, we did not directly

centre the prior distribution for µx around its corresponding value observed in the Wismut sub-

cohort. This prior is only required to have a non-negligible prior probability for the median radon

exposure value to be greater or equal to the median value observed for the Wismut sub-cohort.

At the same time we required that there should be a non-negligible probability for median radon

exposure in the French cohort after 1983 to be more than 10 times smaller than in the German

cohort to account for the possibility of a gradual decrease in yearly radon exposure in uranium

mines. In order to respect these two conditions, we chose a normal prior distribution for all

components of µx with mean -1.44 and variance 10.24, corresponding to a 95% credible interval

(CI95%) [-7.71; 4.83]. The influence of the chosen priors on parameter estimation was assessed

by comparing the obtained results with results obtained when assuming more informative prior

distributions for all components of µx via a normal distribution with mean -1.44 and a variance

of 1.44 (CI95%: [-3.79; 0.91]) and an inverse gamma distribution with ασ2
x

= 3.11 and βσ2
x

= 2.47

(CI95%: [0.34; 3.70]).

Dose model

Concerning the specification of information prior distributions on the uncertain input param-

eters in the dose model, we worked in collaboration with dosimetrists at IRSN and at Public

Health England (PHE), as mentioned in section 5.1.4. In the context of this collaboration, we

specified informative prior distributions for fpqd , Aatqd and Auatqd which were mainly based on

measurements in mines performed by Butterweck et al. (1992) [115], Porstendörfer et al. (1999)

[407], Bouland et al. (1992) [408], Bigu (1990) [409] and on the values proposed by Birchall et

al. (1994) [2]. For the exposure years after the mechanisation of work in the mines, i.e. for

qd = 2, it was assumed that the diesel aerosol dominated the mine aerosol, resulting in a very

low unattached fraction and an activity median diameter (AMD) around 200 nm for attached

radon progeny [115]. This information was translated into log-normal distributions for both fp2
i

and Aat2i with a geometric mean of 0.0006 and a geometric standard deviation of 2.0 for fp2
i and
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a geometric mean of 200 nm and a geometric standard deviation of 1.3 for Aat2i . Concerning

the working conditions before the mechanisation (i.e. until 1977), which were characterised by

an absence of diesel engines and by medium to good ventilation, it was assumed that the mine

aerosol was similar to the outdoor aerosol having a higher unattached fraction and a larger

AMD for the attached radon progeny [115, 410, 116]. In accordance, we assumed log-normal

distributions for the unattached fraction fp1
i and the activity median diameter of the attached

radon progeny Aat1i for the first dose period with a geometric mean of 0.01 and a geometric

standard standard deviation of 1.9 for fp1
i and a geometric mean of 250 nm and a geometric

standard deviation of 1.2 for Aat1i . Concerning the activity median diameter of the unattached

radon progeny, we assumed a uniform distribution between 0.5 nm and 1.5 nm for both dose

periods, i.e. Auatqdi ∼ U [0.5 nm; 1.5 nm] qd ∈ {1, 2}.
Finally, for average breathing rate of miner i in the dose period qd, br

qd
i , we performed a sen-

sitivity analysis on the prior choice by assuming two alternative prior distributions. We either

assumed a log-normal distribution with a geometric median 1.2 m3h−1 and a geometric stan-

dard deviation of 1.3 for both dose periods, which was derived from information in the literature

[411] or prior distributions based on interviews that we performed with experts on the working

conditions in the French uranium mines. The methods of expert prior elicitation that we used

for this purpose will be described in the next section.

5.2 The elicitation of prior information for average breathing

rate by expert knowledge

Contrary to the unknown parameters in the disease and in the exposure model, the uncertain

input parameters intervening in the dose model (A1) i.e. brqdi , fpqdi , Aatqdi and Auatqdi (with

qd ∈ {1, 2} as defined in section 5.1.4) are likely to be only poorly informed by the observed

data. It therefore appears to be indispensable to specify informative prior distributions for the

uncertain input parameters intervening in the dose model. As described in section 5.1.5., we

used information available in the literature to derive informative prior distributions for this

purpose. However, it can be argued that special attention should be paid to the definition

of prior distributions concerning average breathing rate. First of all, this input parameter is

likely to be the most influential quantity in the dose model (apart from radon exposure Xq
i (t)).

More importantly, the prior information available in the literature on this unknown input pa-

rameter is mainly based on measurements that were performed for workers in metal mines in

Tajikistan and gold mines in South Africa [2, 412, 102, 411]. It is questionable to what extent

the working conditions in these mines can be extrapolated to the working conditions in French

uranium mines. Finally, the average breathing rate of a miner can be modelled as a function

of observable quantities, contrary to the other uncertain input parameters intervening in the

dose model. Consequently, we decided to derive informative prior distributions on the average

breathing rate of miner a miner based on the elicitation of expert knowledge on the working

conditions in French uranium mines.

In section 5.1.4, we assumed bri(t) = brqdi with qd = {1, 2}. When deriving a prior distribution

on average breathing rate informed by the knowledge of experts on French uranium mines, we

assumed a more parsimonious model. We assumed that bri(t) = brl for all miners i and all
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exposure years t corresponding to a working condition l ∈ {1, 2, 3, 4, 5, 6}. Each working condi-

tion was defined by a dose period (until or after 1977) and a type of work (hewer, underground

miner and open pit miner). Thereby, we assume that the average breathing rate is the same

for all miners in this working condition as they can be supposed to perform the same tasks. To

define the average breathing rate of a French uranium miner in working condition l, i.e. brl, it

is common to multiply the proportion of time he spent in a certain level of physical activity a

in working condition l denoted Pa,l by a value ¯bra corresponding to the average breathing rate

for this activity, to finally sum over all activities a, where a ∈ {1, 2, 3} corresponding to sitting,

light exercise and heavy exercise:

brl = ¯br1 · P1,l + ¯br2 · P2,l + ¯br3 · P3,l (5.17)

with
∑3

a=1 Pa,l = 1 and l ∈ {1, 2, 3, 4, 5, 6}. This approach, which is also known as the time-

activity-ventilation approach [411], has the advantage that the proportion of time a worker in

a given working condition commonly spent in a certain level of physical activity is a variable

that can be derived by considering the different tasks performed in a specific mine. The average

breathing rate parameters ¯bra, corresponding to the different levels of physical activity, on the

other hand, can safely be extrapolated from one worker population to the other. Finally, the

definition of average breathing rate via the time-activity-ventilation approach relates it to a

quantity with three components Pa,l that are observable by experts and in line with the general

recommendations on prior elicitation presented in section 4.3.3 according to which we should

seek to elicit expert information only on observable quantities. In order to make the quantities

that were to be evaluated by the experts even more palpable to them, we decided to ask for the

time a miner in working condition l spent in the different levels of physical activity a during a

working day, instead of asking for a proportion. We specified in the beginning of the elicitation

exercise that, in our definition, a working day consisted of eight hours.

In line with these arguments, we designed an elicitation task to elicit the knowledge of expert e

concerning the time a miner in a working condition l spent in a given physical activity a, Se,a,l

with Se,1,l corresponding to the time spent sitting Se,2,l to the time spent in light exercise and

Se,3,l to the time spent in heavy exercise.

The first step to derive informative prior distributions on the average breathing rate in French

uranium mines based on expert knowledge, was to identify experts, which were capable of provid-

ing us with information on the time French uranium miners spent in different levels of physical

activity. To that purpose, we contacted a historian, who was familiar with the working condi-

tions in French uranium mines. He recommended us two additional experts, who had formerly

worked in a French uranium mine. In order to guarantee their anonymity, we will call these

three experts A, B and C in the following. Experts A and B were employed as electrician and

mechanic in a French uranium mine, respectively, and expert C was the historian familiar with

the working conditions in French uranium mines.

Unfortunately, the aggregation of the opinions of multiple experts poses additional difficulties

in the elicitation of expert opinion. The most intuitive solution to this problem is arguably

to organise a group elicitation session during which a unique prior distribution reflecting the

experience of the whole group is elicited [279]. However, this approach, which is also referred

to as the behavioural approach to the aggregation of expert opinion [350], has a number of

potential drawbacks. First of all, it is not always possible to organise an interview session with
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all subject-matter experts at the same time. Moreover, this strategy may promote the use of

heuristics and lead to overconfident judgments [350] as well as phenomena like group polarisation

according to which a group may adopt more extreme positions than would individual members

of the same group [346]. Finally, a group elicitation would have been inconvenient in the case

of the three experts we had identified, because they were employed in the same company and

expert C was higher in the working hierarchy than expert A and expert B. In the context of a

group elicitation session, it is therefore questionable whether expert A and expert B would have

been free to express their opinion in cases where they did not agree with expert C. Based on

these arguments, we organised individual sessions of about two to three hours for the elicitation

of prior information for each expert. These individual sessions also allowed us to make sure that

each expert had correctly understood the elicitation task, which will be presented in section

5.2.1.

Given the data elicited by each expert e, e ∈ {1, 2, 3}, we derived a joint prior probability distri-

bution fe,l on the three-dimensional vector (Pe,1,l, Pe,2,l, Pe,3,l) reflecting the expert’s knowledge

concerning the proportion of time spent sitting, in light exercise and in heavy exercise, denoted

Pe,1,l, Pe,2,l and Pe,3,l, respectively, for a miner in working condition l, l ∈ {1, 2, 3, 4, 5, 6} with∑a
a=1 Pe,a,l = 1. Once we had specified an individual joint prior distribution for each expert, we

compared three mathematical approaches [279, 350] for the aggregation of expert opinion, which

we will present in section 5.2.3. Through these aggregation methods, we obtained a unique joint

prior distribution fl on the three-dimensional vector (P1,l, P2,l, P3,l) of the proportion of time a

miner in working condition l spent in the different levels of physical activity a, i.e. P1,l, P2,l and

P3,l corresponding to the proportion of time spent sitting, in light exercise and in heavy exercise,

respectively with
∑a

a=1 Pa,l = 1. Finally, based on fl, we derived a unique prior distribution

on the average breathing rate brl of a miner in working condition l using the time-activity-

approach (see equation 5.15). We assumed the values b̄r1 = 0.54 m3h−1, b̄r2 = 1.5 m3h−1 and

b̄r3 = 3.0 m3h−1 for the average breathing rate in the proportion of time spent sitting, in light

exercise and in heavy exercise, respectively, as recommended by the International Commission

on Radiological Protection (ICRP) [102].

5.2.1 Designing the elicitation task

As described above, the quantity of interest for which we sought to gather information through

the knowledge of expert e in the elicitation task was the time Se,a,l a miner in working condition

l (l ∈ {1, . . . , 6}) spent in a given level of physical activity a (a ∈ {1, 2, 3}), during a workday

of eight hours. In the design of the elicitation exercise, we relied on the idea of Frank Ramsey

and Bruno de Finetti according to which the degree of belief of a person can be observed by

their willingness to bet on their beliefs [280] (see section 4.1.1). In line with this idea, we chose

an indirect elicitation task in which the expert did not explicitly have to state any quantity

describing the probability distribution that most adequately reflected his uncertainty on Se,a,l.

Rather, we asked him to make a series of binary choices to indicate his preference between the

spinning of a fortune wheel and a bet on Se,a,l. In order to ensure a certain level of objectivity

and reproducibility of the elicitation exercise, we developed an elicitation software. This software

was coded in Python version 2.7. The use of a computerised implementation of the elicitation

exercise also allowed us to give instantaneous graphical feedback on the elicited information, as
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we will describe below.

Given a level of physical activity a (i.e., sitting, light exercise or heavy exercise), the expert e

Figure 5.10: Initial screen (in French) of the developed elicitation software to choose a working

condition.

was first asked to choose a working condition l via the screen shown in Figure 5.10. Once he had

made this initial choice, we asked the expert e to make a sequence of binary choices in order to

derive the median value q0.5
e,a,l of the time Se,a,l that a miner in the working condition l spent in

the level of physical activity a. In the context of the indirect specification of this median value,

the expert was instructed that, in order to win a hypothetical lottery of 20 euros, they would

either have to turn a fortune wheel which presented an equal number of blue and beige-coloured

segments or to take a bet on the time a miner in working condition l spent in the level of physical

activity a. If they chose the fortune wheel, they would win the hypothetical lottery if the wheel

landed on blue. If they chose the bet, they would win if the statement they were betting on

was correct. Thereby, the elicitation task provides a way to measure their epistemic uncertainty

(on the variable of interest Se,a,l) via a well-calibrated and easily understandable measure of

aleatory uncertainty (in the form of the fortune wheel).

Figure 5.11 shows an example screen in which experts were asked to either take the bet that

an underground miner after the mechanisation spent less than one hour and a half sitting (in a

working day of eight hours) or to spin the fortune wheel on the left (during a training phase that

we will describe in the end of this section, we had clarified that they would have a 50% chance of

winning when choosing this fortune wheel). There is evidence that a frequency interpretation of

the uncertainty on a variable facilitates probability judgements for an expert (see section 4.3.3).

In order to avoid cognitive biases and heuristics, we therefore supplemented the information

given on the screen with a frequency interpretation of the bet on the right-hand side in the sense

that we asked the experts to imagine 100 uranium miners in a given working condition and to

decide whether more or less than 50 of these 100 miners spent less than one hour and a half

sitting in a working day of eight hours. If they chose to spin the fortune wheel on the left, the

software would propose a new value for Se,a,l, which would be superior to the currently proposed
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Figure 5.11: Example screen of the developed elicitation software to elicit the median value of

the quantity of interest in a given working condition

value. If they chose to take the bet on right, on the other hand, the software would propose a

new value for Se,a,l, which would be inferior to the currently proposed value. In order to avoid

systematic biases due to anchoring effects (see section 4.3.3), the values for Se,a,l were chosen

randomly among the possible values every time a new value for this variable was proposed.

The indirect specification of the median value q0.5
e,a,l of Se,a,l would be completed by one of the

following two conditions:

1. The expert could choose the button “indécis” (i.e. “indifferent”) for a proposed value of

Se,a,l. In this case we set q0.5
e,a,l equal to this value.

2. The expert could choose to spin the fortune wheel for a proposed value Se,a,l = v although

he had indicated a preference for betting when the software proposed the value Se,a,l =

v + 0.25 or vice versa. In this case, we chose to interpolate the two values by setting q0.5
e,a,l

equal to v + 0.125.

After having thus derived the median value for the time Se,a,l a miner in working condition l

spent in a certain level of physical activity a, expert e was first presented a screen showing a

fortune wheel for which only one fourth of the segments were blue as illustrated in Figure 5.12

and then a screen showing a fortune wheel for which three quarters of the segments were blue

as illustrated in Figure 5.13. These screens were conceived with the aim to indirectly specify

the values of the first q0.25
e,a,l and the third quartile q0.75

e,a,l of Se,a,l, respectively. The specification of

q0.25
e,a,l and q0.75

e,a,l was conducted in essentially the same manner as the specification of q0.5
e,a,l. Note

that the elicitation software only allowed coherent choices for the first and the third quartile in

the sense that it neither proposed values for q0.25
e,a,l superior to q0.5

e,a,l nor values for q0.75
e,a,l inferior

to q0.5
e,a,l.

To make sure that the probability distributions that were elaborated in this way were in

accordance with the subjective beliefs of the expert, it seemed very important to give an instan-

taneous visual feedback on the elicited quantiles. After the completion of the specification of
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Figure 5.12: Example screen concerning the

elicitation of the first quartile

Figure 5.13: Example screen concerning the

elicitation of the third quartile

q0.75
e,a,l, the expert was therefore presented a screen showing two alternative probability distribu-

tions, as shown in Figure 5.14. The distribution on the left was fitted using the elicited first

and second quartile whereas the distribution on the right was fitted using the elicited second and

third quartile. Both probability distributions were generalised beta distributions2 taking values

between 0 and 8. The two unknown parameters of these beta distributions were estimated using

a least squares minimisation method. The aim of this visual feedback was threefold. Firstly,

it provided an instantaneous feedback on the elicited quantities. The probability distributions

were presented as the probability distribution of Se,a,l for 100 miners in the working condition

l. Secondly, it gave the expert the opportunity to start the specification of q0.25
e,a,l, q

0.5
e,a,l and q0.75

e,a,l

again in the case that neither of the two distributions adequately reflected his uncertainty on

Se,a,l by selecting the button “recommencer” (i.e. start again). Finally, the expert was asked to

Figure 5.14: Example screen of the visual feedback provided for an expert two alternative

probability distributions on Se,a,l derived through the elicitation task. The distribution on the

left is based on the elicited first and second quartile. The distribution on the right is based on

the elicited second and third quartile.

evaluate the confidence he had in the two distributions by choosing an evaluation between 0 and

2Let X be a random variable following a beta probability distribution with parameter a and b. Then

ymin + (ymax − ymin)X follows a so called “generalised beta distribution” with parameter a and b on the in-

terval [ymin; ymax].
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9 for each of the two distributions were 0 corresponded to no confidence in the plotted distribu-

tion and 9 corresponded to complete confidence in the plotted distribution. Thereby, the expert

could either indicate a preference for one of the distributions or state that they equally well

reflected his uncertainty on Se,a,l. Obviously, we could have proposed a unique generalised beta

distribution fitted on the three quantiles q0.25
e,a,l, q

0.5
e,a,l and q0.75

e,a,l in the visual feedback. However,

we chose to propose two alternative distributions in this context to allow the experts to express

a higher confidence in the first q0.25
e,a,l or the third quartile q0.75

e,a,l (note that the comparison of the

two evaluations cannot give any information on the relative importance of the median q0.5
e,a,l, as

this quantity intervenes in both distributions). In the following, we will denote these evaluations

taking values between 0 and 9 as c1
e,a,l for q0.25

e,a,l and c2
e,a,l for q0.75

e,a,l. We used these evaluations

both in the fitting of the probability distributions describing the uncertainty of each expert on

the proportion of time a miner in working condition l spent in the different levels of physical

activity (see section 5.2.2) and when deriving a unique prior that combined the information of

all three experts (see section 5.2.3).

The training phase

In order to familiarise the expert with the format of the elicitation task, we started the prior

elicitation session with a training phase. In that training phase, we adapted the example pro-

posed by Abbas et al (2008) [1] (see section 4.3.3). We asked experts to evaluate the maximum

temperature the following day. During the training session, the specification of the first, the

second and the third quartile was performed as described previously. Apart from this training

Figure 5.15: Example screen during the training phase of the elicitation task

phase concerning the maximum temperature on the following, we proposed a second training

example concerning the time a person spends watching TV every day to familiarise experts

with the betting on time variables. However, most experts felt sufficiently confident after the

initial training phase to elicit the information on the time spent in the different levels of physical

activities for a miner working in a French uranium mine.
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5.2.2 Deriving a probability distribution to describe the knowledge of each

expert

At the end of the elicitation process, we disposed of the elicited first, second and third quartile,

q0.25
e,a,l, q

0.5
e,a,l and q0.75

e,a,l as well as of two evaluations c1
e,a,l and c2

e,a,l to inform us about the uncertainty

expert e had on the time Se,a,l a miner in a working condition l spent in the physical level of

activity a. For a given working condition l (l ∈ {1, . . . , 6}, see Figure 5.10), our aim was to derive

a unique prior distribution on the average breathing rate brl of a miner in working condition l as

a function of the joint probability distribution fl for the three-dimensional vector (P1,l, P2,l, P3,l)

which corresponds to the proportion of time spent sitting, in light exercise and in heavy exercise

with
∑3

a=1 Pa,l = 1 (see equation 5.17). In order to obtain fl, an intermediate step consists

in the determination of a joint probability distribution that is specific to each expert fe,l for

the three-dimensional vector Pe,l = (P1,e,l, P2,e,l, P3,e,l) with the constraint that
∑3

a=1 Pe,a,l = 1.

At first glance, information on Pe,a,l can easily be derived based on the information on Se,a,l as

Pa,e,l =
Se,a,l

8 . In line with this reasoning, we could simply assume that Pe,a,l ∼ Beta(αe,a,l, γe,a,l)

∀e,∀a,∀l and derive the elicited parameters α̂e,a,l and γ̂e,a,l for each expert using a weighted least

squares minimisation procedure based on the elicited quantiles of Se,a,l. Indeed, we asked experts

to give us information on the time spent in the different levels of physical activity for a working

day of eight hours. However, this simple modelling assumption which is only based on marginal

distributions would not necessarily respect the condition that the sum of the three proportions

Pe,a,l has to be equal to one. Indeed, while we elicited the knowledge of expert e on each of the

variables Se,1,l, Se,2,l and Se,3,l indicating the time spent in the different levels of physical activity

independently, we know that in order to be coherent, these three quantities should sum to eight

(as we defined the working day of a miner to consist of eight hours). There is some controversy on

whether one should force experts to only give consistent answers in the elicitation of probability

distributions [279]. As there is evidence that experts tend to overestimate each probability in a

set of exhaustive and mutually exclusive scenarios, we decided to elicit the knowledge of expert

e on Se,a,l independently for each level of physical activity a without forcing experts to respect

the constraint that
∑3

a=1 Se,a,l = 8. However, when deriving a probability distribution to reflect

the knowledge of each expert e on the proportion of time Pe,a,l spent in the different levels of

physical activity a concerning a miner in working condition l, we have to respect the constraint

that these proportions have to add to one. The simplest multivariate distribution respecting

this condition is the Dirichlet distribution [413, 348]. The Dirichlet distribution can be seen as

a generalisation of the beta distribution to more than two categories. Thus, we assumed that

the three-dimensional vector (Pe,1,l, Pe,2,l, Pe,3,l) follows a Dirichlet distribution with parameters

ae,1,l, ae,2,l and ae,3,l. Each of the associated marginal distributions is consequently a beta

distribution with:

Pe,1,l ∼ Beta(ae,1,l, ae,2,l + ae,3,l)

Pe,2,l ∼ Beta(ae,2,l, ae,1,l + ae,3,l)

Pe,3,l ∼ Beta(ae,3,l, ae,1,l + ae,2,l) (5.18)

We used these three marginal distributions to derive the elicited parameters of the proposed

Dirichlet distribution for fe,l from the elicited quantiles.

In particular, we estimated the parameters ae,1,l, ae,2,l and ae,3,l of the Dirichlet distribution
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for expert e using a weighted least squares minimisation procedure. In other words, for each

expert e and each working condition l, we looked for the set of values (âe,1,l, âe,2,l, âe,3,l) which

minimised the sum of the weighted least square distance given by:

(âe,1,l, âe,2,l, âe,3,l) = argmin(a1,a2,a3)

3∑

a=1

π1
e,a,l

(
F a(a1,a2,a3)

(
q0.25
e,a,l

8

)
− 0.25

)2

+π2
e,a,l

(
F a(a1,a2,a3)

(
q0.5
e,a,l

8

)
− 0.5

)2

+π3
e,a,l

(
F a(a1,a2,a3)

(
q0.75
e,a,l

8

)
− 0.75

)2

(5.19)

where F a(a1,a2,a3)
denotes the cumulative distribution function of the marginal beta distribution

of the ath component of a Dirichlet distribution with parameter values a1, a2 and a3. A grid

of possible values for the three-dimensional vector (a1, a2, a3) was considered numerically for

this minimisation problem. This grid consisted of the values 0.05, 0.1, 0.15, . . . , 19.9, 19.95, 20.0,

which were proposed for each of the three dimensions (these values were chosen after some initial

tests that showed that it was unnecessary to proposed values greater than 20). The weights π1
e,a,l,

π2
e,a,l and π3

e,a,l assigned to the elicited quantiles where based on the evaluations c1
e,a,l and c2

e,a,l

that the expert had provided during the elicitation task described in 5.2.1:

π1
e,a,l =

2
3 · c1

e,a,l∑3
a=1(c1

e,a,l + c2
e,a,l)

π2
e,a,l =

1
3 · (c1

e,a,l + c2
e,a,l)∑3

a=1(c1
e,a,l + c2

e,a,l)

π3
e,a,l =

2
3 · c2

e,a,l∑3
a=1(c1

e,a,l + c2
e,a,l)

(5.20)

For a given working condition l, the elicited data consist of the three parameters of the Dirichlet

distribution fe,l obtained for each expert, i.e. (âe,1,l, âe,2,l, âe,3,l) for e ∈ {1, 2, 3}.

5.2.3 Combining the information of several experts

For a given working condition l, our aim was to obtain a unique joint distribution fl for

Pl = (P1,l, P2,l, P3,l) corresponding to the proportion of time spent sitting, in light exercise

and in heavy exercise. In order to obtain this unique prior distribution, we need a method to

combine the information provided by the three experts. For this purpose, we will use three

different methods: Averaging, linear pooling and a Supra-Bayesian approach. Averaging and

linear pooling are the most popular approaches for the combination of expert opinion [414],

but they are known to understate and to overstate the variability of opinions between experts,

respectively [344]. In the context of the Supra-Bayesian approach for the combination of expert

opinion, the information elicited by the different experts is treated as data. In this approach, the

prior distributions for breathing rate will depend on the posterior distribution on the unknown

parameters in a probability model describing these elicited data.

For these three methods for the combination of expert opinion, we will use weights based on the

confidence the experts indicated concerning the information they provided. The relative weights
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π1,l, π2,l, π3,l assigned to each expert e, e ∈ {1, 2, 3} with π1,l + π2,l + π3,l = 1 ∀l ∈ {1, 2, ...6}
were again based on the evaluations c1

e,a,l and c2
e,a,l that the experts had provided during the

elicitation exercise:

π1,l =

∑3
a=1(c1

1,a,l + c2
1,a,l)∑3

e=1

∑3
a=1(c1

e,a,l + c2
e,a,l)

for expert 1

π2,l =

∑3
a=1(c1

2,a,l + c2
2,a,l)∑3

e=1

∑3
a=1(c1

e,a,l + c2
e,a,l)

for expert 2

π3,l =

∑3
a=1(c1

3,a,l + c2
3,a,l)∑3

e=1

∑3
a=1(c1

e,a,l + c2
e,a,l)

for expert 3. (5.21)

Note that the relative weights πe,l which reflect the confidence of each expert e for working

condition l are independent of the relative weights π1
e,a,l, π

2
e,a,l, π

3
e,a,l derived for each expert and

each elicited quantile and used in 5.2.2 as they use the information contained in the evaluations

c1
e,a,l and c2

e,a,l differently. In the following, we will present in detail the three methods we

considered and compared for the combination of expert opinion.

Averaging

Consider a working condition l with l ∈ {1, 2, 3, 4, 5, 6}. The idea behind averaging is to assume a

unique joint probability distribution faverl for the three-dimensional vector Pl = (P1,l, P2,l, P3,l),

as a Dirichlet distribution for which the parameters â1,l, â2,l, â3,l are simply obtained by averaging

the elicited data for each of the components. In cases, where relative weights reflecting the

confidence of the experts are available, it is possible to take a weighted average so that the

elicited data of an expert with high confidence are more influential than the elicited data of an

expert with low confidence. In our situation, we assumed the following unique prior probability

distribution faver
l for Pl = (P1,l, P2,l, P3,l):

â1,l = π1,lâ1,1,l + π2,lâ2,1,l + π3,lâ3,1,l

â2,l = π1,lâ1,2,l + π2,lâ2,2,l + π3,lâ3,2,l

â2,l = π1,lâ1,3,l + π2,lâ2,3,l + π3,lâ3,3,l (5.22)

As pointed out by Albert et al. (2012), averaging emphasises the consensus on the elicited

quantities [344].

Linear pooling

Consider a working condition l with l ∈ {1, 2, 3, 4, 5, 6}. Contrary to averaging, linear pooling

emphasises the diversity [344] in the opinions of the different experts by assuming that the unique

joint prior distribution fpool
l for the three-dimensional vector Pl = (P1,l, P2,l, P3,l) is a mixture

of three Dirichlet distributions fe,l for which the parameters are the elicited data provided by

each expert e, e ∈ {1, 2, 3} with

fpool
l = π1,lf1,l + π2,lf2,l + π3,lf3,l (5.23)
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where f1,l, f2,l and f3,l are Dirichlet distributions based on the elicited data in the following

way:

f1,l = Dirichlet(â1,1,l, â1,2,l, â1,3,l)

f2,l = Dirichlet(â2,1,l, â2,2,l, â2,3,l)

f3,l = Dirichlet(â3,1,l, â3,2,l, â3,3,l). (5.24)

Thereby, linear pooling accumulate the plausibility of all values across experts [344].

A Supra-Bayesian approach for the combination of expert opinion

Consider a working condition l with l ∈ {1, 2, 3, 4, 5, 6}. Similarly to averaging, we consider

in this Supra-Bayesian approach that the joint probability distribution fSupral for the three-

dimensional vector Pl = (P1,l, P2,l, P3,l) is given by

(P1,l, P2,l, P3,l) ∼ Dirichlet(a1,l, a2,l, a3,l). (5.25)

The global idea of this Supra-Bayesian approach is to estimate the unknown parameters a1,l, a2,l

and a3,l in a Bayesian framework using the elicited data (âe,1,l, âe,2,l, âe,3,l) for e ∈ {1, 2, 3} (see

section 5.2.2). To this end, we need to assume a parametric model that links the elicited data

(âe,1,l, âe,2,l, âe,3,l) to the unknown parameters (a1,l, a2,l, a3,l). In order to deal with more inter-

pretable and tractable data, we transformed the nine elicited quantities and rather considered

the following elicited data in this approach:

Σ̂e,l = âe,1,l + âe,2,l + âe,3,l

α̂e,1,l =
âe,1,l

Σ̂e,l

α̂e,2,l =
âe,2,l

Σ̂e,l

(5.26)

with α̂e,1,l and α̂e,2,l taking values in [0, 1] and Σ̂e,l taking strictly positive real values. Note

that α̂e,a,l is simply the elicited expected proportion of time spent in activity a based on the

information given by expert e. Note also that α̂e,1,l + α̂e,2,l + α̂e,3,l = 1 where α̂e,3,l =
âe,3,l

Σ̂e,l
.

We assume that the elicited data (α̂e,1,l, α̂e,2,l, α̂e,3,l) follow the following marginal probability

distributions:

(H1)





α̂e,1,l ∼ Beta (πe,la1,l, πe,l(Σl − a1,l))

α̂e,2,l ∼ Beta (πe,la2,l, πe,l(Σl − a2,l))

Σ̂e,l ∼ Gamma
(
πe,l,

πe,l
Σl

)

with Σl = a1,l + a2,l + a3,l. The proposed parametrisation for the above beta and gamma

distributions are convenient in several respects. First of all, they imply the following properties

concerning the expectations of α̂e,1,l, α̂e,2,l and Σ̂e,l:

E (α̂e,1,l) =
a1,l

Σl
= E(P1,l)

E (α̂e,2,l) =
a2,l

Σl
= E(P2,l)

E
(

Σ̂e,l

)
= Σl. (5.27)

88



Moreover, the properties concerning the variances of these quantities, given by

V ar (α̂e,1,l) =

a1,l
Σl

(
1− a1,l

Σl

)

Σlπe,l + 1

V ar (α̂e,2,l) =

a2,l
Σl

(
1− a2,l

Σl

)

Σlπe,l + 1

V ar
(

Σ̂e,l

)
=

Σ2
l

πe,l
. (5.28)

are convenient in two respects. Firstly, they make sure that when describing the uncertainty for

λ
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Figure 5.16: DAG when accounting for uncertainty in the input parameters in the dose model,

for shared Berkson error and for expert knowledge.

these three quantities, we translate the fact that we can expect more uncertainty in the observed

elicited quantities for an expert who indicated low confidence in the information he provided

than for an expert who indicated high confidence. Indeed, when πe,l increases, the variances for

α̂e,1,l, α̂e,2,l and Σ̂e,l decrease. Thereby, the information provided by confident experts will have

more influence on the estimation of a1,l and a2,l and Σl than the information given by uncertain
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experts. Moreover, we can see that the numerator in the expression of the variances of α̂e,1,l

and α̂e,2,l resemble the formula for a random variable V following a Bernoulli distribution with

parameter p, i.e., V ar(V ) = p(1 − p)3. This allows to reflect the fact that we can assume a

greater uncertainty in the elicited quantities if the true expected proportion of time a miner

spent sitting or in light exercise (given by E(P1,l =
a1,l
Σl

) and E(P2,l =
a2,l
Σl

)) is close to 0.5 rather

than close to 0 or 1.

The unknown parameters in the model (H1) are a1,l, a2,l and Σl. By setting a3,l = Σl−a1,l−a2,l,

we obtain all three parameters of the global Dirichlet distribution fSupra
l .

In a first attempt to combine the information of the three experts via a Supra-Bayesian approach,

we assumed the following vague prior distributions for the unknown parameters a1,l, a2,l and Σl:

Σl ∼ Exp(0.01) (5.29)

a1,l|Σl ∼ Unif(0,Σl) (5.30)

a2,l|Σl, a1,l ∼ Unif(0,Σl − a1,l). (5.31)

For Σl, we tested the influence of either assuming Σl ∼ Exp(0.01) or a prior distribution that

was even more vague with Σl ∼ Exp(0.001).

We conducted Bayesian inference for model (H1) using the prior probability distributions defined

above via a MCMC algorithm. Consequently, we obtained G samples of the posterior values

a
(g)
1,l , a

(g)
2,l and Σ

(g)
l (g ∈ {1, 2, . . . , G}) for the parameters a1,l, a2,l and Σl. Those posterior

samples were used to generate samples if the three-dimensional vector of the proportion a miner

in working condition l spent sitting, in light exercise and in heavy exercise

(P
(g)
1,l , P

(g)
2,l , P

(g)
2,l ) ∼ Dirichlet(a(g)

1,l , a
(g)
2,l , (Σ

(g)
l − a

(g)
1,l − a

(g)
2,l )). (5.32)

The samples of the proportion of time spent sitting, in heavy exercise and in light exercise, in

turn, were used to derive samples of the average breathing rate via

brl,(g) = P
(g)
1,l · b̄r1 + P

(g)
2,l · b̄r2 + P

(g)
3,l · b̄r3. (5.33)

These posterior samples of average breathing rate in working condition l are considered to be

samples of the elicited prior distribution on this uncertain input parameter in the dose model.

In the context of the Supra-Bayesian approach for the aggregation of expert knowledge, it is

interesting to note that we can consider the probability model (H1) presented in this section

as an additional sub-model of the hierarchical structure presented in section 5.1.4. In this

framework, the dose model is defined as

Di(t) =
brl

cbr
· (fpqd · cunatqd + (1− fpqd) · catqd) ·Xq

i (t) (5.34)

where bri(t) = brl for all miners i and all exposure years t corresponding to the same working

condition l ∈ {1, 2, 3, 4, 5, 6}. Moreover fpi(t) = fpqd , cunati(t) = cunatqd and cati(t) = catqd

for all miners i and all exposure years t corresponding to the same dose period qd (i.e. qd = 1 for

years t ≤ 1977 and qd = 2 for years t > 1977). The relation between all observed and unobserved

quantities when accounting for shared Berkson error, dose uncertainty and the information

provided by the three experts can be described by the DAG presented in Figure 5.16.

3The function p(1− p) with is concave for values of p ∈ [0, 1] with maximum value at 0.5
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5.3 Bayesian inference and model checking

5.3.1 Implementing a MCMC algorithm to conduct Bayesian inference for

the proposed hierarchical models

In order to conduct Bayesian inference for the full hierarchical models proposed in this work to

account for exposure and dose uncertainty through the combination of the disease, the measure-

ment, the exposure and the dose model described in section 5.1, we were faced with a number

of challenges.

Firstly, as described in section 4.4, when accounting for measurement error, we treat true and

unknown exposure Xi(t) of miner i at time t as a latent variable. In the context of a MCMC

algorithm, this high-dimensional unknown quantity has to be updated at each iteration. With

5086 miners and on average 11.8 exposure years per miner (see section 2.2.2), there were about

50000 true exposure values to be updated at each iteration of a MCMC algorithm when ac-

counting for unshared measurement error in the full cohort. The updating of high-dimensional

unknown quantities can pose serious convergence issues and lead to very long time in computa-

tion in MCMC sampling [298].

On the other hand, the implementation of statistical inference for the hierarchical model pre-

sented in section 5.1 requires a very flexible algorithm. In particular, the fact that lung cancer

mortality is linked to cumulated exposure or cumulated dose introduces a certain complexity in

the problem. As a time-varying variable, cumulated exposure of miner i at time t, Xcum
i (t), is

defined as the sum of the true exposure values miner i received until time t. This implies that

when accounting for exposure uncertainty, we not only need to update latent exposure Xi(t), but

we also need to compute the corresponding values for Xcum
i (t) at each iteration. This operation

can be very time-consuming. Indeed, while the calculation of the cumulated sum of the vector

of exposure values for each individual i may appear simple, it is complicated by the fact that

each miner may have received an arbitrary number of exposure values during his working career.

Therefore, there is no straightforward operation that could be applied to the whole vector of

exposure values to achieve the cumulation of Xi(t) in a time-efficient manner. The use of a for-

loop to achieve this cumulation for each miner independently cannot be considered a satisfactory

solution as it would be too time-consuming in light of the large number of iterations which are

necessary to explore a very high-dimensional posterior distribution. Finally, the consideration

of time since exposure as effect-modifying variable implies a further complexity, because at each

iteration, we have to calculate three different sums of the exposure values that miner i received

in different exposure periods until time t to determine Xcum
i,5−14(t), Xcum

i,15−24(t) and Xi,25+(t).

In principle, an efficient alternative to MCMC sampling in the situation of high-dimensional la-

tent variables would be to conduct approximate Bayesian inference, for instance via Integrated

Nested Laplace Approximation (INLA) [415, 191, 396, 416]. INLA is an approximate method of

Bayesian inference for latent Gaussian models, which was first proposed by Rue et al. (2009) [415]

in the context of generalised linear models. Martino et al (2011) [396] generalised this method

to proportional hazards models and Muff et al. (2015) illustrated the usefulness of INLA when

the aim is to account for measurement error in explanatory variables [191]. However, as pointed

out by Roberts (2009) in his discussion on the paper of Rue et al. (2009) [415], the calibration

of Laplace approximations appears to require a high level of expertise. Although INLA can be
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used as a “black box” [396] in its R implementation for instance, this implementation potentially

lacks the flexibility to account for multiple high-dimensional latent variables. Moreover, it is

questionable whether we could have adequately described all uncertain input parameters in the

dose model as Gaussian variables. For the unattached fraction fpqdi of miner i in dose period

qd ∈ {1, 2} and the activity median diameter of the attached radon progeny Aatqdi , which are

supposed to follow a log-normal distribution (see section 5.1.5) this could easily be achieved by

a log-transformation. The activity median diameter of the unattached radon progeny Auatqdi ,

on the other hand, is supposed to follow a uniform distribution. Similarly, when accounting for

expert knowledge to derive an informative prior probability distribution assigned to breathing

rate brl, brl is defined as a function of the three components of a Dirichlet distribution. Further-

more, the treatment of the statistical dependence between the true and latent exposure Xq
i (t)

in the case of shared Berkson error might have implied substantial extensions of INLA (see Muff

et al. (2015) [191] for a discussion of the possibility of these extensions as well as concerning the

possibility of the treatment of non-Gaussian latent variables) and it was not in the scope of this

work to develop these extensions. Finally, our aim was to present a general algorithm that could

flexibly be extended to various situations and potentially be of use to other researchers, who

seek to account for multiple sources of uncertainty in epidemiological studies. Based on these

arguments, we chose to conduct Bayesian inference via a Metropolis-within-Gibbs algorithm.

The Metropolis-Hastings algorithm remains the most universal and flexible way of conducting

Bayesian inference in spite of its problems in high dimensions (see section 4.2.3).

In light of the challenges mentioned in the beginning of this section, it proved infeasible to

conduct Bayesian inference for the different hierarchical models proposed in this work in an

available software package, for instance via WinBUGS or Jags. We therefore chose to imple-

ment an MCMC algorithm to conduct Bayesian inference on the different proposed hierarchical

models in Python 2.7. To exploit the full flexibility of Python, we chose an object-oriented

implementation. The class diagram describing the algorithm is given in Figure 5.17. In an

object-oriented implementation, we can flexibly create independent modules for the different

tasks of the algorithm. Moreover, it allows to reuse part of the code for other applications. For

instance, if we chose to modify the calculation of detriment-weighted absorbed lung dose Di(t)

by using a more complex dose model than the one we presented in section 5.1.4, we would merely

have to change the method calculate dose of the class LatentVariable (see Figure 5.17), which is

responsible for dose calculation. Moreover, when implementing an iterative algorithm there are

many parameters which will be the same for each iteration. It is convenient to use an object-

oriented architecture in this case, because these parameters can be treated as attributes of the

different classes. For instance, the MCMC class in the class diagram in Figure 5.17 has the at-

tributes measurement error, shared measurement error, dose uncertainty, which are boolean

variables indicating whether to account for unshared measurement error, shared measurement

error and dose uncertainty, respectively. These attributes will stay the same for each iteration

of the MCMC algorithm. These attributes can directly be accounted for in the initialisation of

the MCMC class to define methods which are specific to the accounting for dose uncertainty

and measurement error. Moreover, an object-oriented implementation can avoid both the use of

numerous if and else statements in functions to handle the different conditions and the specifica-

tion of a large number of parameters in the definition of functions. The attribute path (referring
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MCMC 
• data: pandas.DataFrame 
• measurement_error: bool  
• shared_measurement_error: bool 
• dose_uncertainty: bool 
• path: String 
• chains: dict of Chains 
• exposures: LatentVariable 
• cumulated_exposure: CumulatedLatentVariable 

update_chains(): void 
update_latentVariable(): void  
adapt_proposal(int, int): void 
run_burnin(int): void 
run_algorithm(int): void 
run_adaptive_algorithm(int, int, int): void 
run_adaptive_phase(int, int): void 
get_current_values(int): dict 
set_cumulated_exposure(string,      dictionary): void 
reset_values(int): void 
set_proposals_LatentVariable(MCMC) 
write_statistics(): void 
write_chains(): void

Chain 
• parameter: str 
• target: float 
• precision: int 
• proposal_sd: float 
• samples: numpy.array 
• acceptance: numpy.array 
• i: int 

propose_value(float): float 
prior_ratio(float, float): float 
likelihood_ratio(dict, dict, CumulatedLatentVariable): float 
update(dict, CumulatedLatentVariable, LatentVariable): void 
adapt_proposal(int, int): void 
get_current_values(int): float 
get_statistics(): dict 
write_samples(str): void 
reset_values(int): void

LatentVariable 
• uncertainty_characteristics: dict 
• target: float 
• groups: numpy.array 
• group_view: dict 
• group_selection: dict 
• group_period_selection: dict 
• group_periods: dict 
• observed_exposure: dict 
• period_selection: np.array 
• values: numpy array   
• exposure_values: numpy.array 
• shared_errors: dict of 

SharedErrors 
• AMAD: numpy.array 
• AMTD: numpy.array 
• breathing_rate: numpy.array 
• fp: numpy.array 
• proposal_sd: dict 
• period_acceptance: dict 
• period_count: dict 
• samples: numpy.array 
• samples_indices: dict 
• statistics: dict 

propose_value(int, int, int) 
update(dict, 
CumulatedLatentVariable): void 
update_shared_errors(dict, 
CumulatedLatentVariable): void 
updateValuesGroup(int, dict, 
CumulatedLatentVariable): void 
adapt_proposal(int, int): void 
likelihood_ratio(pandas.DataFram
e, dict, CumulatedLatentVariable, 
CumulatedLatentVariable): float 
calculate_dose(): void 
set_dose_information_group(num
py.array): dict 
calculate_dose_group(dict): 
numpy.array 
keep_values(): void 
save_chains(str): void

CaseData 
• deceased_miners: numpy.array 
• miner_indices: dict 
• truncation: dict 
• Itrunc: dict 
• failure_time: dict 
• exposure: dict 
• cumulated_expsoure: dict  

add_lines_miner(int, dict, 
numpy.array): void 
delete_lines(dict): void 
lines_to_DataFrame(dict, 
numpy.array, bool): 
pandas.DataFrame 
set_cumulated_exposure(LatentV
ariable, 
CumulatedLatentVariable): void

CumulatedLatentVariable 
• uncertainty_characteristics: dict 
• cumulation_matrix: scipy.sparse 
• group_cumulation_matrix: dict 
• value_filter: dict 
• group_value_filter: dict 
• group_selection: dict 
• values: dict 
• case_values: dict 
• sum: dict  

get_mean_cumulated_exposure(int): dict 
update(LatentVariable): void 
set_group_cumulated_exposure(LatentVariable, 
int): GroupCumulatedVariable 
create_filter(str, pandas.DataFrame): dict

IntraSharedError 
• period: int 
• name_error_variance: str 
• period_data: pandas.DataFrame 
• groups: numpy.array 
• dose_uncertainty: bool 
• individuals: dict 
• group_error_matrices: dict  
• observed_exposure: dict 
• n: dict 
• values: dict 
• long_values: dict 
• proposal_sd: dict 
• period_acceptance: dict 
• period_count: dict  

propose_values(int): np.array 
propose_initial_values(pandas.DataFrame): np.array 
adapt_proposal(int, int): void 
update_values(dict, LatentVariable, CumulatedLatentVariable): void 
update_values_group(int, dict, LatentVariable, CumulatedLatentVariable)

FixedChain 
• parameter: str 
• value: float 
• i: int 
• proposal_sd: float 

update(dict, dict, 
LatentVariable): void 
adapt_proposal(int, int): 
void 
get_current_values(): 
float 
get_statistics(): dict 
write_samples(str): void 
reset_values(int): void

Figure 5.17: The class diagram of the implemented Markov Chain Monte Carlo algorithm.

to the path at which the output files should be stored) of the MCMC object, for instance, can

easily be accessed by self.path in the methods of the MCMC object and this parameter therefore

does not have to be specified in any calls of the MCMC method. Thereby, object-oriented code

is both more readable and easier to modify.
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With the exception of the parameters in the exposure model, the full conditional distributions of

the unknown quantities that had to be updated when conducting Bayesian inference for the pro-

posed hierarchical models were intractable. Therefore, we employed a Metropolis-within-Gibbs

algorithm to update the unknown quantities, where only the parameters of the exposure model

were updated via Gibbs sampling steps. We chose a component-wise scheme, updating each

dimension independently. The only exceptions were the update of the high-dimensional vector

of true and latent exposure values Xi(t) quantities when accounting for measurement error or

dose uncertainty and the three parameter a1,l and a2,l and Σl of model H1 proposed for the

elicitation of prior knowledge on average breathing rate via a Supra-Bayesian approach, which

we updated simultaneously (see section 5.2.3). For the update of the high-dimensional vector of

exposure values, we used block-wise sampling, updating all exposure values for a specific calen-

dar period and a homogenous group of miners in a single step. Updating all true and unknown

exposure values at once would have led to a small acceptance rate of the Metropolis-Hastings

algorithm while a component-wise version may have taken too much time in computation.

Homogeneous groups of miners were determined via a hierarchical ascendent clustering algo-

rithm using variables such as principal type of mine, principal location, the calendar periods

during which the miner was exposed and principal type of work of miners. In order to use

categorical variables in this clustering algorithm, we first performed a multiple correspondence

analysis to subsequently apply the clustering algorithm on the resulting factor values. The

clustering algorithm yielded 50 latent exposure vectors of varying sizes. In order to avoid the

simultaneous updating of a large number of exposure values at once, we decided to split the

obtained clusters until there were at most 150 unknown exposure values per cluster and per

period. While it could have been possible to use this constraint directly in the clustering al-

gorithm [417, 418], it was not in the scope of this work to implement a constrained clustering

algorithm for this purpose. We used the same groups for the updating of the high-dimensional

quantities intervening in the dose model and for the updating of the measurement error com-

ponents U1
i and U2

i when accounting for shared Berkson error. As mentioned in the beginning

of this section, the cumulation of latent exposure Xi(t) to obtain cumulated exposure Xcum
i (t)

at each MCMC iteration presented a major challenge in the development of the algorithm. In

principle, this cumulation could be achieved via for-loops where for each miner, we determine

the cumulated sum, for instance via the function cumsum in the numpy package in Python.

Unfortunately, the use of for-loops in languages like R or Python is very time consuming, in

contrast to Java or C++ for instance. However, both R and Python are very efficient when it

comes to vector operations. We exploited this fact by basing the cumulation of latent exposure

or dose values on matrix multiplication. For instance, if we imagine three miners where the first

miner received the five exposure values X11, X12, X13, X14 and X15 during his working career,

miner two received two exposure values X21 and X22 and miner 3 received the three exposure

values X31, X32 and X33, we can achieve the cumulation of the exposure values by the following
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matrix multiplication:




X11

X11 +X12

X11 +X12 +X13

X11 +X12 +X13 +X14

X11 +X12 +X13 +X14 +X15

X21

X21 +X22

X31

X31 +X32

X31 +X32 +X33




=




1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1 1







X11

X12

X13

X14

X15

X21

X22

X31

X32

X33




(5.35)

As mentioned in section 5.1.1, the size of the data frames to reflect the full exposure history of

the miners in the French cohort of uranium miners varied between 40162 rows for the post-55

cohort and 119073 rows when accounting for the effect-modification by time since exposure in

the full cohort. To be able to implement the matrix multiplication based on square matrices

with dimension of up to 119073 × 119073, we used the sparse module in the scipy package in

Python. This module uses the fact that the cumulation matrices we created are sparse, i.e.

most of the elements of the matrices are zero, to reduce the amount of memory required to store

them. Moreover, the use of this module accelerated all matrix operations by accounting for the

fact that the matrices are sparse. When compared to an implementation based on for loops, the

implementation using sparse matrices was about 15 times faster in Python 2.7, thereby implying

a considerable acceleration in the MCMC algorithm.

We also relied on the use of sparse matrices when updating shared components of exposure

and dose uncertainty. When considering the updating of shared Berkson error components, our

aim is to update the true exposure values under the measurement model Xi(t) = Zi(t) · Ui. In

other words, to account for shared exposure uncertainty, we have to update all true and unknown

exposure values while respecting the constraint that the error component of each miner is shared

for all years of exposure in a given exposure period. In our example involving three miners, we

can imagine that all exposure values were received in the same period. In this case, we have

to obtain an error vector Ui = (U1, U1, U1, U1, U1, U2, U2, U3, U3, U3) which can be multiplied by

the observed exposure values Zi(t) in order to obtain true exposure Xi(t) while respecting the

constraint that the error component for a miner is shared for all years of exposure. In theory, this

could be implemented by selecting the corresponding values in a for loop in the following way:

for each miner in the group of miners, we multiply all the observed exposure values received in a

certain period of exposure with the same error component Ui. In our simple example with three

miners and ten exposure values, it would be acceptable to do this operation a large number of

times (e.g. for 100.000 iterations for instance). However, we have to update several thousand

error components for the miners that were exposed in the first and in the second exposure

period and to repeat the same for-loop during 100.000 iterations would be prohibitively time

consuming in this situation. A more efficient way to realise this multiplication in Python is

again to use sparse matrices, similar to the cumulation of exposure values. In the context of

this sparse matrix implementation, we constructed a matrix for each group and each period that
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could achieve the following matrix implementation:



U1

U1

U1

U1

U1

U2

U2

U3

U3

U3




=




1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1






U1

U2

U3


 (5.36)

When comparing the implementation based on sparse matrices with an implementation that

achieves the same operation via a for loop, the sparse matrix implementation was about 20

times faster than the for-loop implementation. As this operation has to be done at every it-

eration of the algorithm, the implementation based on sparse matrices therefore leads to a

substantial gain in computation time of the MCMC algorithm.

To further accelerate the algorithm, we implemented accelerated evaluations of the measure-

ment and the exposure model based on the fact that basic operation like additions are less time-

consuming than divisions or the application of the exponential and the logarithmic function.

The demonstration of the validity of these accelerated evaluations can be found in Appendix A.

When the updating unknown quantities via a Metropolis-Hastings step, we either chose normal

or log-normal random walks as proposal distributions for all unknown parameters θl,∀l ∈ 1, . . . , p

with p the number of unknown parameters to update, yielding either θcand
l |θ(t)

l ∼ N (θ
(t)
l , σ2

θl
)

or θcand
l |θ(t)

l ∼ LN (log(θ
(t)
l ), σ2

θl
) for each iteration t, where θ

(t)
l is the current value of the pa-

rameter θl at iteration t and θcand
l is the corresponding candidate value. The only exception

was the proposal distribution for the activity size distribution of the unattached radon progeny

Auati(t) defined in dose model A1 (section 5.1.4). For this high-dimensional input parameter

in the dose model we implemented an independence sampler, in which candidate values were

sampled in a uniform distribution between 0.5 nm and 1.5 nm, irrespective of the current values

of the Markov chain. Based on the literature, we supposed that this input parameter could

only take values between 0.5 nm and 1.5 nm (see section 5.1.5). Moreover, preliminary MCMC

runs showed that the values of this input parameter were only poorly informed by the disease

model. In light of these facts, it seemed that an independence sampler was an efficient way

to explore the space of possible values. Since the other high-dimensional unknown quantities

intervening in the dose model could only take positive values, we opted for a log-normal random

walk algorithm to update these quantities [419]. The variances of the proposal distributions

σ2
θl

were calibrated for each parameter θl so as to obtain acceptance rates close to 0.2 for the

high-dimensional unknown quantities and close to 0.4 for the unknown parameters. As it was

impossible to fine-tune the proposal variances per hand, we chose an adaptive version of the

Metropolis-Hastings steps that preceded the burn-in phase.

The development of the algorithm was largely conducted using a test-driven development ap-

proach [420, 421], in which each function was tested directly after its development by several unit

tests, as this approach is advocated as being more efficient and less error-prone than classical
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programming approaches [422, 423, 424]. Unit tests were complemented with test on simu-

lated data to check the global performance of the algorithm. The results of a simulation study

concerning the performance of the implemented Bayesian hierarchical approach to account for

unshared measurement error can be found in Appendix B. We used Mercurial version 4.3.1 as

source control management tool. Trace plots and the Gelman Rubin statistic [306] were used to

check the convergence of the Markov chains.

5.3.2 Model comparison and model checking

Model comparison

Competing disease models were compared via the Deviance Information Criterion (DIC) [425,

426]. DIC values are a measure for the fitting abilities of a model with smaller DIC values

indicating a better fit to the data. The DIC can be seen as a penalised likelihood criterion:

DIC = Dm(y) + pD. (5.37)

Let D(y,θ) = −2 log([Y |θ]) be the deviance that measures the fitting abilities of the probability

model with parameters θ to the outcome Y . Dm(y) is the posterior expectation of this deviance,

i.e. Dm(y) = E(D(y,θ) which can be estimated by 1
K

∑K
k=1D(y,θ(k)) with K the sample

size of the posterior on θ. pD can be interpreted as the “effective number of parameters” or

the model complexity, thereby penalising more complex models. pD = Dm(y) − D(y,E(θ|y))

where D(y,E(θ|y)) is the deviance of the posterior expectation of θ that can be estimated by

D(y, 1
K

∑K
k=1 θk). The smaller this criterion, the better are the fitting abilities of the associated

model.

Testing the proportional hazard assumption

The disease model

hi(t;θ) = h0(t) · ϕ(Xcum
i (t), Vi1(t), . . . , Vip(t),θ) (5.38)

we introduced in section 5.1.1 relies critically on the assumption that for two individuals i

and i′ the ratio between their instantaneous hazard rates only depends on time via the values

of their time-varying covariates, i.e. hi(t;θ)
hi′ (t;θ) =

ϕ(Xcum
i (t),Vi1(t),...,Vip(t),θ)

ϕ(Xcum
i′ (t),Vi′1(t),...,Vi′p(t),θ) . For the linear EHR

model without effect modification (D1) this reduces to hi(t;θ)
hi′ (t;θ) =

1+βXcum
i (t)

1+βXcum
i′ (t) . This assumption is

commonly referred to as the proportional hazards assumption. We tested this assumption via

Schoenfeld residuals and the Harrel test for the linear Cox model (D2) in R.

5.4 Studying the effects of measurement model misspecification

on simulated data

We designed two simulation studies based on the exposure data of the French cohort of uranium

miners (see section 2.2.2) to assess the effects of measurement model misspecification when

conducting statistical inference for proportional hazards models. More precisely, our aim was

to assess the impact of different types of measurement error on risk estimation and on the

exposure-response relationship when measurement error is not accounted for. In the context of
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these simulation studies, we considered different measurement models to generate error-prone

exposure data, which we will denote asMSk for the kth measurement model in simulation study

2 and different disease models to generate failure times, which we will denote as DSk for the

kth disease model. Statistical inference on the generated exposure data was always conducted

without accounting for measurement error. In other words, the only measurement model we

assumed when conducting statistical inference in both simulation studies was the model

ME0 : Xij(t) = Zij(t) ∀i ∀t (5.39)

where Xij(t) and Zij(t) denote the true and observed exposure value received by miner i at time

t, assuming that worker i belonged to group j. We considered these groups in the simulation

study in order to be able to generate measurement error shared between workers belonging to

a same group (see section 3.1.1). As the French cohort of uranium miners did not present a

natural partition into groups of workers, we used the homogeneous groups of workers that had

been created via a hierarchical ascendant clustering algorithm based on covariates concerning

the following job characteristics: principal type of mine, principal location and principal type

of job (see section 5.3.1). Similar to the measurement models assumed in the analysis of the

observed failure times in the French cohort of uranium miners (see section 5.1.2), we assumed

unbiased, multiplicative and log-normal measurement error with mean µ = −σ2

2 and variance

σ2 of the normal distribution describing the log-transformed errors. In both simulation studies,

we generated failure times according to the two proportional hazards models DS1 (linear EHR

model without effect modification) and DS2 (the Cox model) described in section 5.1.1. DS1

and DS2 are exactly the same models as the linear EHR model D1 and the linear Cox model

D2 that we presented in section 5.1.1. Additionally, we compared the effects of measurement

error on statistical inference for moderate and large effect sizes of radon exposure on lung cancer

mortality. We chose the value β = 2 as moderate effect size and β = 5 as a large effect.

5.4.1 Simulation study 1: The impact of shared and unshared measurement

error on risk estimation

In simulation study 1, the measurement models that we used to generate the error-prone expo-

sure data described an error structure that was assumed to be the same for all exposure periods.

More complex measurement models that assume that the error structure varies over time will

be treated in simulation study 2, described in section 5.4.2. Several authors have argued that

error components shared between individuals might have fundamentally different consequences

on statistical inference than unshared measurement errors [135, 118, 119, 138, 153, 427]. To our

knowledge, there are no simulation studies confirming this assertion for proportional hazards

models, which possibly presents the most widely applied class of models in medical research.

The aim of simulation study 1 was therefore to highlight and compare the effects of shared and

unshared exposure measurement error on risk estimation in the context of proportional hazards

models. To that purpose, we generated error-prone exposure data by varying the following

characteristics:

1. Type of sharing

We compared the effects of unshared error components, error components shared between
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workers, error components shared for several exposure years of the same worker (i.e. within

workers) and error components that were both shared between workers and within workers

(see section 3.1.1).

2. Type of error

We assumed either Berkson or classical measurement error.

The combination of these characteristics resulted in 8 different measurement models for the

generation of error-prone exposure data. As we compared the effects of measurement error on

two different disease models, these choices resulted in 16 distinct simulation models to study the

impact of measurement error on risk estimation when measurement error is not accounted for in

statistical inference (i.e. under measurement model ME0). Under each of these 16 simulation

models, four scenarios corresponding to two different values of the following parameters were

considered:

1. Effect size

We compared large (β = 5) and moderate (β = 2) effect sizes in the generation of failure

times.

2. Measurement error variance

We assumed either a large (σ2
U = 0.9) or a moderate (σ2

U = 0.1) value for the variance of

the log-transformed measurement errors.

For each case, we generated 100 data sets according to the approach described in section 5.4.3.

We conducted statistical inference via the MCMC algorithm presented in 5.3.1. As we did not

account for measurement error in the estimation of risk parameters, we only conducted inference

on the disease model which had been used to generate failure times. In other words, we fitted

the EHR model DE1 for data generated according to DS1 and the Cox model DE2 for data sets

generated according model DS2. Note that we chose large variances (1000) for the normal prior

assigned to the risk coefficient β.

5.4.2 Simulation study 2: The effects of measurement error characteristics

on the shape of the exposure-response curve

Changes in the methods of exposure assessment in occupational cohort studies can create com-

plex patterns of exposure uncertainty, where the type and magnitude of measurement error can

vary over time. It has been suggested that the fact that exposure uncertainty and the magnitude

of exposure are both highest for the earliest exposure periods may cause an attenuation of the

exposure-response curve for high exposure values, a phenomenon which is frequently observed in

occupational cohort studies [189, 17, 14]. Stayner et al. (2003) [17] and Steenland et al. (2015)

[14] examined the effects of heteroscedastic measurement error on the shape of the exposure-

response curve and only found a modest attenuation of the exposure-response curve at high

exposure values. However, the authors treated cumulated exposure in an occupational cohort as

a time-fixed variable known at study entry, thereby ignoring both its time-varying nature and

the possibility of exposure uncertainty components shared within individuals.

We therefore designed a second simulation study, which will be referred to as simulation study 2
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in the following, to reassess this finding when explicitly accounting for the time-varying nature

of cumulated exposure and when modelling measurement error on its natural level of occurrence,

i.e. on the annual exposure values instead of modelling measurement error on the sum of these

values. The aim of simulation study 2 was therefore to quantify the effects of different error

structures on the observed shape of the exposure-response curve when conducting statistical

inference that does not account for these error structures (i.e. under ME0). In this simula-

tion study, we assumed three different exposure periods to reflect the changes in the method of

exposure assessment in the French cohort of uranium miners: 1946-1955, characterised by a ret-

rospective exposure estimation by experts, 1956-1982, characterised by a method of prospective

and group-based exposure assessment based on ambient measurements and 1983-2007, charac-

terised by personal dosimetry (see section 2.2.3 for more details on the methods of exposure

assessment in the French cohort of uranium miners). We compared the estimated shape of the

exposure-response curve for exposure data generated without measurement error (i.e., accord-

ing to model MS0) and when generated with unshared and homoscedastic Berkson error for

the three exposure period, denoted MS1, with more complex and more realistic measurement

models. In particular, we compared the results for MS0 and MS1 with three measurement

models MS2, MS3 and MS4:

1. MS2 assumed unshared exposure measurement error for the three exposure periods. More-

over, MS2 described errors occurring in the first and in the second exposure period as

Berkson error, while the error occurring in the third exposure periods were described

as classical measurement error. We assumed the variances σ2
U,1 = 0.9, σ2

U,2 = 0.15 and

σ2
U,3 = 0.01 for the log-transformed errors occurring in the first, the second and the third

period, respectively. These values were chosen in accordance with the characterisation of

exposure uncertainty by Allodji et al. (2012) [33, 34].

2. In contrast to modelMS2, measurement modelMS3 assumed a more complex error struc-

ture in the three exposure periods by accounting for individual job conditions and worker

practices in the cohort, similarly to measurement model M2 (described in section 5.1.2).

In line with the assumption that individual worker characteristics can lead to Berkson

error shared for several years of exposure of the same miner when a strategy of group-level

exposure assessment is employed, measurement modelMS3 assumed a combination of un-

shared Berkson error and Berkson error shared within workers for the first and the second

exposure period with variances σ2
U,1 = 0.09 and σ2

U,2 = 0.03 for unshared Berkson error

and σ2
U∗,1 = 0.81 and σ2

U∗,2 = 0.12 for shared Berkson error. As the third exposure period

between 1983 and 2007 was characterised by personal dosimetry, there is no reason to as-

sume a shared error component due to individual worker characteristics in this period (see

section 5.1.2). As in model MS2, we therefore assumed unshared classical measurement

error for the third exposure period with σ2
U,3 = 0.01.

3. Finally, the imprecision of the measurement device used in group-level exposure estimation

can lead to a component of classical measurement error, which is shared between a group

of workers. For instance, in the retrospective exposure reconstruction for the exposure

years between 1946 and 1955 in the French cohort of uranium miners, a group of experts
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was asked in 1980s to estimate the average monthly exposure value for a mining location.

As the estimation for several years of the same mining location was based on the same hy-

potheses and measurements, the estimated exposure levels were often the same for several

exposure years of the same mine. The estimated monthly exposure level in a mine was

then used to determine the exposure values for all years of exposure that a miner spent in

the mining location. In other words, the measurement error occurring in the estimation of

the monthly exposure level in a mine affected all exposure years of all miners employed in

a certain mine simultaneously. We can therefore consider that the retrospective exposure

reconstruction in the first exposure period of the French cohort of uranium miners led

to a classical error component that was shared both between miners and within miners.

For the exposure period between 1956 and 1982, based on a prospective method of group-

exposure assessment via ambient measurements, on the other hand, the precision on the

measurement device might be shared between miners but not for several exposure years

of the same miner. Measurement model MS4 accounted for these shared classical error

components due to the imprecision of the measurement device in the following way: It

assumed a combination of a classical error component that was shared both between and

within miners for the first exposure period (σ2
U∗,1 = 0.81) and an unshared Berkson com-

ponent (σ2
U,2 = 0.09). Similarly, in the second exposure period, it assumed a combination

of a classical error component that was shared between workers (σ2
U∗,2 = 0.12) and an

unshared Berkson component (σ2
U,2 = 0.03). Finally, in the same way as model MS2 and

MS3, it assumed unshared classical measurement error for the last exposure period with

σ2
U,3 = 0.01.

Table 5.2: Summary of the measurement models used in the generation of error-prone

exposure data in simulation study 2

Measurement model Description

MS0 No measurement error in all three exposure periods

MS1 Unshared and homoscedastic Berkson error in all three exposure periods

MS2 Unshared heteroscedastic Berkson error in exposure periods 1 and 2

Unshared classical measurement error in exposure period 3

MS3 Combination of a component of unshared Berkson error and a

component of Berkson error shared within workers in exposure periods 1 and 2

Unshared classical measurement error in exposure period 3

MS4 Combination of a component of unshared Berkson error and a

component of classical measurement error shared both within and between

workers in exposure period1

Combination of a component of unshared Berkson error and a

component of classical measurement error shared between

workers in exposure period2

Unshared classical measurement error in exposure period three
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In order to obtain an error variance for model MS1, which was comparable to the global error

variance for the three models MS2, MS3, MS4 on the log-scale, we chose σ2
U,q = 0.2 for the

three exposure periods q ∈ {1, 2, 3} forMS1. Table 5.2 summarises the simulation measurement

models that were used in simulation study 2. We generated 100 data sets for each scenario.

To investigate the possibility of measurement error to induce a non-linear exposure-response

relationship, we estimated parameter values in an EHR (DE3) and a Cox model (DE4) based on

natural cubic splines. We chose interior knots at the 20th, 40th, 60th and 80th percentile of the

exposure distribution of cases, i.e. miners who died of lung cancer in our simulation study.

While the fitting of the disease modelsDE3 andDE4, based on cubic splines, allows for a graphical

evaluation of the impact of different measurement error characteristics, the resulting parameter

estimates in these models are not easily interpretable. Consequently, we complemented these

findings with results on continuous piecewise-linear models with a breakpoint at 100 WLM

assuming an EHR structure (DE5) and a Cox model (DE6) to obtain slope estimates for high

and low exposure values. Finally, to study the effects of different measurement models on the

choice of the disease model, we conducted statistical inference for both models DE1 and DE2

for all data sets in simulation study 2, regardless of the disease model that was used for data

generation. Table 5.3 summarises the six disease models that were used to conduct statistical

inference in simulation study 2.

Table 5.3: Summary of the disease models used in statistical inference for the data sets

generated in simulation study 2

Disease model Description

DE1 Linear Excess Hazard Ratio (EHR) model

DE2 Linear Cox model

DE3 EHR model based on cubic splines

DE4 Cox model based on cubic splines

DE5 Piecewise-linear EHR model

DE6 Piecewise-linear Cox model based on cubic splines

5.4.3 Data generation

The outcome of interest for the two simulation studies was time until death by lung cancer

of miner i, which can be described by the couple (Yi, δi) as described in section 5.1.1. This

outcome depends on the true exposure history of miner i. As described in section 5.1.1, the

exposure history of a worker is best described by the sum of the exposure values received until

time t, Xcum
i (t). Considering cumulated exposure as time-varying variable allows to model

exposure measurement error on its natural level of occurrence, namely on the observed exposure
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values Zi(t) corresponding to true exposure Xi(t) instead of modelling measurement error on

the sum of the exposure values that miner i received during his working career. It is generally

acknowledged that the generation of failure times as a function of time-varying covariates is very

challenging [31, 428, 429, 430]. In this situation, it is impossible to adopt the standard approach

for the generation of failure times, which consists in the inversion of survival functions [31], as

this would imply inverting the expression −
∫ t

0 h0(u)ϕ(Xcum
i (u), Vi1(u), ..., Vip(u),θ)du, which is

infeasible when the changes in the time-varying explanatory variables cannot be modelled by a

parametric function [431, 428]. Faced with this difficulty, Sylvestre et al. (2008) [428] advocate

a permutational algorithm which incorporates a rejection sampler, but this method is far less

computationally efficient than the simple inversion of survival functions. We therefore adapted

a method for the generation of failure times as a function of time-varying explanatory variables

proposed by Zhou (2001) [432] and further developed by Hendry (2014) [430], which is based on

the generation of piecewise-exponential variables.

Concerning the generation of error-prone exposure data, we generated Berkson error by setting

the values of observed exposure Zi(t) equal to the exposure values observed in the cohort to

obtain true exposure Xi(t) by multiplying Zi(t) with a measurement error term. Conversely,

when generating classical measurement error, we made the assumption that true exposure Xi(t)

was equal to the observed exposure values in the cohort and multiplied Xi(t) by an error term

to obtain observed exposure Zi(t).
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Chapter 6

Results

6.1 The effects of measurement model misspecification on sim-

ulated data

In this chapter, we will present the results obtained for each of the three main studies that were

realised in this work:

1. Simulation study 1 and 2 based on the exposure data of the French cohort of uranium

miners to assess the effects of measurement error on statistical inference in the context of

proportional hazards models when this measurement error is not accounted for (method-

ology described in section 5.4)

2. The elicitation of prior information by expert knowledge for breathing rate of a miner

intervening in the estimation of absorbed lung dose due to exposure to radon and its

progeny (methodology described in section 5.2)

3. The estimation of the corrected risk estimate of lung cancer mortality associated with

radon exposure in the French cohort of uranium miners when accounting for exposure and

dose uncertainty (methodology described in 5.1 and 5.3).

6.1.1 The impact of shared and unshared measurement error on risk estima-

tion (simulation study 1)

For the data sets considered in simulation study 1 and simulation study 2, Bayesian inference

was conducted via the MCMC algorithm implemented in Python presented in section 5.3.1.

After checking convergence on one data set per scenario, inference on all subsequent data sets

was based on one chain with 20.000 iterations after an initial burn-in of 10.000 iterations (with

a thin of one). For each of the 16 simulation models and each of the scenarios considered in sim-

ulation study 1, we estimated the average posterior median β̂ for the risk coefficient β, obtained

on 100 data sets. Moreover, we estimated an overall 95% credible interval (CI95%), which was

obtained by combining the chains for the 100 data sets for each simulation model and scenario

and determining the 2.5 and 97.5 quantiles of the corresponding pooled chain. Moreover, we

determined the relative bias of β̂, given by (β̂−β)
β . Finally, we calculated the coverage rates of

the 95% credible intervals, which were obtained by counting the proportion of the 100 replicates
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Table 6.1: Average posterior median (β̂), overall 95% credible intervals (CI95%), relative bias

and coverage rate for 100 data sets generated according to the Cox model DS2 with different

measurement error characteristics and a true risk coefficient of β = 2 per 100 WLM

Type of Type of Error β̂ CI95% Relative Coverage

sharing error variance bias rate

unshared Berkson 0.1 1.81 [1.64; 1.99] -0.10 0.10

0.9 1.25 [0.97; 1.49] -0.38 0.00

classical 0.1 1.75 [1.55; 1.93] -0.13 0.02

0.9 0.83 [0.45;1.21] -0.59 0.00

between Berkson 0.1 1.82 [1.62; 2.01] -0.09 0.22

0.9 1.25 [1.03; 1.47] -0.38 0.00

classical 0.1 1.75 [1.53; 1.94] -0.13 0.05

0.9 0.80 [0.44; 1.16] -0.60 0.00

within Berkson 0.1 1.45 [1.12, 1.69] -0.28 0.00

0.9 0.76 [0.54; 0.97] -0.62 0.00

classical 0.1 1.33 [1.04; 1.58] -0.34 0.00

0.9 0.39 [0.17; 0.62] -0.81 0.00

both Berkson 0.1 1.46 [1.11; 1.78] -0.27 0.00

0.9 0.77 [0.54; 1.00] -0.62 0.00

classical 0.1 1.42 [1.04; 1.72] -0.29 0.00

0.9 0.49 [0.13; 0.86] -0.76 0.00

none none 0 1.96 [1.80; 2.13] -0.02 0.95

for which the 95% credible interval included the true value of the coefficient β where β is the

risk coefficient which served to generate the data.

As can be seen in Table 6.1, in the Cox proportional hazards model (i.e. disease model D2),

exposure uncertainty shared within workers created more relative bias in risk estimates and

smaller coverage rates than exposure uncertainty shared between workers. For instance, con-

cerning small measurement error of both Berkson and classical nature, the relative bias was more

than twice as large when this error was shared within workers rather than between workers. In

general, the impact of unshared uncertainty and uncertainty shared between workers on risk

estimation was comparable. Error components, which were both shared between and within

individuals, produced about as much bias as error components that were only shared within

individuals.

As can be seen in Table 6.2, the relative bias introduced by measurement error when the data

were generated according to an EHR model was smaller than the bias we observed when data
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were generated according to the Cox model (DS2). For large measurement error in the EHR

model, we observed the same pattern as for the Cox model where measurement errors shared

within workers caused more relative bias and lower coverage rates than unshared measurement

error or measurement error that was only shared between workers. For small measurement error,

this tendency was less evident.

In general, classical measurement caused more relative bias and smaller coverage rates than

Berkson error and large measurement error caused more relative bias and smaller coverage rates

than small measurement error, regardless of the disease model and regardless of whether expo-

sure uncertainty was shared or unshared.

As expected, when data were generated without exposure measurement error, the coverage rates

of the 95% credible intervals were very close to 95%.

The statistical power was estimated to be 100% for all scenarios, both for data generated ac-

cording to the Cox model and according to the EHR model.

Table 6.2: Average posterior median (β̂), overall 95% credible intervals (CI95%), relative bias

and coverage rate for 100 data sets generated according to the EHR model DS1 with different

measurement error characteristics and a true risk coefficient of β = 5 per 100 WLM

Type of Type of Error β̂ CI95% Relative Coverage

sharing error variance bias rate

unshared Berkson 0.1 4.87 [3.07; 7.68] -0.03 0.93

0.9 4.65 [2.89; 7.18] -0.07 0.91

classical 0.1 4.88 [3.13;7.47] -0.02 0.94

0.9 4.34 [2.71; 6.70] -0.13 0.78

between Berkson 0.1 4.77 [3.14; 7.11] -0.05 0.99

0.9 4.69 [2.91; 7.31] -0.06 0.93

classical 0.1 4.79 [3.04; 7.35] -0.04 0.93

0.9 4.44 [2.82; 6.72] -0.11 0.85

within Berkson 0.1 4.88 [3.13; 7.47] -0.02 0.94

0.9 3.98 [2.43; 6.23] -0.20 0.73

classical 0.1 4.75 [3.01; 7.31] -0.05 0.91

0.9 3.03 [1.86; 4.71] -0.39 0.13

both Berkson 0.1 4.88 [3.11; 7.69] -0.02 0.94

0.9 3.86 [2.19; 6.59] -0.23 0.55

classical 0.1 4.76 [2.94; 7.29] -0.05 0.92

0.9 3.15 [1.62; 5.25] -0.37 0.25

none none 0 4.90 [3.14; 7.45] -0.02 0.96
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6.1.2 The effects of measurement error characteristics on the shape of the

exposure-response curve (simulation study 2)

As can be seen in Figure 6.1, exposure-response curves for data generated according to the Cox

model DS2 with no measurement error (MS0) or unshared and homoscedastic Berkson error

(MS1) were close to linear on the log-scale. Heteroscedastic unshared error (MS2) appeared to

create a slightly non-linear association on the log-scale. Finally, for data generated according

to the measurement models incorporating shared sources of uncertainty (MS3 and MS4), we

can observe a substantial attenuation of the exposure-response curve at high exposure values.

Table 6.3 shows the risk estimates obtained on 100 data sets generated according to different

disease and measurement models and estimated by the piecewise-linear disease models DE5 and

DE6. It also highlights the impact of different error characteristics on the choice of the disease

Figure 6.1: Estimated exposure-response curve when fitting the Cox model DE4 based on

natural cubic splines where data are generated according to the Cox model DS2 with a risk

coefficient of β = 2. (a) MS0, i.e., no measurement error (b) MS1, i.e., unshared and

homoscedastic Berkson error, (c) MS2, i.e., unshared error of Berkson and classical type (d)

MS4, i.e., heteroscedastic error with a shared classical component describing the imprecision of

the measurement device and (e) MS3, i.e., heteroscedastic error with a shared Berkson

component describing individual worker practices
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Table 6.3: Comparison of risk estimates β̂ (i.e. average posterior medians) with 95% credible

intervals where data are generated according to different disease and measurement models.

DICEHR < DICCox gives the percentage of datasets for which the Deviance Information

Criterion (DIC) was smaller when fitting the linear Excess Hazard Ratio (EHR) model (DE1)

when the true model was the Cox model (DS2) and vice versa for DICCox < DICEHR. The

difference in DIC is calculated as difference between the DIC of the EHR model and the DIC

of the Cox model.

Disease model Model MS0 Model MS1 Model MS2 Model MS3 Model MS4

No error Unshared Unshared heteroscedastic Heteroscedastic Heteroscedastic

Berkson error Berkson and classical error worker practices shared device

Data generated according

to the Cox model (DS2)

with β = 2

Risk estimate β̂ in the

linear Cox model (DE2) 1.97 [1.78; 2.16] 1.67 [1.50; 1.87] 1.23 [1.00; 1.42] 0.77 [0.59; 0.98] 0.57 [0.21; 1.06]

Risk estimates in the

piecewise-linear Cox model (DE6)

β̂1 (under 100 WLM) 1.98 [1.57; 2.40] 2.08 [1.65; 2.49] 2.21 [1.78; 2.61] 2.33 [1.93; 2.70] 2.50 [2.06; 2.91]

β̂2 (over 100 WLM) 1.96 [1.68; 2.26] 1.49 [1.22; 1.80] 0.92 [0.64; 1.18] 0.40 [0.20; 0.63] 0.31 [0.06; 0.68]

DICEHR < DICCox 0% 0% 34 % 100% 99%

Difference in DIC -216.08 -142.13 -15.17 107.24 169.16

Data generated according

to the EHR model (DS1)

with β = 5

Risk estimate β̂ in the

in the linear EHR model (DE1) 4.90 [3.24; 7.62] 4.71 [3.08; 7.19] 4.44 [2.93; 6.81] 4.07 [2.49; 6.28] 4.11 [2.26; 7.21]

Risk estimates in the

piecewise-linear EHR model (DE5)

β̂1 (under 100 WLM) 4.95 [2.83; 8.33] 4.81 [2.91; 7.67] 4.75 [2.79; 7.59] 4.73 [2.77; 7.64] 5.58 [3.38; 9.16]

β̂2 (over 100 WLM) 5.14 [2.06; 9.17] 4.72 [2.05; 9.21] 4.16 [1.48; 7.71] 3.09 [0.69; 6.40] 2.18 [0.27; 6.43]

DICCox < DICEHR 0% 0% 0% 0% 0%

Difference in DIC 93.76 87.98 85.62 83.10 132.64

model. These results confirm that when failure times are generated according to the linear

Cox model (D2) and the error-prone exposure data is generated according to the unshared and

heteroscedastic measurement model MS2, the slope for exposure values under 100 WLM is

estimated to be more than twice as large as for exposure values over 100 WLM. For the mea-

surement models MS3 and MS4, incorporating shared sources of uncertainty due to individual

worker characteristics and the precision on the measurement device in a group-level exposure

assessment strategy, the slope estimates for low exposures are about six to eight times larger

than the slope estimates for high exposures in this situation.

Concerning model choice, we find that, when model choice is based on the DIC, the linear EHR
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model fitted the data better than the Cox model in 34% of cases when exposure data were gen-

erated following the unshared and heteroscedastic measurement model MS2, even though the

true disease model was the Cox model. For measurement model MS3 and MS4, on the other

hand, DIC values indicated for all replicates that the linear EHR model fitted the data better

than the Cox model, although data were generated according to the Cox model. Moreover,

in the three scenarios using heteroscedastic measurement models (MS2,MS3 and MS4), risk

coefficients estimated in the Cox model based on a piecewise-linear structure DE6 were overesti-

mated for low exposures and underestimated for high exposure values when data was generated

according to the Cox model. In summary, we only observed a substantial attenuation of the

exposure-response curve in the Cox model when the first exposure period was characterised by a

combination of unshared and shared measurement error, which was either shared within workers

or both within and between workers.

When it comes to failure times generated according to the linear EHR model (DS1), the

exposure-response curves plotted in Figure 6.2, which were fitted through the EHR model based

on cubic splines DE3, suggest that the different patterns of shared or unshared measurement

error produce a less pronounced attenuation in exposure-response curves. The risk estimates

in the piecewise linear EHR model in Table 6.3 reveals that the risk for exposures under 100

WLM is estimated to be more than twice as large as the risk estimated for exposures exceeding

100 WLM when exposure data is contaminated with classical measurement error shared both

between and within workers in the first exposure period to reflect the imprecision of the measure-

ment device (MS4). For the measurement model assuming components of Berkson error shared

for several years of the same worker to account for individual worker characteristics (MS3), we

also observe a higher risk estimate for exposures under 100 WLM than for exposures exceeding

100 WLM in the piecewise linear EHR model. However, in both cases, the credible intervals

for the parameters in the piecewise linear model are very large and overlap. In contrast to the

situation where failure times were generated according to the Cox model, DIC values always

indicated the linear EHR (DE1) to be the better fitting disease model when failure times were

generated according to the EHR model (DS1), regardless of the measurement model used to

generate the error-prone exposure data.

6.2 Prior elicitation by expert knowledge on the average breath-

ing rate of a French uranium miner

When specifying informative prior distributions on the unknown input parameter average breath-

ing rate in the dose model by eliciting expert knowledge, we considered six different working

conditions, l, l ∈ {1, 2, 3, 4, 5, 6} depending on a dose period (until or after 1977) and a type of

work (hewer, underground miner, open pit miner). As described in section 5.2., we first derived

individual Dirichlet distributions fe,l describing the uncertainty of each expert e, e ∈ {1, 2, 3}
on the proportion of time a miner in working condition l spent in the three different levels of

physical activity a, a ∈ {1, 2, 3} (i.e. sitting, in light exercise and in heavy exercise). In a second

step, we used three different approaches to derive a unique probability distribution fl describing

the proportion of time a miner in working condition l spent in the different levels of physical

activity by combining the data elicited by the three experts. Finally, we based the definition
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Figure 6.2: Estimated exposure-response curve when fitting the Excess Hazard Ratio (EHR)

model DE3 based on natural cubic splines where data are generated according to the EHR

model DS1 with a risk coefficient of β = 5. (a) MS0, i.e., no measurement error (b) MS1, i.e.,

unshared and homoscedastic Berkson error, (c) MS2, i.e., unshared error of Berkson and

classical type (d) MS4, i.e., heteroscedastic error with a shared classical component describing

the imprecision of the measurement device and (e) MS3, i.e., heteroscedastic error with a

shared Berkson component describing individual worker practices

of the prior distribution on the breathing rate of a miner in the working condition, brl, on the

combined probability distribution fl via the time activity-ventilation-approach and the values

for average breathing rate in each level of physical activity recommended by the ICRP.

Expert B preferred to limit his answers to the working conditions in the French uranium mines

after the mechanisation of work, as he had been employed after 1978 and he felt that he could

not give information on the working conditions before that year. Similarly, Expert A chose to

exclude the specification of information concerning the working condition of an open pit miner

before the mechanisation, as he felt that he did not dispose of sufficient experience on this con-

dition. Therefore, we excluded the condition of an open pit miner before the mechanisation

(until 1977) and only elicited informative prior distributions on average breathing rate for the
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remaining five working conditions.

In the following, we will first present the detailed steps of the derivation of an informative prior

distribution on average breathing rate for the working condition “hewer after the mechanisa-

tion of work in the mines”, for which all three experts had provided exploitable information.

Moreover, we will present the resulting prior distributions for average breathing rate on the

five working conditions for which the information of at least two experts was available. For

more details on the different steps in the derivation of the informative prior distributions for all

working conditions, see Appendix D.

6.2.1 Fitting independent Dirichlet distributions to describe the knowledge

of each expert for a hewer after the mechanisation

Concerning the breathing rate of a hewer after the mechanisation, we disposed of 27 quantiles

and 18 evaluations at the end of the elicitation procedure described in section 5.2.1. We chose

to fit a Dirichlet distribution to describe the uncertainty of expert e on the proportion of time

a hewer after the mechanisation spent in the different levels of physical activity via its marginal

beta distributions as described in 5.2.2. The resulting marginal beta distributions are plotted

in the right column of Figure 6.3. We can compare these marginal beta distributions with beta

distributions which are fitted for each expert and for each level of physical activity independently.

These independent beta distributions, which are shown in the left column of Figure 6.3, are fitted

to the same data as the Dirichlet distributions with the only difference that they do not respect

the condition that the sum of the three proportions has to be one. It is interesting to note

that when considering these independent beta distributions, it seems that Expert A and Expert

C have contradictory views on the time a hewer after the mechanisation spent in the different

levels of physical activity. In particular concerning the proportion of time spent in light exercise,

Expert A (in red) indicates that the proportion of time spent in this level of physical activity

was rather small, i.e. under 25%, while Expert C (in blue) indicates that this proportion is

superior to 50%. When we fit a joint Dirichlet distribution to respect the constraint that the

three proportions have to sum to one for each expert, it becomes apparent that the seemingly

contradictory views of Expert A and Expert C are more congruent than what could be expected

from the independent beta distributions. Thereby, we observe that Expert A showed a tendency

to underestimate the proportion of time spent in each activity while Expert C had a tendency

to overestimate the proportion of time spent in each activity. When considering the marginal

beta distributions instead of the distributions fitted on each physical activity independently,

the two experts seem to give almost the same information on the proportion of time spent in

heavy exercise. The fitting of a joint Dirichlet distribution results in U shaped marginal beta

distributions for Expert B.

6.2.2 Combining the information on the proportion of time spent in the

different levels of physical activity of the three experts for a hewer

after the mechanisation

We compared three different approaches for the combination of the three individual Dirichlet
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Figure 6.3: Marginal beta distributions of a common Dirichlet distribution (right column) and

independent beta distribution (left column) determined via weighted least squares to describe

the uncertainty of the three experts on the proportion of time a hewer after the mechanisation

spent in the different levels of physical activity. The distributions fitted on the quantiles and

evaluations provided by Expert A are plotted in red, for Expert B in green and for Expert C in

blue.

distributions fe,l describing the view of each expert e, e ∈ {1, 2, 3} independently, namely lin-

ear pooling, averaging and a hierarchical approach, as presented in section 5.2.3. Figure 6.4

compares the resulting marginal probability distributions combining the knowledge of all three

experts on the proportion of time spent in the different levels of physical activity with the indi-

vidual marginal probability distributions previously derived for each expert. As expected, linear

pooling, shown in the second column of Figure 6.4, results in multimodal marginal distribu-

tions. On the other hand, averaging (third column) and the Supra-Bayesian approach for the

combination of expert information (fourth column) both lead to unimodal probability distribu-

tions. By construction, the two latter approaches lead to a common probability distribution

which is again a Dirichlet distribution. Concerning the results of the Supra-Bayesian approach,

the specification of different rate parameters (0.01 and 0.001) for the vague exponential prior

distribution on Σl does not seem to have a lot of influence on the results concerning a hewer

113



0

2

4

6

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 sitting

D
en

si
ty

Individual experts

0

2

4

6

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in light exercise

D
en

si
ty

0

2

4

6

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in heavy exercise

D
en

si
ty

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 sitting

D
en

si
ty

Mixture model

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in light exercise

D
en

si
ty

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in heavy exercise

D
en

si
ty

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

Proportion of time spent  
 sitting

D
en

si
ty

Averaging

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in light exercise

D
en

si
ty

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in heavy exercise

D
en

si
ty

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 sitting

D
en

si
ty

Hierarchical model

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in light exercise

D
en

si
ty

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in heavy exercise

D
en

si
ty

Figure 6.4: Marginal probability distributions resulting from the combination of the

information provided by the three experts concerning the proportion of time spent in the

different levels of physical activity via linear pooling (i.e. a mixture model), averaging and the

Supra-Bayesian approach (“hierarchical model”) with a rate parameter of 0.01 (dark blue) and

0.001 (light blue) for the vague exponential prior distribution on Σl concerning the working

condition of a hewer after the mechanisation

after the mechanisation.

6.2.3 Deriving a unique prior probability distribution on the average breath-

ing rate of a miner in the different working conditions

Finally, we used the combined joint probability distribution describing the uncertainty of the

proportion of time Pa,l a miner spent in the different levels of physical activity for a specific

working condition to derive a unique prior distribution on the average breathing rate brl of a

miner in this working condition l via the time-activity-ventilation approach and the values for

average breathing rate in each level of physical activity recommended by the ICRP (see section

5.2). Figure 6.5 shows the prior distributions on the average breathing rate for the five working

conditions for which we disposed of information provided by at least two experts (this excludes

the working condition of an open pit miner before the mechanisation for which only Expert C

provided information). In general, the resulting prior distributions indicate that the average

breathing rate of a miner was higher before the mechanisation than after the mechanisation.

Linear pooling (in blue) leads to multimodal prior distributions on the average breathing rate

for a hewer before the mechanisation, a hewer after the mechanisation and an underground

miner after the mechanisation, but not for an open pit miner after the mechanisation and an

underground miner before the mechanisation. For the latter two conditions, the three approaches

for the combination of expert opinion result in virtually the same prior distributions on the
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Figure 6.5: Unique prior probability distribution on the average breathing rate of a French

uranium miner in the different working conditions derived via linear pooling (in blue),

averaging (in red) and the Supra-Bayesian approach in green.

average breathing rate. Concerning a hewer after the mechanisation, the mode of the three

alternative prior distributions are virtually the same, while the variance for the prior based on

linear pooling (in blue) is larger than the variance for the prior based on the Supra-Bayesian

approach (in green), which is in turn slightly larger than the variance for the prior based on

averaging (in red). For the average breathing rate for a hewer before the mechanisation, the

three approaches yield contrasting results. The distribution based on linear pooling (blue curve)

indicates that there is a considerable probability mass on a wide range of values, in particular

for values that are inferior to 1.5 m3h−1, for which the prior based on averaging (red curve) only

specifies a negligible probability mass. While the blue curve and the red curve concur in their

mode, the Supra-Bayesian approach can be seen to make a compromise between this mode and

the non-negligible probability mass indicated by the blue curve.

It is interesting to compare the prior probability distributions on the average breathing rate

of a French uranium miner that we derived through the elicitation of expert knowledge with

the prior distribution based on the information available in the literature, shown in Figure 6.6.

This lognormal prior distribution, that can be used for all working conditions, indicates that

there is a high probability mass for values inferior to 0.54 m3h−1, which is the average breathing

rate corresponding to the proportion of time a worker spent sitting. In other words, according

to this prior distribution, proposed by Birchall et al. (1994) [2], it is possible that a worker

had a smaller average breathing rate than if he spent his entire working day sitting. In light

of the different tasks of underground miners, this seems to be rather unlikely. Moreover, this

prior distribution does not reflect the intervals for the breathing rate of workers proposed by

the ICRP (1.0-1.7 m3h−1) or elaborated in the context of the alpha risk project (1.1-2.1 m3h−1
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and 0.9-1.7 m3h−1 obtained by varying the time a miner spent in the different levels of physical

exercise or by varying the average breathing rate for the different levels of physical activity,

respectively). The prior distributions we derived from expert knowledge on the other hand, are

in accordance with these intervals and respect the condition that the average breathing rate of

a miner is unlikely to be inferior to 0.54 m3h−1.

Figure 6.6: Prior distribution on the average breathing rate of a miner proposed by Birchall et

al. (1994) [2]

6.3 Accounting for exposure and dose uncertainty in the French

cohort of uranium miners

6.3.1 Uncorrected results on the association between radon exposure and

lung cancer mortality

Comparing different disease model structures to describe the association between

radon exposure and lung cancer mortality in the French cohort of uranium miners

The effects of ionising radiation on mortality are commonly modelled via the disease model

D1, i.e. a simple linear Excess Hazard Ratio (EHR) structure. We compared this popular

model structure with disease model D2, i.e. a log-linear proportional hazards model, which we

introduced in section 5.1.1 as Cox model. As can be seen in Table 6.4, when measurement error

is not accounted for in statistical inference, DIC values indicate that the linear EHR model

seems to be slightly more appropriate to describe the exposure-risk relationship between radon

exposure and lung cancer mortality in the French cohort of uranium miners than the linear Cox

model.

Sensitivity to prior distributions on baseline hazard

As described in section 5.1.5, we either assumed informative gamma distributions based on infor-

mation on lung cancer mortality in the general French population for the parameters describing
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Table 6.4: Posterior means and 95% credible intervals for β and values for the Deviance

Information Criterion (DIC) for the Excess Hazard Ratio (EHR) model and the Cox model.

The estimates for β are given per 100 WLM.

Disease β DIC

model

D1: EHR 0.88 5433.37

[0.50; 1.36]

D2: Cox model 0.27 5443.64

[0.16; 0.37]

Table 6.5: Median posterior values and 95% credible intervals for the post-55 and the total

cohort when assuming the simple linear Excess Hazard Ratio (EHR) model D1 and different

prior distributions for the baseline hazard parameters

Model β1 λ2 λ3 λ4

in 10−6 in 10−6 in 10−6

Post-55 cohort

Informative gamma priors 1.92 1.13 5.15 8.65

[0.93;3.22] [0.85;1.48] [4.29;6.13] [6.47;11.29]

Large uniform priors 2.75 0.80 4.25 7.47

[1.18;5.32] [0.45;1.29] [2.85;6.10] [4.60;11.80]

Total cohort

Informative gamma priors 0.88 1.26 5.24 9.84

[0.50;1.36] [0.98;1.58] [4.46;6.11] [7.92;12.13]

Large uniform priors 0.88 1.19 5.11 10.28

[0.44;1.49] [0.82;1.66] [3.96;6.46] [7.72;13.42]

the baseline hazard after 40 years of age, i.e. λ2, λ3, λ4 or flat prior priors in the form of uniform

distributions. Table 6.5 shows the estimates of the parameters of the disease model for the total

and the post-55 cohort when assuming the simple linear EHR model without effect modification

and without measurement error correction. Excess hazard estimates are given per 100 WLM.

There was no impact of the prior choice for the baseline hazard parameters on risk estimates

for the total cohort with only slightly narrower credible intervals for β when assuming infor-

mative gamma distributions. For the post-55 cohort, on the other hand, the definition of prior

distributions for baseline hazard seemed to be quite influential with an estimated risk estimate

of 1.92 assuming informative gamma distribution and a risk estimate of 2.75 when assuming

uniform priors. Under the assumption of uniform priors, all baseline hazard estimates in the

post-55 cohort were clearly inferior to the corresponding values estimated on the full cohort

whereas they are comparable when assuming informative priors. Based on these results, we

chose flat uniform distributions on the baseline hazard parameters for the post-55 cohort for all

subsequent analyses. Concerning the total cohort, we based all analyses on informative gamma

priors when obtaining uncorrected risk estimates and when accounting for unshared measure-
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ment error. Moreover, to obtain uncorrected risk estimates and when accounting for unshared

measurement error, we chose a left-truncation of the prior distribution on β to guarantee the

positivity of the instantaneous hazard rate hi(t).

Accounting for different effect-modifying variables in the exposure-response rela-

tionship

Table 6.6: Median posterior values and 95% credible intervals for the Excess Hazard Ratio per

100 WLM for different disease models for the total cohort without measurement error

correction

Model EHR CI DIC

per 100 WLM 95%

D1 : Linear 0.88 [0.50;1.36] 5433.37

D3 : Period of exposure 5422.49

≤ 1955 0.34 [0.04;0.83]

> 1955 1.95 [1.16;2.93]

D4 : Time since exposure 5435.51

[5 - 15[ years 1.49 [0.22;3.64]

[15 - 25[ years 1.14 [0.12;2.69]

≥ 25 years 0.78 [0.31;1.40]

D5 : Piecewise linear 5428.14

< 50 WLM 1.99 [0.98;3.19]

≥ 50 WLM 0.37 [0.02;0.98]

D6 : Piecewise linear 5426.56

< 100 WLM 1.46 [0.84;2.21]

≥ 100 WLM 0.26 [0.01;0.88]

As described in section 5.1.1, we implemented different Excess Hazard Ratio (EHR) models

as a function of different effect modifying variables. Table 6.6 and Table 6.7 show the median

posterior estimates and 95% credible intervals as well as DIC values for the different disease

models for the total cohort and the post-55 cohort, respectively. Bayesian inference for the

different models was conducted on three MCMC chains with 100.000 iterations after a burnin

of 25.000 iterations and an adaptive phase in which we adapted the proposal distributions for

all unknown quantities to obtain acceptance rates close to 0.4 for a single parameter and 0.2 for

the vectors of latent variable values. For the total cohort, the excess hazard ratio was estimated

to be 0.88 per 100 WLM when assuming the simple linear EHR model D1. Concerning the

modifying effect of time since exposure (D4), the risk associated with recent radon exposure (i.e.

in the last 15 years) induced an excess hazard ratio that was estimated to be twice as large as the

excess hazard ratio for radon exposures received more than 25 years ago. However, according to
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Table 6.7: Median posterior values and 95% credible intervals for different disease models for

the post-55 cohort without measurement error correction

Model EHR CI DIC

per 100 WLM 95%

D1 : Linear 2.75 [1.18;5.32] 2456.09

D4 : Time since exposure 2457.56

[5 - 15[ years 2.01 [0.10; 7.91]

[15 - 25[ years 4.82 [1.01; 11.04]

≥ 25 years 3.20 [0.77; 7.46]

D5 :Piecewise linear 2457.07

< 50 WLM 3.20 [0.80;7.03]

≥ 50 WLM 2.82 [0.19;8.14]

D6 : Piecewise linear 2457.80

< 100 WLM 2.90 [1.24;5.63]

≥ 100 WLM 9.28 [0.36;43.55]

the DIC, it was not pertinent to include time since exposure as effect modifying variable in the

total cohort. Considering the piecewise linear models (D5 and D6), we observed an important

attenuation in the exposure-response curve for the total cohort with a risk estimate that was

estimated to be five times larger for exposures under 50 or 100 WLM than for exposures over

these breakpoints. At the same time, the risk estimate for exposures received after 1955 was

also estimated to be five times larger than the risk estimate for exposures received until 1956

(see results on model D3). DIC values indicate that period of exposure is the most important

effect modifying variable in the total cohort.

For the post-55 cohort, on the other hand, the excess hazard ratio based on the simple linear

model was estimated to be 2.75 per 100 WLM. Overall, for this sub-cohort, DIC values indicate

that none of the models including effect modifying variables describes lung cancer mortality

better than the simple linear EHR model without effect modification. Moreover, in contrast

to the full cohort, the piecewise linear models did not indicate an attenuation of the exposure-

response relationship. On the contrary, the risk estimate for exposures over 100 WLM was

estimated to be approximately three times larger than for exposures under 100 WLM. However,

this result has to be interpreted with great caution, since the uncertainty associated with this

estimate is very large. This uncertainty is due to the fact that there was only a very small

number of miners exposed to more than 100 WLM in the post-55 cohort. Similarly, concerning

effect modification by time since exposure, we do not observe the same pattern as in the total

cohort. Indeed, on the post-55 cohort, the risk estimates associated with more recent exposure

values is estimated to be smaller than for exposure received 15 to 25 years or more than 25 years

ago. The category associated with the highest estimated risk coefficient on the post-55 cohort

is [15− 25[ years. However, the uncertainty associated with the risk parameters estimated when
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assuming a disease model taking into account time since exposure was very large.

To further assess the reasons for observing evidence for effect modification of time since exposure

for the full cohort, but not for the post-55 cohort, we analysed the data of the miners that were

employed until 1955. This sub-cohort consists of all miners which are in the full cohort, but

not in the post-55 cohort. We will call this cohort pre-55 cohort in the following. Table 6.8

shows the risk estimates for this sub-cohort. The risk estimates for the three exposure windows

Table 6.8: Median posterior values and 95% credible intervals for the Excess Hazard Ratio per

100 WLM for different disease models for the pre-55 cohort without measurement error

correction

Model EHR CI DIC

per 100 WLM 95%

D1 : Linear 0.50 [0.16;1.03] 2975.74

D4 : Time since exposure 2978.48

[5 - 15[ years 0.76 [0.13; 1.86]

[15 - 25[ years 0.58 [0.04; 1.71]

≥ 25 years 0.56 [0.04; 1.60]

D5 : Piecewise linear 5429.14

<50 WLM 1.47 [0.21;3.54]

≥50 WLM 0.35 [0.03;0.97]

D6 : Piecewise linear 5426.56

<100 WLM 1.04 [0.30;2.21]

≥100 WLM 0.28 [0.02;0.94]

are very similar. Similarly to the post-55 cohort, we therefore do not observe evidence for the

effect modification by time since exposure in this sub-cohort either. In summary, neither the

mortality data on miners employed until 1955 nor the data on miners employed after 1955 suggest

that there is an effect modification of the association between radon exposure and lung cancer

mortality by time since exposure. However, when considering these two sub-cohorts together

in the full French cohort of uranium miners, we observe evidence for the effect modification by

time since exposure. This phenomenon can be explained by the fact that the risk estimates

estimated on the data of the post-55 cohort are estimated to be higher then in the pre-55 cohort

and the exposures received in the post-55 cohort are more recent than the exposure received in

the pre-55 cohort.

Checking the proportional hazards assumption

It was merely possible to test the proportional hazards assumption in the Cox model without

the effect modification, since this model was the only one which could be estimated with the

library survival in R. Based on the Schoenfeld residuals, plotted in Figure 6.7, and the Harrell

test (p = 0.16), we did not reject the hypothesis of proportional hazards. Therefore, there is

120



Time

B
et

a(
t)

 fo
r 

ex
po

20000 25000 27000 29000 30000

0.
00

0.
02

0.
04

0.
06

Figure 6.7: Schoenfeld residuals for the Cox model D2

no evidence for the time-dependence of the regression coefficient β associated with cumulated

radon exposure in this model. This result suggests that the proportional hazards assumption

might as well be fulfilled for the disease model which uses an EHR structure. Even if the two

models differ in the exact structure of the exposure-risk relation, we believe that the parameter

β should be either time-varying in both or in neither of them.

6.3.2 Accounting for unshared exposure uncertainty

In a first attempt to account for exposure uncertainty in the French cohort of uranium miners,

we combined the different disease models presenting an EHR structure with measurement model

M1 described in section 5.1.2 and the exposure model described in section 5.1.3. The resulting

hierarchical model presented in the Directed Acyclic Graph (DAG) in Figure 5.6 allows to obtain

risk estimates for the total and the post-55 cohort that are corrected for unshared Berkson and

classical measurement error according to period of exposure. Table 6.9 and 6.10 show the

resulting posterior medians and 95% credible intervals for the different disease models. When

comparing these results with the naive estimates obtained when not accounting for measurement

error in Table 6.6 and Table 6.7, we do not observe substantial differences in risk estimates and in

credible intervals. In particular, concerning the full cohort, we continue to observe a substantial

effect modification by the period of exposure and there is evidence for the non-linearity of the

exposure-response relationship when testing the piecewise linear models. When comparing the

estimates in the linear EHR model (D1), we observe a small increase in the linear excess hazard

ratio when accounting for unshared exposure uncertainty in the full cohort.

Concerning the post-55 cohort, accounting for unshared measurement error did not change the

posterior median of β in the linear EHR model (D1), but only slightly increased the boundaries

of the 95% credible interval. Similarly, in the other disease models accounting for different effect

modifying variables, we did not observe a marked difference in risk estimates when accounting

for measurement error. The definition of less informative prior distributions for the exposure

model did not substantially change risk estimates in the post-55 and the full cohort.
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Table 6.9: Median posterior values and 95% credible intervals for the Excess Hazard Ratio per

100 WLM for different disease models when accounting for unshared measurement error in the

total cohort

Model EHR CI DIC

per 100 WLM 95%

D1 : Linear 0.90 [0.51;1.41] 5433.30

D3 : Period of exposure 5423.59

until 1956 0.31 [0.02;0.79]

after 1955 2.06 [1.34; 3.00]

D4 : Time since exposure 5435.31

[5 - 15[ years 1.88 [0.27; 4.59]

[15 - 25[ years 1.35 [0.17; 3.41]

≥ 25 years 0.74 [0.27; 1.57]

D5 : Piecewise linear 5424.38

< 50 WLM 2.12 [1.07;3.37]

≥ 50 WLM 0.34 [0.02;0.98]

D6 : Piecewise linear 5422.50

< 100 WLM 1.57 [0.92;2.38]

≥ 100 WLM 0.23 [0.01;0.84]

6.3.3 Accounting for shared exposure uncertainty

In a second step, we assumed the more complex measurement modelM2 to account for Berkson

error shared within workers to reflect errors due to individual job conditions and worker practices

in the first two exposure periods which were characterised by a group-level exposure assessment.

Sensitivity to prior distributions on baseline hazard parameters λ2, λ3, λ4

We did an additional sensitivity analysis with respect to the prior distribution when accounting

for shared Berkson error in the full cohort. Table 6.11 shows the estimates of the parameters

of the disease model for the total cohort when assuming the simple linear EHR model without

effect modification when accounting for Berkson error shared within workers for the first and

the second exposure period. Contrary to the results obtained when this shared error compo-

nent was not accounted for, we can observe a small impact of the prior choice for the baseline

hazard parameters on risk estimates for the total cohort. Although this influence is by far less

pronounced than for the effect observed for the post-55 cohort when measurement error is not

accounted for (see section 6.3.1), it suggests that the prior on the baseline hazard parameters can

have an influence on risk estimation in the full cohort. In line with the hypothesis of a healthy

worker effect, we would expect a lower baseline mortality rate in an occupational cohort than in
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Table 6.10: Median posterior values and 95% credible intervals for the Excess Hazard Ratio

per 100 WLM for different disease models when accounting for unshared measurement error in

the post-55 cohort

Model EHR CI DIC

per 100 WLM 95%

D1 : Linear 2.75 [1.20;5.36] 2456.09

D4 : Time since exposure 2457.55

[5 - 15[ years 2.03 [0.09;7.86]

[15 - 25[ years 4.82 [1.01;10.89]

≥ 25 years 3.19 [0.79;7.49]

D5 : Piecewise linear 2456.85

< 50 WLM 3.22 [0.82;7.11]

≥ 50 WLM 2.72 [0.16;7.98]

D6 : Piecewise linear 2458.09

< 100 WLM 2.85 [1.20;5.60]

≥ 100 WLM 9.50 [0.36;43.66]

Table 6.11: Posterior medians and 95% credible intervals of the Excess Hazard Ratio (EHR)

per 100 WLM and of the baseline hazard parameters λ2, λ3 and λ4 obtained for the total

cohort when assuming a hierarchical model based on the combination of the linear EHR

disease model D1 and the measurement model M2 and different prior distributions for the

baseline hazard parameters λ2, λ3 and λ4

Prior EHR λ2 λ3 λ4

per 100 WLM in 10−6 in 10−6 in 10−6

Informative gamma priors 0.97 1.25 5.20 9.78

[0.54;1.52] [0.97;1.57] [4.41;6.07] [7.86;12.04]

Large uniform priors 0.99 1.17 5.00 10.12

[0.48;1.73] [0.80;1.63] [3.85;6.36] [7.55;13.25]

the general population. The fact that we observe a lower baseline mortality rate in the post-55

cohort but not in the full cohort could either be explained by systematic differences in these two

cohorts (which are rather unlikely) or by the fact that there is an excess in lung cancer mortality

in the full cohort that is caused by exposure to radon, but which cannot be explained by the

observed radon exposure values. Indeed, due to the uncertainty in the exposure reconstruction

before 1956, which was far greater and more complex than after 1956, there could be a substan-

tial underestimation of the risk of lung cancer mortality before 1956 (as suggested by simulation

study 2). If we try to correct for this underestimation, it seems more suitable to choose flat

prior distributions on the baseline hazard parameter instead of using the information on the
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Figure 6.8: Posterior distributions for selected parameters of the disease model under flat

(dark blue) and informative (light blue) prior distributions and their corresponding prior

distributions (dot-dashed line and grey line, respectively) when accounting for Berkson error

shared within miners for the first two exposure periods in the full cohort.

general French male population. Figure 6.8 illustrates this association between the estimated

baseline hazard parameters and the risk estimate. Based on these arguments, we chose flat

uniform distributions on the baseline hazard parameters for the total cohort for all subsequent

analyses. Contrary to the analyses we conducted to obtain uncorrected risk estimates and when

accounting for unshared measurement error, we chose no left truncation of the prior distribution

on β. Instead, we used a more generic approach to assure the positivity of the baseline hazard

rate hi(t) for all miners i by setting the likelihood equal to 0 whenever there was one or more

miner for which this condition was not respected when calculating the acceptance ratios used

in the Metropolis-Hastings updates. Based on these changes in the definition of the prior distri-

butions for the full cohort, we will present in the following a comparison of the uncorrected risk

estimates obtained for the full cohort and for the risk estimates when accounting for Berkson

error shared within miners.

Comparison of uncorrected risk estimates and when accounting for shared Berkson

error

Table 6.12 shows the comparison of the uncorrected risk estimates and the risk estimates cor-

rected for Berkson error shared within workers for the full cohort. Concerning the simple linear

EHR model D1, we observed a marked increase in the risk estimate for lung cancer mortality and

a widening of the 95% credible intervals. However, the effect modification by period of exposure

and the attenuation of the exposure-response relationship seem to persist when we account for

shared Berkson error in the full cohort. We can observe an increase in the risk estimates for

exposure received until 1955 and after 1955 in disease model D3, but risk associated with the

latter is still estimated to be more than five times greater than the risk associated with the
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Table 6.12: Posterior medians and 95% credible intervals for different disease models for the

total cohort. Comparison of uncorrected risk estimates and risk estimates accounting for

Berkson error shared within miners for the two first exposure periods (measurement model

M2).

Model Uncorrected Corrected

EHR DIC EHR DIC

per 100 WLM per 100 WLM

D1 : Linear 5435.08 5369.30

0.87 [0.42;1.50] 0.99 [0.48;1.73]

D3 : Period of exposure 5428.12 5346.11

until 1955 0.31 [-0.01;0.80] 0.39 [0.02;1.02]

after 1955 1.94 [1.15;2.96] 2.21 [1.20;3.58]

D5 : Piecewise linear 5429.31 5368.40

< 50 WLM 2.57 [1.18;4.57] 2.07 [1.10;3.54]

≥ 50 WLM 0.30 [-0.15;0.98] 0.25 [-0.13;1.11]

former. Concerning the risk estimates in the piecewise linear EHR model D5, we observe both

a decrease in the slope estimated for low exposures and high exposures and considerably more

narrow credible intervals for the slope estimated for low exposures.

As can be seen in Table 6.13, we do not observe a notable modification in risk estimation when

accounting for shared Berkson error in the post-55 cohort.

Table 6.13: Posterior medians and 95% credible intervals for the linear Excess Hazard Ratio

(EHR) model for the post-55 cohort. Comparison of uncorrected risk estimates and risk

estimates accounting for Berkson error shared within miners for the two first exposure periods

(measurement model M2).

Model Uncorrected Corrected

EHR DIC EHR DIC

per 100 WLM per 100 WLM

D1 : Linear 2455.93 2418.72

2.69 [1.16;5.31] 2.68 [1.12;5.31]

6.3.4 Accounting for exposure and dose uncertainty in the post-55 cohort

Table 6.14 shows posterior medians and 95% credible intervals of the Excess Hazard Ratio of

death by lung cancer in Gray for the post-55 cohort when accounting neither for dose uncertainty

nor measurement error (on the left), when accounting for dose uncertainty (in the middle) and

when accounting for both exposure and dose uncertainty (on the right). We see a slight decrease
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in the EHR when accounting for dose uncertainty via the dose model (A1) defined in section

(5.1.4) but not for exposure uncertainty. When simultaneously accounting for dose and exposure

uncertainty due to Berkson error shared within workers (measurement modelM2), this increase

is less pronounced and we observe a narrowing of the 95% credible intervals. The corresponding

hierarchical model is illustrated in the DAG in Figure 5.9 in section 5.1.4.

Table 6.14: Posterior medians and 95% credible intervals for the total cohort. The values of

the Deviance Information Criterion (DIC) are given for the model accounting for Berkson error

shared within miners for the two first exposure periods (measurement model M2).

Model Uncorrected Dose uncertainty Exposure and

dose uncertainty

EHR DIC EHR DIC EHR DIC

per Gray per Gray per Gray

D1 : Linear 2456.35 2418.72 2415.96

5.92 [2.48;11.60] 5.60 [2.30;11.30] 5.70 [2.40;11.10]
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Chapter 7

Discussion

7.1 Summary and short-term perspectives

The focus of this work was on the treatment of measurement error in an occupational cohort

study in radiation epidemiology. The combination of the two terms “cohort” and “occupational”

may lead to complex structures of exposure measurement error. Indeed, in a given occupational

context, we are often faced with a variety of exposure conditions and a multitude of methods

of exposure assessment, which are likely to induce complex measurement error structures. The

temporal dimension of a cohort study can further complicate this situation. When studying the

association between the exposure to a given chemical or physical agent and a health outcome,

it is common to consider cumulated exposure as the most suitable exposure metric, leading

to an explanatory variable that is inherently time-dependent. While it is already difficult to

adequately model the time-dependence of cumulated exposure in an epidemiological study, it is

even more challenging to account for measurement error in this time-dependent context. The

modelling of measurement error in an occupational cohort study may therefore involve various

challenges. These challenges include heteroscedastic errors, the combination of Berkson and

classical measurement error components, the possibility of measurement error to be shared

between workers, within workers or both and the modelling of measurement error occurring in

a time-dependent variable.

7.1.1 The effects of exposure measurement error on statistical inference

In light of the challenges that are involved in the modelling of the error structures that arise

in occupational cohort studies, we can ask ourselves whether it is really worthwhile to account

for measurement error in these studies. To answer this question, we assessed the effects of

different measurement error structures on risk estimation and on the observed exposure-response

relationship in an occupational cohort when measurement error is not accounted for in statistical

inference. More precisely, we conducted two simulation studies based on the exposure data of

the French cohort of uranium miners. The aim of the first simulation study was to compare the

impact of shared and unshared measurement error on risk estimation in proportional hazards

models. The aim of the second simulation study was to analyse the effects of complex error
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structures, which are likely to arise in an occupational cohort, on the shape of the exposure-

response curve. Contrary to many other authors, who addressed the problem of measurement

error in occupational cohort studies, we treated cumulative exposure as a time-varying variable in

a proportional hazards model in these simulation studies instead of considering the total sum of

exposure values received by a worker during his entire career to be known at study entry. While

the generation of failure times as a function of a time-varying exposure variable required the

implementation of a sophisticated method for data generation based on piecewise-exponential

variables, it allowed us to disentangle the effects of different components of exposure uncertainty.

In particular, the treatment of cumulative exposure as a time-varying variable allowed us to

compare uncertainty components that were unshared, shared among several miners, shared for

several exposure values received by the same miner or both in. Contrary to common claims

that error components shared between individuals cause more impact in risk estimation than

unshared error components [119, 138, 427], we found that these two types of error components

resulted in comparable relative bias and coverage rates for risk estimation in proportional hazards

models. In contrast, we found that measurement error components shared for several years of

the same worker had more impact on statistical inference than unshared measurement error

components or measurement error that is shared between workers. In accordance with previous

findings on the relative importance of measurement error in linear and log-linear models [433],

we found that the impact of measurement error was more important in the Cox-model than in

the EHR model. We observed relative biases on risk estimates that were consistent with the

results obtained by Bender et al. (2005) [31] and Küchenhoff et al. (2007) [32], who studied the

impact of unshared additive and multiplicative Berkson error for the Cox model on exposure

data of the German cohort of uranium miners. However, our findings contrast with those

obtained by Allodji et al. (2012) [34, 35]. The authors of the latter study found that large

unshared Berkson error and small unshared classical measurement error could introduce large

biases in risk estimation when conducting frequentist inference in Poisson regression based on an

Excess Relative Risk structure on the exposure data of the French cohort of uranium miners. To

better understand this discrepancy, we conducted a third simulation study to compare different

methods of the generation of Berkson error, which is described in the paper “A cautionary

comment on the generation of Berkson error in epidemiological studies” submitted to Radiation

& Environmental Biophysics (see Appendix F). For the generation of Berkson error, we propose

an approach that is different from the approach chosen by Allodji et al. (2012) [34, 35]. In

this third simulation study, we show that the exposure data generated by our method fulfil

the properties of Berkson error, contrary to the method used by Allodji et al. (2012) [34, 35],

which inadvertently produces biased classical measurement error. This finding is confirmed

theoretically. These results suggest that the discrepancy between our results and the results

obtained by Allodji et al. (2012) [34, 35] could be explained by an error in their method for the

generation of Berkson error. Finally, contrary to a widespread belief that Berkson error does

not bias parameter estimates [3, 175, 147, 119], we found that components of Berkson error can

lead to large biases in risk estimation when they are shared within workers.

In accordance with the results obtained by Steenland et al. (2015) [14], we only observed a

mild attenuation of the exposure-response curve in the Cox model when assuming a structure

of unshared error in which the magnitude of error and the magnitude of exposure were greatest
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for the earliest years of exposure. However, we observed a marked attenuation of the exposure-

response relationship for high exposure values when we assumed shared error components due to

the imprecision of the measurement device or due to individual worker practices in the exposure

periods that were characterised by a method of group-level exposure assessment. This finding

casts doubt on the common practice of modelling measurement error on the sum of the exposure

values received in the entire working career of a worker instead of modelling them on the daily,

monthly or annual exposure values. Indeed, under this simplifying assumption, it is impossible

to distinguish shared and unshared measurement error components in the exposure history of a

worker. Finally, we found that distortions in the exposure-response relationship were more severe

when data were generated according to the Cox model, rather than according to the EHR model.

Moreover, when failure times were generated according to the Cox model and observed exposure

values were contaminated with shared and unshared error, DIC values identified the EHR model

as the model that best fitted the data. On the one hand, the robustness to measurement error

makes the EHR model, which is often considered the best model to describe the effects of ionising

radiation on mortality, attractive for risk modelling in epidemiological studies. On the other

hand, this finding casts doubt on the possibility to identify a “true disease model” to describe

the exposure-risk relationship when risk estimates are not corrected for all sources of exposure

uncertainty.

In summary, the results of these simulation studies underline the importance of both a careful

characterisation of all components of exposure measurement error in occupational studies and

the realistic modelling of the identified error structures, in particular in cases where there are

exposure periods that were characterised by a retrospective exposure reconstruction.

7.1.2 The use of a hierarchical approach to describe exposure measurement

error

If, based on the results we observed on the two simulation studies we conducted, we can conclude

that it is important to account for the complex patterns of exposure uncertainty arising in an

occupational cohort, the next question we can ask ourselves is: How can the modelling of the

complex error structures arising in an occupational cohort study be achieved? The answer we

promote in this work is the use of a hierarchical approach. This hierarchical approach allows

the combination of sub-models where different sources of uncertainty, including exposure and

dose uncertainty, are accounted for at different levels of the hierarchy. At the cost of conditional

independence assumptions, hierarchical models allow for the combination of simple sub-models

into a unique and coherent framework to model complex phenomena, and, at the same time,

for a clear interpretation of the parameters involved in the different sub-models. The most

important strength of the hierarchical approach to account for exposure and dose uncertainty

is arguably its flexibility in the modelling of complex structures of measurement error. It is

broadly agreed upon that the adoption of simplified measurement models may cause erroneous

inferences. Stefanski et al. (2002) [434] state that assuming an incorrect measurement model

may potentially cause problems as great as those created by ignoring measurement error. Car-

roll (2012) [8] even goes so far as to suggest that for a statistician, the erroneous inferences

which may be caused by an incorrect measurement model are worse than going to jail. Despite

these dangers, many studies that choose classical methods for measurement error correction
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only account for simplified measurement error structures and do not fully account for all com-

ponents of exposure uncertainty. For instance, many studies account for measurement error in

the exposure of interest, even though there are error-prone confounding variables. While it is

difficult to account for measurement error in several variables, this choice may lead to resid-

ual confounding, because the effects of the error-prone confounding variables are only partially

adjusted for. Moreover, it is common to assume homoscedastic measurement errors, although

there is evidence of heteroscedasticity [435] or to assume non-differential measurement errors in

case-control studies even though recall bias is likely to lead to differential measurement error.

Finally, in the context of occupational cohort studies, it is common to assume that the exposure

received by a worker during his entire working career is known at study entry [31, 32, 14] and

to consider that all components of exposure uncertainty can be described by unshared measure-

ment error [34, 35]. In contrast to classical methods for the correction of measurement error

like simulation extrapolation (SIMEX) or regression calibration, the hierarchical approach pro-

vides a flexible framework for the modelling of complex structures of measurement error. In

particular, it is straightforward to account for measurement error structures including system-

atic bias, the treatment of multiple mismeasured covariates [191] and the modelling of shared

and unshared exposure and dose uncertainty in a time-varying variable in a coherent frame-

work. Moreover, the hierarchical model can be further extended to account for uncertainty in

additional parameters intervening in dose calculation or for missing values in the explanatory

variables, regardless of whether these values are missing at random or not. However, the

flexibility of this hierarchical approach to account for measurement error correction comes at

the price of additional model assumptions. As a so-called structural method for the correction

of measurement error, the hierarchical approach we presented here requires the specification

of an exposure model, which describes the probability distribution of the true and unknown

exposure Xi(t) of a miner i at time t when accounting for a component of unshared classical

measurement error. Several authors have proposed flexible exposure models based on mixture

models in this situation [436, 373] and in future analyses it could be interesting to study the

impact of alternative exposure model specifications when accounting for exposure uncertainty

in the French cohort of uranium miners. In survival analysis, the use of a structural method

for the correction of measurement error additionally requires the specification of the baseline

hazard function. In this work, we assumed a flexible semi-parametric model that assumes that

this baseline hazard is piecewise constant with intervals that were chosen in accordance with the

lung cancer mortality observed in the general French male population. We tested the influence

of this modelling choice under the Cox proportional hazards model and found that there was

virtually no difference in risk estimates when basing risk estimation on the partial likelihood or

on the full likelihood for the full and the post-55 cohort (see the results presented in Appendix

C).

7.1.3 Conducting Bayesian inference to obtain corrected risk estimates through

a hierarchical model

The Bayesian approach provides a flexible and coherent framework to conduct statistical infer-

ence for hierarchical models. Moreover, in spite of the fact that the choice of a prior distribution

can be perceived as encumbering, the possibility to integrate external knowledge through the
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specification of informative prior distributions can have substantial advantages when conduct-

ing statistical inference for hierarchical models. In complex hierarchical models, there may be

parameters in some of the sub-models that are only poorly informed by the data. In these

cases, the specification of informative prior distributions is indispensable to be able to conduct

statistical inference for these parameters. In order to derive informative prior distributions, we

developed an elicitation task and we compared different methods for the combination of expert

opinion. Another important reason for the choice of a Bayesian approach is the versatility of

Markov Chain Monte Carlo (MCMC) methods. MCMC methods allow to obtain parameter

estimates in almost arbitrarily complex models, under the condition that it is possible to eval-

uate the likelihood for a given set of parameter values. However, it has to be acknowledged

that the use of MCMC methods may be time-consuming, both in the estimation process and

in the development of a problem-tailored implementation in cases where it is not feasible to

rely on software packages like WinBUGS, JAGS or Stan for the fitting of the chosen hierar-

chical model. Moreover, when conducting Bayesian inference via MCMC methods, particular

attention has to be paid to the convergence of the Markov chains to the posterior distribu-

tion of interest. The random walk Metropolis-Hastings algorithm that we chose for parameter

estimation can suffer from an important number of deficiencies, in particular when the aim

is to sample from a high-dimensional posterior distribution. Indeed, due to its random walk

behaviour, the generic Metropolis-Hastings algorithm is quite inefficient when exploring high-

dimensional posterior distributions. Thereby, its use in these situations entails problems in terms

of convergence to the stationary distribution and may result in very time-consuming MCMC

implementations [415, 191]. Promising alternatives in this situation include Integrated Nested

Laplace Approximation [415, 191], as discussed in section 5.3.1, and a MCMC implementation

that relies on Hamiltonian dynamics to suppress the random walk behaviour of the generic

Metropolis-Hastings algorithm through the use of first-order gradient information [437]. While

we were able to achieve important gains in computational efficiency through the use of sparse

matrices in the implementation of the MCMC algorithm used to conduct Bayesian inference

in this work, the integration of Hamiltonian dynamics seems a promising direction to further

improve this implementation in future analyses. Owing to the object-oriented implementation

of the algorithm, it appears that the integration of Hamiltonian dynamics would be relatively

straightforward.

While the hierarchical approach is very flexible, it is important to stay as parsimonious as possi-

ble when using this approach. Based on the results of the simulation studies that we conducted,

we may venture the conclusion that we can neglect small unshared classical measurement er-

ror components (as in the case of the error arising after 1983) and unshared Berkson error

components. When accounting for exposure and dose uncertainty in the post-55 cohort, we

followed this strategy by only accounting for Berkson error shared within miners before 1983

and for components of dose uncertainty that were shared for several exposure values received

by the same worker. While this choice led to a substantial reduction in the dimensionality of

the full posterior distribution, it is questionable whether the achieved reduction was sufficient

to allow for the full exploration of the associated posterior distribution. If this is not the case,

the resulting corrected risk estimates can be considered as an approximate estimation of the

parameters of interest at best. Additionally, there seems to be very little information in the ob-
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served mortality data concerning the values of the input parameters involved in dose calculation

which are specific for each miner. Based on this lack of information, it may be more adequate

to make the simplifying assumption that a common value, for instance, for breathing rate can

be assumed for all miners in a given job condition, in a given mining location and in a given

period of exposure (i.e. before or after the mechanisation of work in the mines). Thereby, we

neglect all components of dose uncertainty that are merely shared within miners and focus on

the components of dose uncertainty that are both shared between and within miners. The focus

on these components of dose uncertainty could thereby allow to account for systematic changes

that may have occurred in the relation between true exposure Xi(t) and true dose Di(t) due to

the changes in the tasks that were performed in French uranium mines. At the same time, it

leads to a considerable reduction in the dimensionality of the full posterior distribution and may

therefore allow for the exploration of this distribution via the MCMC algorithm we implemented

in this work. A welcome side-effect of a more parsimonious model structure may thereby be

that it alleviates some of the difficulties of a classical MCMC implementation when conducting

Bayesian inference for very high dimensional posterior distributions.

Another promising perspective is the implementation of alternative criteria for model compar-

ison and model checking. Currently, we solely base the comparison of alternative models on

the Deviance Information Criterion (DIC). While this criterion is commonly used for model

comparison, it is highly criticised. The points of criticism include the fact that it is not robust

to parameter transformation, its lack of consistency (that is, when the sample size grows to

infinity it is not certain to select the “true model” that generated the observed data) and its

weak theoretical justification [426]. As the aim of this work was to improve the risk estimates

associated with lung cancer mortality in the French cohort of uranium miners by accounting

for exposure and dose uncertainty and not the identification of a “true model” to describe this

context, the simple use of the DIC seems to be justifiable to some extent. Indeed, the model

comparisons we performed in this work were not of a primary importance and our question of

interest was rather to what extent the parameter estimates in the alternative disease models

changed when accounting for the different sources of uncertainty. Nonetheless, a promising per-

spective of this work could be the implementation of more suitable criteria that would allow for

the comparison of alternative disease models. In this context, the calculation of criteria that are

based on posterior model probabilities seems to be very challenging as the estimation of these

posterior model probabilities is very sensitive to the choice of prior distributions and requires the

integration over the values of all unknown quantities. Another option may be to assess the fit of

the alternative models through the posterior predictive distribution. This posterior predictive

distribution describes the probability of outcomes Y rep that could have been observed given the

assumed probability model and given the posterior distribution of the model parameters [332].

In the context of posterior predictive checks, hypothetical outcomes Y rep can be generated and

compared with the observed outcomes through a chosen test statistic informing us about the

fit of the alternative models to the data. In the analysis of censored failure times, the main

problem in the implementation of posterior predictive checks lies in the fact that the outcome

for individual i, Yi, is the minimum of the failure time Ti concerning the event of interest (in

our case death by lung cancer) and a censoring variable Ci. As described in section 5.1.1, it is

common to neglect the distribution of the censoring variable Ci with the justification that the
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censoring variable does not depend on the values of the parameters of interest. However, to be

able to generate hypothetical censored failure times Y rep
i , i ∈ {1, . . . , n}, we need to be able to

generate values for the censoring variable to be able to determine Y rep
i as a function of T repi . It

is unlikely to find an adequate probability model for this censoring variable and the choice of

an arbitrary probability distribution for Ci, for instance an exponential distribution, is likely to

have a strong impact on the values of the calculated test statistics. In this situation, we could

restrict ourselves to the generation of uncensored survival times and generate these uncensored

predictive values only for miners who died of lung cancer, i.e. for all miners for which Yi = Ti.

However, in the analysis of the mortality of the French cohort of uranium miners, an additional

difficulty relies in the fact that the outcome Yi is not only censored, but also both left- and right-

truncated (as it only takes values inferior to 85 years), while Ti is only left-truncated. For a

generated value T repi that is superior to 85 years, it does not seem reasonable to set Y rep
i = T repi ,

because it violates the right-truncation of the outcome. In this case, we can either set Y rep
i = 85

years or generate new values for T repi until it takes a value inferior to 85 years. Both options

are not entirely satisfactory, where the main problem of the latter option is that the rejection

of all values of T repi that are superior to 85 years may be very time-consuming, in particular in

cases where there is only a small probability mass of the posterior predictive density for Ti that

is inferior to 85 years. In light of these difficulties, a first step in the improvement of the com-

parison of the alternative disease models may be achieved by the Watanabe-Akaike information

criterion (WAIC) [332]. While the estimation of the WAIC is essentially as straightforward as

the estimation of the DIC, this criterion can be considered as an improvement of the DIC as it

overcomes some of the deficiencies of the DIC, including its sensitivity to reparametrization and

its lack of consistency [426].

7.1.4 Accounting for exposure and dose uncertainty in the French cohort of

uranium miners

In the analysis of the lung cancer mortality associated with exposure to radon and its progeny

in the French cohort of uranium miners, we used a Bayesian hierarchical approach to explic-

itly account for exposure and dose uncertainty. We assumed different disease and measurement

models to describe the association between true radon exposure and lung cancer mortality and

the association between true radon exposure and observed radon exposure, respectively.

Regarding the disease model, we found that a simple linear Excess Hazard Ratio (EHR) struc-

ture, which is classically used to model the health effects of radiation exposure, seemed to be

more appropriate than the log-linear Cox model to describe the association between radon ex-

posure and lung cancer mortality in the cohort. In a first step, we compared the fit of different

models that accounted for the effect modification by other variables, but not for exposure or

dose uncertainty. Similarly to Vacquier et al. (2009) [70], we found period of exposure to be

the most important effect-modifying variable in the full cohort with a risk that was estimated

to be about five times greater for exposures received after 1955 than for exposure received until

1955. The most plausible explanation for this finding is the difference in the quality of exposure

assessment with a retrospective exposure reconstruction until 1955 and a prospective exposure
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assessment of good quality after 1955. Moreover, the resulting association of high exposure rate

and low-quality exposure assessment seems to create an attenuation of the exposure-response

relationship for high cumulated exposure values, which is a phenomenon observed in many oc-

cupational studies [189, 438, 17, 14]. While we observed this flattening of the exposure-response

curve for the total cohort, there was no evidence for a comparable attenuation for high cumu-

lated exposure values when restricting analyses to the post-55 cohort, i.e. miners that were

employed after 1955 and for which radon exposure had only been assessed in a prospective

fashion. The risk associated with radon exposure estimated in this sub-cohort was substantially

higher than the risk estimated in the full cohort with an uncorrected risk coefficient of 2.75

[1.18;5.32] compared to an uncorrected risk estimate of 0.88 [0.50;1.36] for the full cohort. Fi-

nally, we found evidence for a modifying effect of the time since exposure in the full cohort, but

neither in the post-55 cohort nor in the sub-cohort of miners employed before 1955. If there was

a genuine effect modification by time since exposure, we should be able to observe it at least for

one of the two sub-cohorts. The fact that this effect modification by time since exposure only

becomes apparent when mixing a sub-cohort of comparatively young miners with high quality

exposure assessment and a sub-cohort of comparatively older miners with low-quality exposure

assessment suggests that this effect modification could be an artefact caused by exposure or dose

uncertainty.

When accounting for unshared measurement error in the full cohort, we found that the cor-

rection for exposure uncertainty was only of marginal importance in the association between

radon exposure and lung cancer mortality, regardless of the chosen disease model. Owing to

the flexibility of the Bayesian hierarchical approach, we were able to conduct inference under a

measurement model specifying a component of Berkson error shared within miners. In particu-

lar, we assumed that this shared Berkson component affected all exposure values received by a

miner in a given exposure period characterised by a method of group-level exposure assessment

in the same way to reflect the influence of individual job conditions and worker practices. When

assuming this measurement model, we observed a marked increase in the risk coefficient associ-

ated with radon exposure, which was estimated to be 0.99 per 100 WLM. In accordance with the

findings of other studies that accounted for measurement error [439, 440], we observed a widen-

ing of the 95% credible interval when accounting for shared Berkson error in the full cohort,

which was estimated to be [0.48; 1.73]. Concerning the influence of effect modifying variables,

the estimated risk coefficients in the disease model describing the effect modification by period

of exposure were not substantially modified when accounting for unshared or shared Berkson

error. In particular, irrespective of the chosen measurement model, the risk associated with

exposures received after 1955 was estimated to be five times greater than the risk estimated for

exposures received until 1955. Similarly, we observed an attenuation of the exposure-response

relationship for high exposure values when analysing the data of the full cohort, irrespective of

the chosen measurement model. We did not observe a notable increase in the risk coefficient

when accounting for shared or unshared measurement error in the post-55 cohort.

If we maintain our hypothesis that the observed attenuation of the exposure-response and the

observed effect modification by period of exposure are likely to be due to the differences in the

methods of exposure assessment, how can we explain the fact that we still observe these phe-

nomena when we account for measurement error?
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The results of Simulation Study 2 may shed some light on this question. Indeed, the finding that

we continue to observe an attenuation of the exposure-response relationship when accounting

for Berkson error shared within miners could be explained by the fact that we did not account

for the component that is likely to cause the most severe distortion of the exposure-response

relationship in this cohort. Indeed, it is likely that we are faced with a component of classical

measurement error, which is shared both within and between miners for the earliest period of

exposure. In the retrospective reconstruction of the exposure values received until 1955 in the

French cohort of uranium miners, a group of experts estimated only one exposure level for a

given mining location. Moreover, the exposure level for a given mining location was often esti-

mated to be the same for all years of exposure until 1955. This error-prone exposure estimate

was then used to reconstruct all individual exposure values received by all miners who were

employed at the given mining location until 1955. Based on this retrospective reconstruction,

the precision of the exposure level estimated for a mining location can lead to a large component

of classical measurement error shared both within and between miners. As we did not account

for this error component in the analysis of the lung cancer mortality data of the French cohort of

uranium miners, it is not surprising that we still observe an attenuation of the exposure-response

relationship in the full cohort, even after accounting for shared Berkson error. As there was no

retrospective exposure reconstruction in the sub-cohort of miners employed after 1955, it is not

surprising either that we do not observe an attenuation of the exposure-response curve for this

sub-cohort. In conclusion, it is advisable to account for this component of shared classical mea-

surement error in future analyses of the association between radon exposure and lung cancer

mortality in the French cohort of uranium miners in order to obtain reliable risk estimates in

this cohort.

Finally, we calculated absorbed lung doses via the dose model specified in section 5.1.4 in the

post-55 cohort. When relating lung cancer mortality in the post-55 cohort to absorbed lung

dose, we found a risk coefficient of 5.92 per Gray with a credible interval of [2.48; 11.60]. This

result is consistent with the findings obtained by Rage et al. (2012) [88], who found an excess

relative risk of 4.59 per Gray with a 95% confidence interval of [1.31; 11.16] for radon progeny,

when calculating absorbed lung doses in this sub-cohort via the Human Respiratory Tract Model

(HRTM) and when modelling lung cancer mortality via Poisson regression. When accounting for

exposure and dose uncertainty in the post-55 cohort by combining the disease, the measurement

and the dose model in a hierarchical structure, we did not observe a substantial increase in the

risk coefficient associated with absorbed lung dose.

Moreover, we accounted for dose uncertainty in the estimation of absorbed lung doses by speci-

fying informative prior distributions on the input parameters involved in the dose model. These

prior distributions were chosen in accordance with measurements performed in mines and recom-

mendations in the literature (see section 5.1.5). It is likely that the fact that we did not observe

a substantial difference in risk estimation when accounting for dose uncertainty can mainly be

explained by a misspecification of priors. Indeed, even though we know, or at least we sus-

pect, that there were systematic changes in the unknown input parameters intervening in dose

calculation, the prior distributions on these input parameters do not translate this knowledge

for the moment. For instance for average breathing rate, we assumed a log-normal distribution

that was the same for all miners and all periods of exposure. However, it is likely that there
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are big differences between different working conditions and for different exposure periods for

this input parameter. To integrate this information we have established an elicitation proce-

dure to specify an informative prior on the average breathing rate of a French uranium miner

based on expert knowledge. The resulting prior distributions indicate substantial differences

for the different working conditions. Contrary to the log-normal prior that we assumed for

the moment, the prior distributions based on expert knowledge are more in accordance with

the intervals that are recommended by the International Commission on Radiological Protec-

tion (ICRP) or the alpha risk project. In future analyses, it would be interesting to study the

impact of these elicited prior distributions on average breathing rate on the estimation of the

association between radon exposure and lung cancer mortality in the French cohort of uranium

miners. While the three methods for the combination of expert opinion that we compared in

this work, namely averaging, linear pooling and a Supra-Bayesian approach, resulted in very

similar prior distributions on average breathing rate, the latter approach appears to be more

flexible than the two alternative approaches. In particular, the Supra-Bayesian approach for

the combination of expert opinion could be introduced in the hierarchical model we assumed

when accounting for exposure and dose uncertainty in the cohort, thereby allowing to model

all available information in a unique and coherent framework. Moreover, this approach of prior

elicitation could be adopted to combine the information available in the literature with the in-

formation elicited through expert opinion. Finally, to improve the elicitation task we conducted

in this work, we could combine the chosen indirect elicitation exercise with a dynamic graphical

feedback. The application we developed allows to give a graphical feedback where experts can

indicate their confidence concerning two alternative probability distributions. In our experience

with this application, experts often commented their evaluations by indicating that they would

have preferred more probability mass at a certain point in the probability distribution. If they

were presented with an interactive graphical display of the probability distributions, similar to

the histogram method described by Soares et al. (2011) [350] for instance, they would have the

possibility to adjust their elicited opinion in that case, ultimately leading to a more reliable rep-

resentation of their opinion. While the direct use of an interactive graphical elicitation method

would be another alternative, it may be quite challenging for an expert to directly produce the

entire probability distribution to translate their uncertainty on the parameter of interest. The

combination of the indirect elicitation task we used in the elicitation of expert opinion with the

possibility to modify the resulting probability distributions in an interactive way seems there-

fore a promising way to further improve the method for the elicitation of expert opinion that

we employed in this work.

7.2 Perspectives

7.2.1 Implications for radiation protection

As the last uranium mine in France closed in 2001 and as uranium mining has disappeared in

many other countries in which this industry was still active some 30 years ago, one may expect

that the follow-up of uranium miners is of little importance for the definition of radiation pro-

tection guidelines for workers today. Quite contrary to this expectation, there has been a new
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boom in uranium mining [441]. Due to an ever increasing demand for energy, and recently in

particular for energy which is low in greenhouse gas emission, there has been an increasing inter-

est in uranium exploration, particularly in developing countries [442, 443, 444]. Moreover, the

precise estimates on the health effects of radon exposure are not only important for the purpose

of establishing protection guidelines in underground mines, but also to protect the health of the

general population. Residential radon exposure is believed to be responsible for 2% of deaths

from cancer in Europe [23]. The installation of better thermal insulation in buildings to reduce

the energy consumption in heating may further increase residential radon exposure, as this ther-

mal insulation typically decreases the air exchange rates in these buildings. In order to be able

to assess the cost-effectiveness of possible measures for the reduction of radon concentrations in

buildings, it is indispensable to understand the health risks associated with radon exposure. In

contrast to studies on uranium miners, studies on residential radon mostly use a case-control

design and show conflicting results [24, 151, 23]. In light of the many sources of uncertainties

which arise in the analysis of the association between radon exposure and lung cancer mortality

in cohorts of uranium miners, we can ask ourselves whether these analyses are a suitable source

of information to establish guidelines for radiation protection. Uranium miners are not only

almost exclusively adult males [445, 90], but they are first exposed as adults. Furthermore, they

may be exposed to additional potentially lung carcinogenic substances, including silica quartz

[84], arsenic [446], diesel exhaust [447] and asbestos [448, 449] and present breathing character-

istics which are different from those of subjects which are exposed in their homes [450].

Despite of these drawbacks, there are also various advantages of extrapolating risk estimates

based on uranium miners to complement the results of case-control studies on residential radon

exposure. Firstly, studies on uranium miners generally consist in large prospective cohort stud-

ies with a low percentage of subjects lost to follow-up (in the French cohort of uranium miners

this percentage is less than 1%). Due to their design, analyses on cohorts of uranium miners

probably neither suffer from selection bias nor recall bias for tobacco consumption, two problems

which may be encountered in case-control studies on residential radon. Moreover, in studies on

residential radon exposure, smoking and radon exposure tend to be negatively correlated, since

in urban areas there is both a lower concentration in residential radon and a higher prevalence

in smoking [23], whereas previous analyses on the impact of smoking in occupational cohort

studies on uranium miners suggest that smoking is not a source of confounding in these studies

[451, 452]. As the measurement error occurring in variables to assess smoking patterns in case-

control studies may be quite complex and in particular differential, it is difficult to account for

this type of measurement error and uncorrected risk estimates can be expected to be at best

partially adjusted for smoking in these studies. Thereby, the negative correlation between radon

exposure and tobacco consumption can lead to a systematic underestimation of risk coefficients

associated with radon exposure in studies on residential radon. Moreover, in case-control stud-

ies on residential radon, exposure uncertainty will likely be greater than in occupational cohort

studies, because the exposure assessment is mostly conducted retrospectively and few measure-

ments are taken to reconstruct the exposure history of several decades. In occupational cohort

studies, on the other hand, there is often a prospective and direct exposure assessment, at least

for the more recent exposure periods. At the same time, the variability of radon exposure tends

to be smaller in studies on residential radon than in occupational studies on cohorts of under-
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ground miners. Note that the exposure variance in occupational cohort studies might be further

amplified through the cumulation of annual exposure values. Indeed, under the assumption of

a positive correlation between the annual exposure values of a miner, the variance of cumulated

exposure is greater than the sum of the variances of annual exposure. Therefore this cumulation

will probably make the results on the health effects of radon exposure that are based on cohorts

of uranium miners even less vulnerable to the impacts of exposure uncertainty. In light of these

facts, it seems important to complement the information obtained by case-control studies on

residential radon by extrapolating results on the association between radon exposure and lung

cancer mortality obtained on cohorts of occupationally exposed underground miners. In com-

parison to most other cohorts of underground miners, the French cohort of uranium miners is

characterised by low levels and low rates of radon exposure for a long period of time and prospec-

tive exposure assessment of good quality, making it especially valuable for the extrapolation to

residential exposure. To account for breathing characteristics, which are likely to differ between

occupational and residential exposure, it is indispensable to calculate absorbed lung doses in

cohorts of uranium miners and to account for all sources of uncertainty in dose calculation [453].

In accordance, the ICRP recently announced its intention to use a dosimetric approach in the

study of the health effects of radon exposure that involves the calculation of radiation doses to

the respiratory tract, thereby treating radon like all other radiologically relevant radioisotopes

[114, 110, 454]. In this work, we showed that the Bayesian hierarchical approach can be used to

account for exposure and dose uncertainty in the association between radon exposure and lung

cancer mortality.

However, the findings of the simulation studies we conducted underline the importance of the

correction for shared and unshared exposure uncertainty in radiation epidemiology, as they show

that complex error structures in occupational cohort studies can lead to an attenuation of the

exposure-response relationship for high exposure values. This phenomenon, which is frequently

observed in occupational cohort studies, may pose serious challenges in risk modelling. Indeed,

if this attenuation reflects the association between true exposure and the disease outcome and

a linear model is chosen, it may cause a severe underestimation of risk for workers with low

exposures. On the other hand, if the association between true exposure and the outcome is lin-

ear and the observed distortion of the exposure-response relationship is caused by measurement

error, fitting a non-linear or a piecewise-linear model can lead to an overestimation of the risk

coefficient for workers with low exposures. To inform radiation protection guidelines for work-

ers, researchers are particularly interested in the low exposure range occurring in occupational

cohort studies, because exposure levels of workers today tend to be much lower than in the past.

Moreover, these exposure values are comparable to exposures received by the general popula-

tion. Ignoring the cause of an observed distortion of the exposure-response curve may therefore

seriously limit the extrapolability of risk estimates obtained in occupational studies in radiation

epidemiology to the general population. Finally, our findings suggest that the effect modification

of the association between radon exposure and lung cancer mortality by time since exposure,

a well-studied phenomenon which is observed in many studies on cohorts of uranium miners

[385, 384, 72, 90], may be an artefact caused by the complex patterns of exposure uncertainty

in these studies. Indeed, we neither observed this effect modification for miners employed until

1955 nor for miners employed after 1955, but merely when mixing these two sub-cohorts which
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present a very different quality of exposure assessments. Similarly, the results obtained by

Hunter et al. (2013) show a marked effect modification by time since exposure when analysing

pooled data of the three European cohorts (the Czech, the German and the French cohort of

uranium miners). When restricting data to miners who were exposed to less than 50 WLM,

however, this effect modification was no longer observable. Moreover, the effect modification

by time since exposure is not observed in studies on residential radon. In future research, it

would be interesting to study the influence of time since exposure in the Post-60 cohort of the

Wismut cohort and the Post-68 cohort of the Czech cohort and in the sub-cohort of miners who

were employed before these years. In that way, it would be possible to assess whether there

is a genuine effect modification by time since exposure in some cohorts of uranium miners or

whether this effect modification is merely an artefact that can arise when mixing a relatively

young sub-cohort with good exposure assessment and a relatively older sub-cohort with poor

exposure assessment, as it seems to be the case in the French cohort of uranium miners.

Finally, based on the findings on the real and on the simulated data sets concerning the impact

of measurement error in cohorts of uranium miners, we would recommend to either base risk

estimates on analyses which are corrected for all sources of shared and unshared exposure and

dose uncertainty or to exclusively base risk estimation on those sub-cohorts of uranium miners

for which exposure was assessed in a prospective fashion.

7.2.2 The use of the Bayesian hierarchical approach in radiation epidemiology

In radiation epidemiology, the use of a hierarchical approach offers the possibility to account

for complex structures of exposure and dose uncertainty and to describe the different sources

of uncertainty through the linking of conditional independence models. It may be challenging

to conduct statistical inference for these models, because they can lead to a complex and high-

dimensional likelihood and in practice it may be intractable to integrate and to maximise this

high-dimensional likelihood. Moreover, in complex hierarchical models, we can often be faced

with the situation where the unknown parameters in some sub-models are only poorly informed

by the data and thereby require other sources of information. The Bayesian approach to con-

duct statistical inference offers an elegant solution to include external information through the

specification of informative prior distributions and to conduct inference via MCMC methods.

As the field of radiation epidemiology is particularly interested in the estimation of the health

effects of chronic low-dose exposure to ionising radiation, it is faced with many uncertainties.

In particular, a great challenge in this field is the extrapolation of the observed health effects of

exposures received at high to moderate doses to low-dose exposures. In the situation where it

is unethical to add new study participants by deliberately exposing them to ionising radiation,

we have to find other solutions to increase the statistical power and to reduce the uncertainty

in studies in radiation epidemiology. The integration of external information through the spec-

ification of informative prior distributions and the modelling of all sources of uncertainty in a

Bayesian hierarchical approach have the potential to increase statistical power and to reduce our

uncertainty in risk estimation. Moreover, when accounting for all sources of exposure and dose

uncertainty, we can hope to avoid distortions of the dose-response relationship which would make

any extrapolation from populations that received high to moderate doses to inform us about the

health effects of low-dose and low-dose rate exposures futile. Preston et al. (2013) [19] identified
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the reliable combination of epidemiological data with experimental laboratory animal and cellu-

lar data as one important challenge in the reduction of uncertainties in estimating health risks

associated with exposure to ionising radiation. Based on its coherence and its flexibility when

it comes to the modelling of complex probability models, the Bayesian hierarchical approach

is arguably the most promising direction to achieve the combined modelling of epidemiological

and experimental data.

More generally, epidemiology is often faced with the challenge of the estimation of weak associa-

tions between an exposure of interest and a disease outcome in a context where these associations

may be distorted by the possibility of complex interactions with other factors and the effects

of measurement error. In order to address this challenge, it can be argued that we need to

specify a hierarchical model that can describe measurement error, both in the exposure of in-

terest and the confounding variables to avoid residual confounding. To be able to estimate the

parameters in all sub-models of this hierarchical model and to be able to assure a certain statis-

tical power when estimating weak associations, we need to be able to integrate prior knowledge

based on both previous studies and on expert knowledge. Moreover, in this situation, it may

simply be impossible to establish the truth of a given hypothesis based on a single well-designed

epidemiological study. As pointed out by Thiebaut et al. (2007) in the context of nutritional epi-

demiology, “Owing to the current limitations of available procedures and reference instruments,

we cannot assume that corrected estimates of diet-disease associations in any single study are

definitive. To firmly establish a hypothesis, we need carefully conducted studies in diverse pop-

ulations with different dietary patterns and ranges of intake, incidence rates, and sociocultural

histories.” [127]. To address questions that arise in epidemiology, we need an approach that

can guide public health decisions. Popper’s hypothetico-deductive approach is often resumed

in the idea that “to assert from innumerable observations that all swans are white does not

protect the affirmation against the later discovery of a non-white swan” [455]. While this idea

is indubitably true, it is questionable to what extent this knowledge can help us in a context

where we have to make decisions and take actions in the treatment of swans. In epidemiology,

the idea is to guide decisions on public health measures and the consequences of these decisions

may have very different effects in practice. In particular, to judge that the exposure to a certain

substance is innocuous when it is harmful may have more serious consequences than to claim

that this substance is harmful when it is innocuous. Contrary to the frequentist approach, the

Bayesian approach to statistical inference has a solid decision-theoretic foundation that allows

to account for different loss functions in a coherent framework [359, 292]. Finally, the Bayesian

approach can provide an answer to the question that researchers are most interested in, namely

“what is the probability that there is an association between an exposure and a disease outcome

of interest?”.

The integration of external information through the specification of informative prior distri-

butions introduces a certain subjectivity in the analyses of epidemiological studies. Given this

subjectivity, which contradicts the ideal of the strict objectivity of scientific research, is it worth-

while to introduce external information through the specification of prior distributions?

There is no more arbitrariness in the specification of a prior distribution than there is arbitrari-

ness in the choice of a probability model. As the subjective choices involved in the specification

of a probability model will in general have a greater effect on statistical inference than will
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the choice of prior distributions on the unknown parameters [456, 245], it is surprising that

researchers show more discomfort with the former than with the latter.

Finally, conducting Bayesian inference to estimate the parameters in a hierarchical model can

be time-consuming both in the development of a problem-tailored MCMC implementation and

in the estimation process. Given this effort, is the use of a Bayesian hierarchical approach to

account for exposure and dose uncertainty suitable for the analysis of the health effects in epi-

demiological studies?

An alternative can be to spent large amounts of money and time in the design and in the analysis

of animal studies to find the biological basis of effect modifying variables, which may be only

an artefact caused by measurement error. Moreover, compared to the years it often takes to set

up an epidemiological study and to organise its follow-up, it can be argued that the time spent

in the development and especially in the computation of risk estimates that are corrected for

exposure and dose uncertainty is negligible.

7.2.3 Overcoming challenges in the implementation of a Bayesian hierarchical

approach

Based on the points we discussed so far, the Bayesian hierarchical approach seems to be a

promising option to address many challenges in epidemiology. However, the implementation

of a Bayesian hierarchical approach involves two main obstacles: The first is the construction

of a hierarchical model which involves the specification of all sub-models to describe different

error structures and other sources of uncertainty. The second is how to obtain and to interpret

estimates of the parameters of interest. Based on these obstacles, we would not fully agree with

Adam Smith, who is reported to have said that with the combination of the Bayesian paradigm

and MCMC all problems of statistics had been solved. According to him, “there was nothing

else to do with statistical problems but to plug them into a computer and turn the Bayesian

crank” [224].

The first obstacle can be easily overcome by interdisciplinary collaborations between statisti-

cians and researchers in radiation epidemiology and in other domains. The experiences of the

specialists in the different domains can provide invaluable information, both when it comes to

the definition of the different sub-models involved in the hierarchical model and in the specifica-

tion of prior distributions. In view of data structures and problems addressed in epidemiology

that are becoming ever more complex, interdisciplinary collaborations are both becoming indis-

pensable and providing considerable contributions to the quality of the studies that arise from

these collaborations.

The main obstacle in the idea to plug statistical problems into a computer and to “turn the

Bayesian crank” is that there are so far no statistical software packages that would provide the

possibility for the fitting of the complex hierarchical models that are necessary to account for

exposure uncertainty in epidemiological studies in a time-efficient manner. In many cases, we

still need to develop a problem-tailored MCMC implementation to conduct Bayesian inference

for the specified hierarchical model to address challenges like the cumulation of individual expo-

sure values to obtain cumulated exposure or to accelerate the updating of the high-dimensional

unknown quantities. Although they convincingly demonstrated the advantages of a Bayesian
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approach to conduct statistical inference, the heroes of the glorious Bayesian revival, including

Jeffreys, Savage and Good, were not able to convince the scientific community to actually use

this approach. Similarly, we should not have too many illusions about the extent to which the

hierarchical approach to account for exposure and dose uncertainty will be used in radiation

epidemiology or in other domains unless they exist software packages that provide an efficient

MCMC implementation to conduct Bayesian inference in this situation.

The software application for the elicitation of prior information based on expert knowledge that

we developed in this work can be seen as a contribution to overcome both obstacles. Firstly, it

provides a generic software implementation that can be applied in other studies and, secondly, the

elicitation of informative prior distributions brings statisticians closer to their subject-matter

colleagues [347]. Several authors have argued that the elicitation of prior distributions is an

important part of understanding the parameters in a probability model [347, 343]. This under-

standing is a necessary step to be able to interpret the posterior distribution [343] and more

generally to provide answers that applied researchers are interested in.

7.3 Conclusion

To conclude, the hierarchical approach, combined with the Bayesian framework to conduct

statistical inference, appears to be an extremely powerful and promising alliance in the study

of the health effects of radiation exposure in epidemiological studies. In radiation epidemiology,

it is of great importance to account for uncertainties and to integrate external information in

the analysis of epidemiological studies to obtain more reliable and more precise estimates when

modelling the health effects of radiation exposure. The Bayesian hierarchical approach provides

a promising solution to both challenges by accounting for all available information and all sources

of uncertainty in a unique and coherent framework. Moreover, it can provide answers to questions

that are of interest to researchers, radiation protection committees and to the general public.

Nonetheless, the use of the Bayesian hierarchical approach to account for exposure and dose

uncertainty in epidemiological studies requires the development of generic software packages

that allow to use this approach in a broad range of problems and it makes interdisciplinary

collaborations indispensable. Finally, with great power comes great responsibility, and the

Bayesian hierarchical approach can neither dispense with the parsimonious modelling of the

observed phenomena nor with model checking and sensitivity analyses concerning the specified

prior distributions.
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Appendix A

Accelerating the evaluation of the

posterior distribution

A.1 Accelerating the evaluation of the measurement model

In order to speed up inference, we accelerated the evaluation of the measurement model by

using the rules that additions are faster then multiplications and that applying the exponential

function is very computer intensive. In particular, in the measurement model, we are concerned

with the evaluation of [Xiq|Ziq,σB] in the case of Berkson error and [Ziq|Xiq,σ
c] in the case of

classical measurement error. As described in section 5.1.2., we made the assumption that Xiq

conditional on Ziq in the Berkson model and Ziq given Xiq in the classical measurement error

model follow a lognormal distribution. The density of a variable Y that follows a lognormal

distribution is given by

1

y
· 1

σ
√

2π
exp

(
−(ln y − µ)2

2σ2

)
(A.1)

where µ and σ are the mean and the standard deviation of its natural logarithm, respectively.

Its mean is given by E(Y ) = exp(µ + σ2

2 ). As we assumed Berkson and classical measurement

error without a systematic bias component, we want the two measurement models to verify

E(Xiq|Ziq) = Ziq for Berkson error and E(Ziq|Xiq) = Xiq for classical measurement error.

Accordingly, we chose the parameters of the conditional distribution of Xiq given Ziq as µ =

ln(Ziq) +
σ2
piq

2 and σpiq . For the conditional distribution of Ziq given Xiq we chose a lognormal

distribution µ = ln(Xiq) +
σ2
piq

2 and σpiq .

Measurement model for Berkson error

Given these parameter choices, we can simplify the Metropolis-Hastings ratio that has to be

evaluated to update the values of true exposure Xiq in the case of Berkson error by the following
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simplifications:

n∏
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Qi∏
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Measurement model for shared Berkson error

Similarly to unshared Berkson error, we can simplify the Metropolis-Hastings ratio for shared

Berkson error in the following way:
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Measurement model for classical measurement error
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Further simplification using the fact that σ2
piq = σ2

5 since classical error only occurred during

the last calendar period (1983-1999) yields:
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A.2 Accelerating the evaluation of the exposure model

When updating the latent exposure values X, the evaluation of the exposure model can be

simplified in order to accelerate inference:
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Similarly, when using a Metropolis-Hastings step to update the parameters µx and σx we can

simplify this ratio by writing
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Qi∏

q=1

πµcandx
(Xt

iq)

πµtx(Xt
iq)

=
n∏

i=1

Qi∏

q=1

1
Xt
iqσX

√
2π

exp

(
−(ln(Xt

iq)−µcandX )
2

2σ2
X

)

1
Xt
iqσX

√
2π

exp

(
−(ln(Xt

iq)−µtX)
2

2σ2
X

)

= exp




n∑

i=1

Qi∑

q=1

(µtx)2 − (µcand
x )2 + 2 ln

(
Xt
iq

)
· (µcand

X − µt
X)

2σ2
X




and

n∏

i=1

Qi∏

q=1

πσcandx
(Xt

iq)

πσtx(Xt
iq)

=
n∏

i=1

Qi∏

q=1

1
Xt
iqσ

cand
X

√
2π

exp

(
−(ln(Xt

iq)−µX)
2

2(σcandX )2

)

1
Xt
iqσ

t
X

√
2π

exp

(
−(ln(Xt

iq)−µX)
2

2(σtX)2

)

=
n∏

i=1

Qi∏

q=1

σtX exp

(
−(ln(Xt

iq)−µX)
2

2(σcand
X )2

)

σcand
X exp

(
−(ln(Xt

iq)−µX)
2

2(σtX)2

)

=
σtX
σcand
X

exp




n∑

i=1

Qi∑

q=1

(
(σcand
X )2 − (σt

X)2
) (

ln
(
Xt
iq

)
− µX

)2

2(σcand
X )2(σt

X)2


 ,

respectively.
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Appendix B

Performance of the implemented

Bayesian hierarchical approach when

accounting for unshared

measurement error

In order to test the performance of the implemented Bayesian hierarchical approach when ac-

counting for unshared measurement error, we conducted a simulation study. The results of

this simulation study, which are presented in the following, can be found in the appendix of

the paper Hoffmann et al. (2017, Radiation Research) “Accounting for Berkson and classical

measurement error in radon exposure using a Bayesian structural approach in the analysis of

lung cancer mortality in the French cohort of uranium miner”.
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Results on simulated data sets to illustrate the performance of the proposed approach 

We performed a simulation study to illustrate the performance of the Bayesian hierarchical approach to 

account for exposure uncertainty.  

We generated data with an excess relative risk of 1 per 100 working level months and considered 

lognormal, heteroscedastic and multiplicative measurement error with two exposure periods. For the first 

exposure period we generated measurement error U with Log(U) following  a normal distribution with 

mean -0.32 and standard deviation 0.8. For the second period the mean was -0.125 and the standard 

deviation 0.5. For every miner, we generated one exposure value in the first period and one exposure 

value in the second exposure period. In the first exposure period, cumulated exposure was set equal to the 

first value and in the second period it was set equal to the sum of the two values.  

We used a method based on piecewise exponential variables to generate survival times depending on 

continuous and time-varying covariates proposed by Hendry (2014).  

To test the performance of the Bayesian hierarchical approach to account for Berkson and classical 

measurement error, 100 data sets were generated for each type of error. Both corrected and uncorrected 

Excess Hazard Ratio (EHR) estimates were obtained by Bayesian inference under flat prior distributions.  

Table S2 Corrected and uncorrected Excess Hazard Ratio (EHR) for classical measurement error 

and Berkson error under heteroscedastic measurement error. The EHR value to generate the data 

was 1. Cover probabilities are given for 95% credible intervals. 

Type of error Uncorrected 

 

Corrected 

 

 EHR  

per 100 WLM 

Cover  

Probability 

EHR 

per 100 WLM 

Cover 

Probability 

Classical error 0.42 [0.17;0.76] 0.20 0.96 [0.39;1.92] 0.95 

Berkson error 0.83 [0.42;1.40] 0.90 1.07 [0.50;1.97] 0.95 

 

As can be seen in Table S2, the Bayesian hierarchical approach showed good performance in correcting 

both Berkson and classical measurement error with estimated cover probabilities of 95% and mean Excess 

Hazard Ratios close to 1.  

 



Appendix C

Sensitivity of risk estimates on the

specification of the piecewise-linear

model on the baseline hazard

In order to test the sensitivity of risk estimates on the specification of the piecewise-linear

model on the baseline hazard as specified in 5.1.1, we compared the risk estimates obtained on

the full cohort and on the post-55 cohort when conducting inference based on the full likelihood

and the partial likelihood. The following sensitivity analysis can be found in the appendix of

the paper Hoffmann et al. (2017, Radiation Research) “Accounting for Berkson and classical

measurement error in radon exposure using a Bayesian structural approach in the analysis of

lung cancer mortality in the French cohort of uranium miner”.
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Comparison of results of the Bayesian hierarchical approach, Partial Likelihood estimation and Full 

Likelihood estimation  

In order to assess the impact of having to specify a form of the baseline hazard, we compared the results 

for the Bayesian approach under flat prior distributions with the results obtained by using Partial 

Likelihood (PL) and Full Likelihood (FL) Estimation for the model 

h𝑖 (t) =  h0(t) exp(β1 𝑋𝑖
𝑐𝑢𝑚(t)), 

i.e., the classical form of the Cox proportional hazards model. PL and FL estimation where implemented 

in R using the survival and the eha package, respectively.  

For Bayesian and FL inference, we assumed the piecewise constant model for the baseline hazard 

ℎ0
(𝑡) =  𝜆𝑗 ∀𝑡 ∈  𝐼𝑗 =  (𝑠𝑗−1, 𝑠𝑗  ] 

where  𝝀 =  (𝝀𝟏, 𝝀𝟐, 𝝀𝟑, 𝝀𝟒
). The cut-points of the time-axis 𝒔𝟏, 𝒔𝟐, 𝒔𝟑, 𝒔𝟒 were 40, 55, 70 and 

85 years. As can be seen in Table 2, the three approaches produce very similar results when 

it comes to risk estimates and estimated hazard ratios.  

 

Table S1 Comparison of esimates obtained by Bayesian inference, Partial Likelihood Estimation 

and Full Likelihood Estimation. CI denotes 95% credible intervals for the Bayesian approach and 

95% confidence intervals for Partial Likelihood and Full Likelihood Estimation 

 β 

in 𝟏𝟎−𝟐 

Hazard Ratio 

Bayesian approach  

    Full cohort 

   Post-55 cohort 

 

0.25 [0.12; 0.35] 

1.18 [0.62; 1.72] 

 

1.28 [1.14;1.42] 

3.27 [1.85; 5.60] 

Partial Likelihood Estimation 

    Full cohort 

    Post-55 cohort 

 

0.25 [0.14; 0.36] 

1.19 [0.64; 1.74] 

 

1.28 [1.15; 1.44] 

3.29 [1.89; 5.73] 

Full Likelihood Estimation 

    Full cohort 

    Post-55 cohort 

 

0.24 [0.13; 0.35] 

1.27 [0.71; 1.83] 

 

1.30 [1.14; 1.42] 

3.57 [2.04; 6.21] 

 



Appendix D

Detailed results on the prior

elicitation for average breathing rate

for all working conditions
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Figure D.1: Hewer before the mechanisation

187



0

2

4

6

8

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 sitting

D
en

si
ty

Individual experts

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in light exercise

D
en

si
ty

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in heavy exercise

D
en

si
ty

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 sitting

D
en

si
ty

Mixture model

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in light exercise

D
en

si
ty

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in heavy exercise

D
en

si
ty

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent  
 sitting

D
en

si
ty

Averaging

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in light exercise

D
en

si
ty

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in heavy exercise

D
en

si
ty

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 sitting

D
en

si
ty

Hierarchical model

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in light exercise

D
en

si
ty

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in heavy exercise

D
en

si
ty

Figure D.2: Underground miner before the mechanisation
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Figure D.3: Underground miner after the mechanisation

189



0

2

4

6

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 sitting

D
en

si
ty

Individual experts

0

2

4

6

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in light exercise

D
en

si
ty

0

2

4

6

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in heavy exercise

D
en

si
ty

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 sitting

D
en

si
ty

Mixture model

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in light exercise

D
en

si
ty

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in heavy exercise

D
en

si
ty

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent  
 sitting

D
en

si
ty

Averaging

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in light exercise

D
en

si
ty

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in heavy exercise

D
en

si
ty

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 sitting

D
en

si
ty

Hierarchical model

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in light exercise

D
en

si
ty

0

3

6

9

0.00 0.25 0.50 0.75 1.00

Proportion of time spent 
 in heavy exercise

D
en

si
ty

Figure D.4: Open pit after the mechanisation
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Appendix E

Résumé détaillé de la thèse

En épidémiologie des rayonnements ionisants, les erreurs de mesure d’exposition et l’incertitude

sur le calcul de la dose absorbée à l’organe constituent des sources d’incertitude importantes

entrant en jeu dans la modélisation et l’estimation des risques sanitaires radio-induits et, plus

généralement, des relations dose-réponse d’intérêt.

Lorsque les erreurs de mesure d’exposition ne sont pas ou mal prises en compte, elles peu-

vent mener à des estimateurs de risque biaisés, à une perte de puissance statistique ainsi qu’à

une déformation de ces relations dose-réponse. Malgré leurs conséquences délétères et leur om-

niprésence dans les études épidémiologiques, les erreurs de mesure d’exposition ne sont que très

rarement prises en compte dans l’estimation de risques sanitaires. L’une des raisons principales

est que les méthodes de correction standards comme la régression calibration ou l’approche

par simulation-extrapolation manquent souvent de flexibilité lorsqu’il s’agit de tenir compte de

structures complexes d’erreurs de mesure.

Dans les études épidémiologiques menées sur des cohortes professionnelles, par exemple, on

s’intéresse souvent à l’association entre l’âge au diagnostic ou l’âge au décès pour une certaine

pathologie et l’exposition cumulée à un agent chimique ou physique. Cette exposition cumulée

est naturellement dépendante du temps. Dans ce contexte, la prise en compte explicite d’erreurs

de mesure d’exposition nécessite de tenir compte de l’historique d’exposition des travailleurs

et, en particulier, du fait que les techniques d’évaluation de l’exposition peuvent avoir changé

au cours du temps. Ainsi, les expositions reçues dans les premières années de suivi d’une

cohorte de travailleurs sont souvent reconstruites rétrospectivement par dires d’experts alors

que les expositions reçues dans les années d’exposition plus récentes sont souvent mesurées

à l’aide de techniques prospectives et possiblement individuelles. Cela peut conduire à des

structures d’erreurs de mesure complexes, caractérisées par des types et magnitudes d’erreurs

qui peuvent varier dans le temps. Ainsi, l’utilisation de techniques de mesure prospectives et

individuelles de l’exposition peut mener à des erreurs de mesure de type classique. Celles-ci

sont par exemple associées au niveau de précision d’un appareil de mesure. Dans le cadre

d’une reconstruction rétrospective de mesures d’exposition, il est techniquement impossible de

reconstruire l’historique d’exposition de chaque travailleur. Ainsi, il est courant d’estimer puis

d’affecter une même valeur d’exposition moyenne à tous les travailleurs associés à un même

environnement de travail pour une période calendaire donnée. On parlera d’erreur de type

Berkson. L’existence probable d’une erreur d’estimation sur cette exposition moyenne va donc
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influencer de la même façon les valeurs d’exposition estimées pour chacun des travailleurs de ce

groupe. En outre, les habitudes quotidiennes de chaque travailleur pendant sa journée d’activité

ou encore les spécificités des postes qu’un travailleur a occupé pendant son suivi peuvent créer

des erreurs de mesure qui se ressemblent sur plusieurs années de suivi consécutives. Ainsi,

une reconstruction rétrospective peut donner lieu à des erreurs de type Berkson partagées par

plusieurs individus et à des erreurs de type Berkson partagées sur plusieurs années de suivi

d’un même individu. Bien que l’impact des erreurs de mesure non-partagées soit désormais bien

établi en épidémiologie, celui des erreurs partagées reste très mal connu.

En épidémiologie des rayonnements ionisants, l’estimation d’un risque sanitaire radio-induit

peut être non seulement erronée par l’existence d’erreurs de mesure d’exposition mais aussi, dans

le cas d’une exposition aux rayonnements ionisants par inhalation ou ingestion, par le fait que ce

risque sanitaire puisse être davantage associé à la dose absorbée à l’organe qu’à l’exposition reçue.

En effet, la dose absorbée à l’organe dépend non seulement de l’exposition reçue mais aussi,

plus généralement, des conditions environnementales associées à cette exposition professionnelle.

Comme les paramètres d’entrée des modèles utilisés pour calculer une dose absorbée à l’organe

à partir d’une exposition reçue sont rarement mesurables, le calcul de la dose absorbée est lui-

même incertain. La prise en compte explicite de cette incertitude dans les estimations de risque

sanitaires radio-induits est un défi méthodologique d’actualité.

L’objectif principal de ce travail de thèse est de promouvoir l’utilisation de l’approche

hiérarchique bayésienne pour la prise en compte explicite et simultanée des erreurs de mesure

d’exposition et de l’incertitude sur le calcul de la dose absorbée à l’organe dans les estimations

de risques sanitaires radio-induits dans les études de cohortes professionnelles. En effet, cette

approche est reconnue pour sa souplesse et sa pertinence pour la prise en compte de sources

d’incertitude multiples et complexes.

Le cas d’étude considéré concerne l’analyse de l’association entre une exposition chronique

et à faibles doses au radon (et ses descendants à vie courte) et le risque de décès par cancer

du poumon dans la cohorte française des mineurs d’uranium. Le radon, gaz radioactif d’origine

naturelle issu de la désintégration de l’uranium 238 contenu dans la croûte terrestre, constitue

la principale source d’exposition naturelle aux rayonnements ionisants de l’Homme. Sachant

que le radon fut reconnu comme cancérigène pulmonaire en 1988 par le Centre international

de Recherche sur le Cancer (CIRC) et que sa concentration devient plus elevée dans des en-

droits confinés comme les habitations ou les mines, il est important de connâıtre précisément les

risques sanitaires associés afin de permettre in fine des propositions d’amélioration des normes

de radioprotection. Dans ce contexte, les cohortes professionnelles de mineurs de fond qui sont,

dans le cadre de leur activité professionnelle, eux-mêmes exposés au radon constituent des pop-

ulations d’étude privilégiées mais pour lesquelles les erreurs de mesure d’exposition au radon

ont souvent une structure complexe. Finalement, l’objectif est d’affiner l’estimation actuelle du

risque de décès par cancer du poumon associé à une exposition chronique et à faibles doses au

radon à partir des données de la cohorte française des mineurs d’uranium en tenant compte de

la structure complexe des erreurs de mesure dans cette cohorte et de l’incertitude sur le calcul

de la dose absorbée au poumon.

Afin de comparer l’impact de l’existence d’erreurs de mesure d’exposition partagées et non-

partagées sur l’estimation d’un risque sanitaire et sur la forme d’une relation exposition-risque,
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deux études par simulations ont été conduites dans le contexte d’études de cohortes profession-

nelles et de l’utilisation de modèles à hasards proportionnels. Différentes structures complexes

mais réalistes d’erreurs de mesure (pouvant varier dans le temps) ont été considérées ainsi que

différentes valeurs de coefficient de risque et différentes valeurs de variance d’erreur de mesure.

Les données d’exposition de la cohorte française des mineurs d’uranium ont été considérées

comme valeurs d’exposition vraies ou observées selon le type d’erreur considéré dans les simu-

lations. Les résultats obtenus montrent qu’une incertitude d’exposition partagée sur plusieurs

années de suivi d’un même individu conduit à des biais plus élevés dans les estimations de

risque ainsi qu’à une déformation plus sévère de la relation exposition-risque qu’une incerti-

tude d’exposition non-partagée ou partagée par plusieurs individus. Ces résultats soulignent

l’importance de proposer une caractérisation et une modélisation précise des erreurs de mesure

d’exposition potentiellement présentes dans la cohorte française des mineurs d’uranium et d’en

tenir compte dans l’estimation du risque de décès par cancer du poumon.

Dans un premier temps, nous avons supposé l’existence d’erreurs de mesure d’exposition

exclusivement non-partagées dans la cohorte française des mineurs d’uranium. Un modèle

hiérarchique bayésien a été proposé afin de décrire, dans un cadre unique et cohérent, le lien entre

l’âge au décès par cancer du poumon d’un mineur et sa vraie exposition au radon (modèle de mal-

adie), puis le lien entre cette exposition vraie et l’exposition observée associée (modèle de mesure

avec erreurs Berkson et classique non-partagées) et enfin, dans le cas d’erreurs non-partagées de

type classique, l’incertitude sur l’exposition vraie (modèle d’exposition). Un algorithme Monte

Carlo par châınes de Markov de type Metropolis-Within-Gibbs adaptatif a été implémenté en

langage Python 2.7 afin de mener l’inférence bayésienne du modèle hierarchique proposé, basé

sur une combinaison de sous-modèles probabilistes conditionnellement indépendants (i.e., modèle

de maladie, modèle de mesure et modèle d’exposition) et le choix de lois a priori spécifiques sur

les différents paramètres inconnus. Une telle approche globale autorise l’estimation conjointe de

l’ensemble des paramètres des sous-modèles améliorant ainsi l’estimation de la variance de ces

estimations.

Dans un deuxième temps, le modèle hiérarchique bayésien a été complexifié afin de prendre

en compte l’existence d’erreurs de mesure d’exposition partagées inter et/ou intra travailleurs

dans la cohorte française des mineurs d’uranium puis, dans un troisième temps, l’incertitude sur

les paramètres d’entrée d’un modèle simplifié de calcul de la dose absorbée au poumon, élaboré

en collaboration avec des dosimétristes. Le calcul de la dose absorbée au poumon fait intervenir

des paramètres difficiles à estimer de par l’existence de très peu d’information dans les données.

Il est alors crucial d’utiliser d’autres sources d’information à travers la spécification de lois a

priori. Dans ce contexte, une élicitation de lois a priori reflétant l’incertitude relative au débit

respiratoire moyen d’un mineur d’uranium français dans 6 conditions d’exposition différentes

a été conduite auprès de trois experts des conditions d’exposition dans les mines d’uranium

françaises. En effet, ce paramètre est notamment un des paramètres d’entrée les plus importants

du modèle de calcul de la dose absorbée au poumon.

L’analyse des données de la cohorte française des mineurs d’uranium a montré une augmen-

tation du risque de mortalité par cancer du poumon associé à l’exposition au radon avec la

prise en compte d’erreurs de mesure Berkson partagées alors que la prise en compte d’erreurs

non-partagées n’a changé l’estimation de risque que marginalement par rapport à une non-prise
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en compte de ces erreurs.

En perspective de ce travail, il serait intéressant d’étudier l’impact d’une mauvaise spécification

de modèles, que ce soit au niveau de la modélisation de la vraie exposition, de la modélisation

des erreurs de mesures ou du modèle de maladie. Enfin, la complexité de l’approche hiérarchique

bayésienne nécessiterait d’améliorer leur accessibilité par la mise en place par exemple de logi-

ciels afin de permettre à la communauté scientifique de s’en approprier.
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Measurement Error in Radon Exposure Using a Bayesian
Structural Approach in the Analysis of Lung Cancer
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Many occupational cohort studies on underground miners
have demonstrated that radon exposure is associated with an
increased risk of lung cancer mortality. However, despite the
deleterious consequences of exposure measurement error on
statistical inference, these analyses traditionally do not account
for exposure uncertainty. This might be due to the challenging
nature of measurement error resulting from imperfect surro-
gate measures of radon exposure. Indeed, we are typically faced
with exposure uncertainty in a time-varying exposure variable
where both the type and the magnitude of error may depend on
period of exposure. To address the challenge of accounting for
multiplicative and heteroscedastic measurement error that may
be of Berkson or classical nature, depending on the year of
exposure, we opted for a Bayesian structural approach, which is
arguably the most flexible method to account for uncertainty in
exposure assessment. We assessed the association between
occupational radon exposure and lung cancer mortality in the
French cohort of uranium miners and found the impact of
uncorrelated multiplicative measurement error to be of
marginal importance. However, our findings indicate that the
retrospective nature of exposure assessment that occurred in the
earliest years of mining of this cohort as well as many other
cohorts of underground miners might lead to an attenuation of
the exposure-risk relationship. More research is needed to
address further uncertainties in the calculation of lung dose,
since this step will likely introduce important sources of shared
uncertainty. � 2017 by Radiation Research Society

INTRODUCTION

Much of the evidence on the health effects associated with
exposure to radon and its decay products (denoted as radon
hereafter) originates from epidemiological data on cohorts
of occupationally exposed underground miners. Studies
conducted on these cohorts have consistently shown a
positive association between radon exposure and lung
cancer mortality. However, the analyzed risk estimates vary
substantially among the eleven most important cohorts of
radon-exposed miners (1). This variation might be due to
factors such as duration of follow-up, background rates of
lung cancer, exposure conditions, lifestyle factors, differ-
ences in the precision of exposure assessment and simple
randomness. Differences in the precision of exposure
assessment may lead to varying degrees of exposure
uncertainty, which can be expressed as measurement error.
Potential consequences of exposure measurement error
include biased risk estimates, a distortion of the exposure-
risk relationship and a loss in statistical power (2). The
effects of measurement error on inference depend both on
the type and the magnitude of error. Since radon exposure in
cohorts of underground miners is assessed with varying
degrees of precision, ranging from retrospective exposure
estimation based on job-exposure matrices to prospective
exposure assessment via personal dosimetry, it is likely that
risk estimates will suffer in varying degrees from exposure
uncertainty. Owing to changes in radiation protection and in
the awareness of the risks associated with radon exposure,
we may be confronted with varying degrees of measurement
error not only among the different cohorts of miners, but
also among different exposure periods in a single cohort.

Despite its pervasive and deleterious consequences,
which jeopardize statistical inference, exposure measure-
ment error is only rarely accounted for in studies
investigating the association between radon exposure and
lung cancer mortality. Moreover, it is questionable whether
classical methods that are routinely used to account for
exposure measurement error, such as regression calibration
and simulation extrapolation (3), are versatile enough to

Editor’s note. The online version of this article (DOI: 10.1667/
RR14467.1) contains supplementary information that is available to
all authorized users.

1 Address for correspondence: IRSN, BP 17, 92262 Fontenay-aux-
Roses, France; email: sabine.hoffmann@irsn.fr.

2 These authors contributed equally to the study.
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obtain reliable risk estimates in this context. Indeed, in
radon exposure studies of underground miner cohorts,
investigators are typically faced with a time-varying
exposure variable presenting multiplicative measurement
error (4–6), where both type and magnitude of error
possibly depend on the period of exposure. More impor-
tantly, in these cohorts of underground miners, there is
generally no validation sample available to estimate the
expected value of true exposure, given observed exposure
or the true size of measurement error. This makes it difficult
to use regression calibration or simulation extrapolation.
Regression calibration relies on the expected values of true
exposure given observed exposure, which should ideally be
estimated on an independent sample. Both regression
calibration and simulation extrapolation require the exact
knowledge of the magnitude of measurement error and are,
in their original version, neither suited for heteroscedastic
measurement error3 nor for measurement error in time-
varying variables. Extensions to adapt regression calibration
to these situations in the context of survival analysis have
recently been proposed (7), but their applicability is
restricted to cases where a validation sample is available.

In this situation, the Bayesian structural approach, which
is arguably the most flexible method to account for
exposure uncertainty, makes it possible to estimate all
unknown quantities, including risk estimates and true radon
exposures, jointly in a unique and coherent framework. This
joint modeling allows for the simultaneous estimation of all
unknown quantities, where exposure uncertainty is reflected
in the estimated precision of risk parameters. Sharing the
efficiency of other structural likelihood-based methods for
measurement error correction (8, 9), this approach can
further improve estimations by allowing for the integration
of existing subject matter knowledge through the elicitation
of prior distributions. This is particularly useful when the
available data are poorly informative and strong prior
knowledge is available (10). Subject matter knowledge can
be available either as expert opinion or historical data. For
example, in the case of radon-exposed underground miners,
it is possible to integrate external information concerning
historical data on the conditions in mines or data on similar
cohorts of underground miners. When no validation sample
is available to estimate the true size of measurement error,
prior uncertainty on measurement error variance parameters
can be included in Bayesian inference, a situation where
classical methods for measurement error correction usually
encounter identifiability problems (2). Finally, it is difficult
or even impossible to calculate confidence intervals for risk
estimates obtained by classical methods for measurement
error correction, whereas credible intervals are obtainable
from Markov Chain Monte Carlo (MCMC) sampling for
Bayesian inference.

In this study, we use a Bayesian structural approach to
account for the effects of measurement error on risk
estimates obtained from a previously published cohort
study of French uranium miners (11). Thereby, we model
the individual failure time by lung cancer death of each
miner, which allows us to account for measurement error in
radon exposure on its natural level of occurrence rather than
in an aggregated fashion on a stratum level, as is frequently
done in Poisson regression. To our knowledge, this is the
first time that a Bayesian structural approach is applied to
account for exposure measurement error when estimating
the risk of lung cancer associated with occupational radon
exposure.

MATERIALS AND METHODS

Study Population

The French cohort of uranium miners is a prospective cohort that
includes 5,086 males employed as uranium miners for at least one year
between 1946 and 1990. Vital status and cause of death were
determined until December 31, 2007. At the end of follow-up, 211
miners had died of lung cancer.

Owing to important changes in radiation protection and exposure
assessment in French uranium mines in 1956, a post-1955 sub-cohort
was defined. This sub-cohort consists of all miners in the original
cohort who were first hired after December 31, 1955. It includes 3,377
subjects and presents 94 lung cancer deaths. The post-1955 cohort, the
total cohort, the sources of data and the methods of data collection
have been described in detail previously (11).

Exposure Assessment

Information on radon exposure, expressed in working level months
(WLM), was assessed individually for each year of employment, but
the method of measurement changed over time (6).

Between 1946 and 1955, there was no systematic exposure
assessment in French uranium mines. Therefore, the annual radon
exposure for this period was retrospectively reconstructed by a group
of experts based on environmental measurements performed in the
mines and information concerning the miners’ type of work and
location. In the course of this exposure reconstruction, the experts
assumed a monthly exposure value of 1, 2, 5 or 10 working levels for
each mining location. This exposure in working levels was then
multiplied by the number of months a miner had worked in each
mining location to obtain an individual exposure value for each year a
miner had worked in this early exposure period.

In 1956, measurements of ambient radon gas concentration at work
sites were introduced to estimate monthly exposures for each miner. In
this period, exposure levels estimated from grab samples were assigned
to work areas. Concurrently, the miners’ activity was documented in
terms of location and time spent at each location. Individual miner
exposures were then calculated by multiplying the time spent in a given
work area by its estimated exposure and summing over all work areas.
Annual individual records kept in paper archives have been
computerized for the purpose of the epidemiological study.

Finally, starting in 1983, personal dosimetry was used to
continuously record the potential alpha energy of radon decay
products received by each miner. Records were maintained in an
electronic database.

Model Formulation

To account for measurement error, we use a structural approach
based on conditional probabilistic independence models (12) in the

3 Heteroscedasticity is defined as the phenomenon in which a
variable can show varying degrees of variability depending on the
value of a second variable.
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French cohort of uranium miners. In this approach, three submodels
must be specified and linked: the disease, measurement and exposure
models. The disease model relates the outcome for miner i, i 2f1, 2,
..., ng to his true radon exposure, where n is the total number of
miners. The measurement model describes the association between
observed and true radon exposure, while the exposure model
characterizes the distribution of true and unknown radon exposure.

Disease Model

To evaluate the relationship between cumulative occupational radon
exposure and lung cancer mortality, we adopted a proportional hazards
model, given by

hiðtÞ ¼ h0ðtÞð1þ EHRiðtÞÞ ð1Þ
where hi(t) is the instantaneous hazard rate of death by lung cancer of
miner i at age t, EHRi(t) is the excess hazard ratio for lung cancer
mortality at time t as a function of cumulative radon exposure Xcum

i (t)
and of potential effect-modifying variables V1i(t),...,Vpi(t), which will
be specified later. In the absence of other covariates, the baseline
hazard h0(t) corresponds to the hazard of death by lung cancer at time t
for an unexposed miner. Xcum

i (t) is a time-dependent covariate
representing the true and unknown cumulated occupational exposure
to radon of miner i at time t, lagged by five years. We assumed a five-
year lag to allow for a latency period between radon exposure and lung
cancer mortality (11).

Age at death by lung cancer of miner i, denoted Ti, is by definition
observed only for miners who actually died of lung cancer. Therefore,
we define a right censoring variable Ci, which is reserved for miners
who died of a cause other than lung cancer, who were still alive on
December 31, 2007 or after their 85th birthday, or who were lost to
follow-up. We define the outcome of interest by the couple (Yi, di),
where Yi is time of last news given by Yi¼min(Ti, Ci) and di indicates
whether miner i died of lung cancer or not (i.e., di¼ 1 if Ti � Ci and
di¼ 0 if Ti . Ci).

An age limitation of 85 years for follow-up was chosen due to the
imprecision in determining the exact cause of death in those occurring
after the 85th birthday (13). Following Heidenreich et al. (5), who
analyzed lung cancer mortality in a large cohort of uranium miners, we
assumed that the baseline hazard h0(t) followed a piecewise constant
hazard model. This presents one of the most convenient and popular
models for semiparametric survival analysis (14). The baseline hazard

function can thus be formalized by a finite partition of the time axis
s0 ¼ 0 , s1 , s2 ,..., , sj with sj¼ max Yi and

h0ðtÞ ¼ kj 8t 2 Ij ¼ ðsj�1; sj� ð2Þ

where Ij denotes the jth time interval (j ¼ 1,..., J) and k ¼ (k1,... kj)
denotes the vector of baseline hazard parameters. In the context of
this model, one has to choose cut-points s1,..., sJ to define the
intervals for which the values of the baseline hazard kj are assumed
to be constant. Heidenreich et al. (5) chose nine age intervals for this
purpose, that is, one for the baseline hazard before 40 years of age,
one for the baseline hazard after the age of 75 and intervals of five
years in between these two boundaries. We used the same lower
boundary of 40 years of age, but decided for a more parsimonious
model with steps of 15 years, given the small number of data points
in our study compared to Heidenreich et al. (5). The cut-points of the
time axis s1, s2, s3, s4 we chose were therefore 40, 55, 70 and 85 years
and k ¼ (k1, k2, k3, k4)

Potential Effect Modifying Variables

The primary model for EHRi(t) used here was linear in cumulated
exposure with no effect modification, that is EHRi(t) ¼ b1 � Xcum

i (t)
(model 1). Vacquier et al. (15) identified the period of exposure (until
1955 and after 1955) as the most important effect-modifying variable
in the French cohort of uranium miners. The corresponding model for
the excess hazard ratio is EHRi(t) ¼ b1 � Xcum

i;�1955(t) þ b2 � Xcum
i;.1955(t)

(model 2), with Xcum
i;�1955(t) and Xcum

i;.1955(t) the sum of all radon exposure
received by miner i until time t and before 1956 and after 1955,
respectively. The associated effect-modifying variable V1i(l) ¼
I.1955(Xi(l)) indicates whether an exposure Xi(l) for miner i at time l
was received after 1955 or not. Xcum

i;.1955(t) can be expressed through
V1i(l) by Xcum

i;.1955(t) ¼
Pt

l¼l1
V1i(l)Xi(l), where Xi(l) is the radon

exposure a miner i received at time l. Thus, the exposure values for a
miner must be summed oveall times l,l ¼ l1,...,t at which he was
exposed to radon before time t. Likewise, Xcum

i;�1955(t) can be expressed
by Xcum

i;�1955(t) ¼
Pt

l¼l1
(1 – V1i(l))Xi(l).

We also chose to include time since exposure as modifying variable.
In this context, the risk of radon exposure is estimated by the excess
hazard ratio, EHRi(t) ¼ b1Xcum

i;5�14(t) þ b2Xcum
i;15�24(t) þ b3Xcum

i;25þ(t).
(model 3), where Xcum

i;5�14(t), Xcum
i;15�24(t) and Xcum

i;25þ(t) are the cumulated
radon exposure at time t that miner i received in the last 15 years, 15–
25 years or more than 25 years ago, respectively. Xcum

i;5�14(t) does not
include exposures received in the last five years, in consideration of
the five-year exposure lag defined earlier. Similar to the period of
exposure, two indicator variables, V2i(l) and V3i(l), can be defined to
express the effect modification by time since exposure. Note that the
time scale of the chosen proportional hazards model is attained age
and therefore, the variablesge at exposure and time since exposure
contain essentially the same information. Finally, we compared these
models with two piecewise linear versions of the linear model with
breakpoints at 50 WLM (model 4) or 100 WLM (model 5) to test the
linearity of the disease model. The probabilistic dependencies between
the variables in the disease model are represented in the directed
acyclic graph in Fig. 1.

For the derivation of the likelihood of the disease model see the
Supplementary Material (http://dx.doi.org/10.1667/RR14467.1.S1).

Measurement Model

To account for uncertainty in radon exposure assessment, we treated
the true radon exposure Xi(t) of miner i at time t as a latent variable
(i.e., one that is not observed), while Zi(t) denotes the observed and
error prone measurement of Xi(t). Note that, in general, two different
types of measurement error are distinguished in the literature, namely
Berkson error and classical measurement error (2). In a classical
measurement error model, one models the observed variable Zi(t)
conditionally on the latent variable Xi(t), assuming that Zi(t) is a

FIG. 1. Directed acyclic graph for the disease model. Circles
indicate unknown quantities and rectangles indicate observed
variables.
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function of Xi(t) and of an error term Ui(t), which is independent of
Xi(t). Conversely, in a Berkson error model, the true latent variable
Xi(t) is modeled conditionally on Zi(t) and the error term Ui(t) is
assumed to be independent of Zi(t). In general, one assumes a classical
error model if an error-prone covariate is measured individually with
independent measuring devices and a Berkson error model whenever
the value of an error-prone covariate is assigned to a group of subjects.
In a Berkson error model, the variability of Xi(t) is assumed to be
greater than the variability of Zi(t) while the opposite is true in a
classical error model (2).

Consistent with much of the literature on uncertainty in radon
exposure (4–6), we postulated a lognormal and multiplicative error
model to represent the measurement of radon exposure in the French
cohort of uranium miners for the complete exposure period. The
nature and magnitude of measurement error, however, changed over
time.

For the time periods 1946–1955 and 1956–1982, which were
characterized by radon exposure estimations by experts and by
ambient measurement devices, respectively, we supposed a Berkson
error model. This can be justified by the fact that an estimate of radon
exposure for a certain position in a mine was assigned to all miners
present at a given time and location. The true exposure of a miner
might differ from this value, mainly as a result of local and temporal
variations in airborne radon concentration, and the resulting error is
likely to be independent of observed exposure. We supposed different
error variances, expressed through the parameters r2

e;1,r2
e;2 , r2

e;3, r2
e;4

associated with the four distinct time periods identified by Allodji et
al. (6) as characterized by Berkson error, namely 1946–1955, 1956–
1974, 1975–1977 and 1978–1982.

We consider the following Berkson measurement error model,

Xiq ¼ Ziq � Uiq; ð3Þ

where log(Uiq) are independent and normal random variables with mean

�r2
e;pB

iq
=2 and variance r2

e;pB
iq
, i.e., log(Uiq) ;Nð�r2

e;pB
iq
=2;r2

e;pB
iq
Þ and pB

iq

denotes the time period at which Ziq is observed. Note that pB
iq takes values

in f1, 2, 3, 4g associated with the four different time periods in the

Berkson period as defined above.

Using the properties of the lognormal distribution, the variance of

measurement error Uiq is V(Uiq)¼ e
r2

e;pB
iq – 1. Moreover, its conditional

expectation E(UiqjZiq) given the qth observed radon exposure of miner
i, Ziq equals 1 8q 2 f1,...,Qig, where Qi is the total number of radon
exposure measurements for miner i. This implies E(XiqjZiq)¼ Ziq, and
thus a general unbiasedness of the surrogate variable Ziq.

For the time period between 1983 and 2007, on the other hand,
exposure measurement was based on personal dosimetry presumably
leading to an error best described by a classical error model. Indeed,
for this time period, it is reasonable to assume that the true individual
radon exposure of each miner was merely assessable with errors that
are essentially caused by an inherent variability of the measurement
process for each miner i and measurement q. Correspondingly, the
classical measurement error model for the fifth time period, 1983–
2007, is given by

Ziq ¼ Xiq �Uiq; ð4Þ

where log(Uiq) ; Nð�r2
e;5=2;r2

e;5Þ, reflecting the assumption of
homoscedasticity of measurement error in this fifth exposure period,
since there were no important changes in the procedure of exposure
assessment. As mentioned earlier, the main difference between the
Berkson and the classical measurement error model is that Uiq is
assumed to be independent of Ziq in the former while it is assumed to
be independent of Xiq in the latter. In the following, we will denote re

¼ (re,1, re,2, re,3, re,4, re,5) the vector of unknown standard deviation
parameters of the natural logarithm of measurement error for all
periods of Berkson and classical error.

Exposure Model

In the case of Berkson error, the model is fully specified by
combining the disease and the measurement model. The correction for
classical measurement error, on the other hand, additionally requires
the specification of the distribution of true and unknown exposure Xiq

in the form of an exposure model. As numerous studies on residential
and occupational radon found radon exposure to be lognormally
distributed (1, 16, 17), we assumed a lognormal distribution for Xiq.

Thanks to changes in radiation protection and to the mechanization of
work in the mines, true radon exposure can be assumed to have
decreased continuously in the period between 1983 and 2007. To
allow different exposure distribution parameters depending on the
period of exposure, we modeled mean and standard deviation
parameters lx;pc

iq
, and rx;pc

iq
, of the normal distribution for log(Xiq) as

a function of period of exposure pc
iq. The variable pc

iq takes values in
f1, 2, 3, 4, 5g corresponding to the exposure periods 1983–1984,
1985–1986, 1987–1989, 1990–1994 and 1995–2007, respectively.
These time intervals were chosen so as to obtain a comparable number
of measurements in each period.

Therefore, lx ¼ (lx,1, lx,2, lx,3, lx,4, lx,5) and r2
x ¼ (r2

x;1, r2
x;2, r2

x;3,
r2

x;4, r2
x;5) denote the vector of unknown mean and variance

parameters of the natural logarithm of true exposure.

Combining the Submodels and Defining Prior Distributions

When modeling measurement error using conditional independence
models (13), one can combine the disease model, the measurement
model and the exposure model by using the assumption that
measurement error is nondifferential, i.e., disease outcome Yi and
observed exposure Ziq are conditionally independent given true
exposure Xiq (2) for each miner i. The directed acyclic graph for the
full hierarchical model, with the results of the combination of the three
submodels, is shown in Fig. 2. Independent prior distributions were
chosen for the parameters b, k, lx, rx and re.

We adopted centered normal distributions with large variance (104)
for the regression coefficients b¼ (b1, b2, b3). The prior for b was left
truncated to guarantee the positivity of the instantaneous hazard hi(t)
[see Eq. (1)]. Following Ibrahim et al. (14), we used external data on
the national lung cancer mortality rates of the general population for
French men between 1968 and 2005 to specify independent and
informative gamma priors for k. In accordance with these mortality
rates, we defined gamma priors kj ; G(a0j, b0j) with a0j taking values
23.66, 35.53, 88.10 and 29.75 and b0j taking values 4.90 108, 2.58 107,
1.61 107 and 3.25 106 for the four time intervals, j¼ 1, 2, 3, 4, defined
earlier in the model describing baseline hazard k [see Eq. (2)].

For the parameters re,1, re,2, re,3, re,4 and re,5 describing the
standard deviation of log-transformed measurement error in the five
exposure periods, we specified independent normal distributions that
were truncated at zero to respect their positivity and centered at the
values 0.93, 0.47, 0.42, 0.33 and 0.10, respectively. These values
correspond to the estimates that Allodji et al. (6) obtained for the
standard deviation parameters of log-transformed measurement error
in the French cohort of uranium miners. The standard deviation
parameters of these truncated normal prior distributions were chosen
so as to allow for some uncertainty in the values re, while checking
the convergence of the Markov chains to their stationary distribution.
Accordingly, these standard deviations were set to 0.03, 0.005, 0.005,
0.005 and 0.0005.

Finally, the prior distributions for the parameters of the exposure
model for the classical measurement error period after 1983 were
defined in accordance with data on radon exposure in a sub-cohort of
the German Uranium Miners cohort consisting of 11,000 miners who
were first employed by the Wismut company between 1971 and 1989
(18). The miners in this sub-cohort may have been exposed to radon in
a way similar to that of the miners in the French cohort after 1983,
since their exposure conditions were subject to similar technological
developments and the same guidelines for radiation protection.
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Among exposed miners in this sub-cohort, the median value of
cumulative radon exposure was approximately 5 WLM and mean
radon exposure was 9 WLM (18). If we divide these values by the
average duration of exposure in this cohort, which was seven years,
we obtain a yearly median exposure of 0.71 WLM and a yearly mean
exposure of 1.29 WLM. Using the properties of the lognormal
distribution, we can deduce a mean and a variance of log-transformed
exposure values of –0.34 and of 1.18 for this sub-cohort. We therefore
assumed the prior expected value of r2

x in the French cohort of
uranium miners to be 1.18. With respect to this condition, we chose an
inverse gamma prior for r2

x with shape parameter ar2
x
¼ 1.75 and scale

parameter br2
x
¼ 0.88 for all pc 2 f1, 2, 3, 4, 5g. The resulting 95%

prior credible interval (95% CI) for r2
x is (0.17; 5.22). Inverse gamma

distributions as prior distributions for variance parameters are a
classical choice for Bayesian inference to respect their positivity and
to obtain analytically tractable full conditional distributions for these
parameters.

The steady decrease in annual mean radon exposure, which is
observed in cohorts of underground miners after 1965, make the
elicitation of the prior distribution for lx based on the sub-cohort of the
German cohort of uranium miners more difficult. Indeed, all
information on radon exposure based on this cohort concerns the
period between 1971 and 1989. The exposure model we want to
specify, on the other hand, concerns the period between 1983 and 2007
in the French cohort, characterized by classical measurement error. To
account for this, we did not directly center the prior distribution for lx

on its corresponding value observed in the Wismut sub-cohort. This
prior is only required to have a non-negligible prior probability for the
median radon exposure value to be greater or equal to the median value
observed for the Wismut sub-cohort. At the same time, we required that
there should be a non-negligible probability for median radon exposure
in the French cohort after 1983 to be more than 10 times smaller than in
the German cohort to account for the possibility of a gradual decrease in
yearly radon exposure in uranium miners. In consideration of these two

conditions, we chose lx;pc
iq

; N (–1.44,10.24) for all pc
iq, corresponding

to a 95% prior credible interval of (–7.71; 4.83). The sensitivity of the

chosen priors on risk estimates was assessed by comparing the obtained

results with results obtained when assuming alternative prior distribu-

tions lx;pc
iq

; N (–1.44,1.44) [95% CI: (–3.79; 0.91)] and r2
x;pc

iq
;

IG(3.11,2.47) [95% CI: (0.34; 3.70)], where IG denotes the inverse

gamma distribution.
Similarly, we tested the sensitivity of the disease model to the

definition of prior distributions for the parameters describing baseline
hazard. This was done by running the model with flat uniform
distributions between 0 and 200 for the parameters k2, k3 and k4 for
both the post-1955 and the total cohort. For the parameter k1

describing baseline hazard before 40 years, we always assumed the
informative gamma distribution defined earlier, since only one miner
died of lung cancer before 40 years in the cohort. Therefore, there was
very little information on this parameter in the data and it would have
been imprudent to estimate its value based on a flat uniform prior
distribution.

Bayesian Inference

Sampling from the joint posterior distribution of the unknown
parameters and latent variables was carried out through a MCMC
algorithm. More specifically, we adopted an adaptive Metropolis-
within-Gibbs algorithm (19) to conduct Bayesian inference, as full
conditional distributions were analytically intractable with the
exception of the full conditional distributions of the parameters of
the exposure model. We used component-wise updates, sampling each
dimension independently from the others, except for the unknown
vector of true exposures X. For this vector, consisting of 47,831 latent
exposures, it was unfeasible to update all values at once, insofar as this
would lead to a large proportion of samples being rejected and thereby
presumably impede convergence. A component-wise updating scheme
for the elements of this vector, on the other hand, implies prohibitively
expensive computations. Therefore, we used a block-wise sampling
scheme for the true exposure X, updating all values for a specific
calendar period and a homogenous group of miners in a single step.
Groups of miners were determined via a hierarchical ascendant
clustering algorithm (20), based on values on the principal
components obtained by a multiple factor analysis using the variables
principal type of mine (underground/open pit), principal location and
principal type of job (hewer/other) of each miner. In the adaptive
phase, the variances of proposal distributions for all unknown
quantities were calibrated so as to obtain acceptance rates of 40%
for single components and 20% for vectors to improve the efficiency
of the algorithm (19). Three chains with different starting values were

FIG. 2. Directed acyclic graph for the full hierarchical model. Circles indicate unknown quantities and
rectangles indicate observed variables. For the sake of clarity, we split the vector re into re

B ¼ (re,1, re,2, re,3,
re,4) for the Berkson error period and re

C ¼ re,5 for the classical measurement error period in this graph.
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run for 125,000 iterations after an initial adaptive phase of 100 cycles
for 80 iterations for each of the models. The first 25,000 iterations
were discarded as burn-in phase and characteristics of the posterior
density were solely based on the remaining samples of the posterior
distribution. Trace plots of the chains and the Gelman Rubin statistic
(21) were used to check convergence for all unknown quantities.
Competing disease models were compared via the Deviance
Information Criterion (DIC). DIC values are a measure for the fitting
abilities of a model with smaller DIC values indicating a better fit to
the data (22). The adopted algorithm was implemented in Python
version 2.7.6.

To assess the performance of our Bayesian hierarchical approach to
account for heteroscedastic measurement error of classical or Berkson
type, we additionally conducted a simulation study where hetero-
scedastic measurement error with two exposure periods was generated.
To generate failure times depending on time-varying covariates, we
used a method proposed by Hendry (32). The results of this simulation
study are provided in Supplementary Table S2 (http://dx.doi.org/10.
1667/RR14467.1.S1).

RESULTS

Description of the French Cohort of Uranium Miners

Table 1 summarizes the main characteristics of the French

cohort of uranium miners. Duration of exposure and follow-

up were relatively long with a mean duration of exposure of

approximately 13 years in both the total and the post-1955

cohort and a mean duration of follow-up of 35.4 years in the

former and of 32.8 years in the latter.

Cumulative radon exposure was much higher in the total

cohort than in the post-1955 cohort with mean exposures of

36.6 and 17.8 WLM, respectively, and the range of

cumulative exposure was much larger in the total cohort
than in the post-1955 cohort.

This dramatic decrease in exposure can be explained by
important changes in radioprotection (see Fig. 3). Figure 3
shows the annual mean radon exposures for exposed
miners is detailed for the three methods of exposure
assessment given by the retrospective reconstruction by
experts (for the years 1946–1955), ambient measures (for
the years 1956–1982) and personal dosimetry (for the
years 1983–2007). For a comparison of the distribution of
exposure values in the total and in the post-1955 cohort see
Supplementary Figs. S1 and S2 (http://dx.doi.org/10.1667/
RR14467.1.S1).

Sensitivity to Prior Distributions on Baseline Hazard

Table 2 gives the excess hazard ratio (EHR) and baseline
hazard estimates for the total and the post-1955 cohort when
assuming the linear model without effect modification and
without measurement error correction under different prior
distributions for the parameters k2, k3 and k4 describing
baseline hazard after 40 years of age.

There was no impact on the EHR point estimate for the
total cohort with only slightly narrower credible intervals
when assuming informative gamma distributions.

Likewise, the impact on the baseline hazard parameters k
was negligible in the total cohort. Figure 4 shows the impact
of the prior choice on the baseline hazard parameters on the
posterior distributions of parameters in the post-1955
cohort. When assuming informative prior gamma distribu-
tions for baseline hazard, we observe that the data contribute

TABLE 1
Main Characteristics of the French Cohort of Uranium Miners

Characteristics Total cohort Post-1955 cohort

No. of persons 5,086 3,377

Vital status, n (%)

Alive 2,924 (57.5) 2,412 (71.4)
Deceased (lung cancer) 211 (4.1) 94 (2.8)
Deceased (other cause) 1,724 (33.9) 777 (23.0)
Alive with age �85 years 187 (3.7) 74 (2.2)
Lost to follow-up 40 (0.8) 20 (0.6)

Age and duration in years, mean (range)

Age at entry into study 28.8 (16.0–68.0) 28.3 (16.9–57.7)
Age at last observation 64.2 (19.6–85.1) 61.1 (19.6–85.1)
Duration of follow-up 35.4 (0.1–61.0) 32.8 (0.1–51.0)

Radon exposure

No. of exposed miners, n (%) 4,133 (81.3) 2,910 (86.2)
Cumulated exposure, mean (range) 36.6 (0.003–960.1) 17.8 (0.003–128.4)
Duration of exposure, mean (range) 13.2 (1.0–38.0) 12.9 (1.0–35.0)

No. of miners with cumulative exposure, n (%)

Exceeding 50 WLM 882 (17.3) 318 (9.4)
Exceeding 100 WLM 378 (7.4) 46 (1.36)

No. of cases with exposure, n (%)

Exceeding 50 WLM 83 (1.6) 29 (0.8)
Exceeding 100 WLM 42 (0.8) 4 (0.1)

Note. Mean cumulated radon exposure and duration of exposure are calculated only for exposed miners.
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to the update of prior beliefs, as the posterior distribution is
different from the prior distribution in terms of central

location and dispersion. In particular, the ranges of the

posterior marginal distributions are smaller, indicating a

reduction in uncertainty. In the case of flat uniform prior
distributions, the data clearly modify the prior beliefs to

obtain much narrower posterior distributions. By comparing

the two posterior distributions obtained under the alternative

prior choices, we see that the definition of prior distributions
on baseline hazard has a notable impact on risk estimates in

the post-1955 cohort.

Indeed, we observe a risk estimate of 1.92 per 100 WLM

when assuming an informative gamma distribution and a
risk estimate of 2.75 per 100 WLM when assuming uniform

priors. The 95% credible intervals for risk parameters were

much larger in the post-1955 cohort than in the total cohort,

reflecting the higher uncertainty on risk parameters due to

the smaller sample size and the smaller number of miners
who died from lung cancer in this sub-cohort. Under the

assumption of uniform priors, all baseline hazard estimates

in the post-1955 cohort were smaller than the ones

estimated in the full cohort.

Given the sensitivity of the risk estimate in the post-1955

cohort to the choice of informative priors on the baseline

hazard parameters and since it is reasonable to believe that

the baseline hazard is smaller in an occupational cohort than
in the general population, we preferred to base all

subsequent analyses on flat uniform baseline hazard priors

in the post-1955 cohort. In light of the limited number of

miners deceased in this sub-cohort, it seemed reasonable to
avoid a too strong influence of the prior distribution on

inference. For the total cohort, on the other hand, we kept

the hypothesis of informative gamma priors on baseline

hazards, as they seemed more appropriate in this cohort.

FIG. 3. Annual mean radon exposure of exposed miners (indicated by a diamond, triangle and square
depending on the method of exposure assessment) and interquartile range of annual radon exposure (vertical
segments) in the French cohort of uranium miners.

TABLE 2
Posterior Medians and 95% Credible Intervals for Disease Model Parameters in the Post-1955 Cohort and in the Total

Cohort under Model 1 (the Linear Model without Effect Modification) Assuming Different Prior Distributions on
Baseline Hazard Parameters

EHR k2 k3 k4

per 100 WLM 10–6 10–6 10–6

Post-1955 cohort

Informative gamma priors 1.92 (0.93; 3.22) 1.13 (0.85; 1.48) 5.15 (4.29; 6.13) 8.65 (6.47; 11.29)
Large uniform priors 2.75 (1.18; 5.32) 0.80 (0.45; 1.29) 4.25 (2.85; 6.10) 7.47 (4.60; 11.80)

Total cohort

Informative gamma priors 0.88 (0.50; 1.36) 1.26 (0.98; 1.58) 5.24 (4.46; 6.11) 9.84 (7.92; 12.13)
Large uniform priors 0.88 (0.44; 1.49) 1.19 (0.82; 1.66) 5.11 (3.96; 6.46) 10.28 (7.72; 13.42)
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Indeed, compared to the post-1955 cohort, the use of

informative prior distributions on baseline hazard had little

or no impact on point estimates, but led merely to slightly

more precise estimates.

Accounting for Exposure Uncertainty in the Total Cohort

As described earlier, we implemented different disease
models as a function of different effect-modifying variables.
Posterior median estimates and 95% credible intervals as
well as DIC values for the different disease models for the
total cohort are given in Table 3. In general, the comparison
of corrected and uncorrected risk estimates in the total
cohort reveals no substantial differences in risk estimates or
credible intervals.

When assuming a linear excess hazard model without
effect modification, the corrected risk coefficient was
estimated to be 0.90 per 100 WLM [95% CI: (0.51;
1.41)]. The effect of recent radon exposures (i.e., in the last
15 years) was estimated to induce an excess hazard ratio
twice that of exposures received more than 25 years ago.
However, DIC values indicate that it was not appropriate to
include time since exposure as effect-modifying variable in
the total cohort, since this variable did not sufficiently
improve the fit of the model to the data. We observe an
important attenuation in the exposure-response curve when
estimating a piecewise linear model with a risk estimate per
100 WLM that was five times greater for exposures under
50 or 100 WLM than for exposures over these breakpoints.
Meanwhile, the risk estimate for exposures received after
1955 was also estimated to be five times greater than the
risk estimate for exposures received until 1955. DIC values
indicate that period of exposure was the most important
effect-modifying variable in the total cohort. These results
remain true when accounting for exposure uncertainty. In
particular, period of exposure remains the most important

FIG. 4. Posterior distributions for selected parameters of the disease
model under flat (dotted line) and informative (dashed line) prior
distributions and their corresponding prior distributions (dot-dashed
line and solid line, respectively) for the post-1955 cohort.

TABLE 3
Posterior Medians, 95% Credible Intervals and Deviance Information Criteria (DIC) for

Different Disease Models for the Total Cohort

Model

Uncorrected Corrected

EHR per 100 WLM DIC EHR per 100 WLM DIC

Model 1

Linear 0.88 (0.50; 1.36) 5,433.37 0.90 (0.51; 1.41) 5,433.30

Model 2

Period of exposure 5,422.49 5,423.59

until 1955 0.34 (0.04; 0.83) 0.31 (0.02; 0.79)
after 1955 1.95 (1.16; 2.93) 2.06 (1.34; 3.00)

Model 3

Time since exposure 5,435.51 5,435.31

5–15 years 1.49 (0.22; 3.64) 1.88 (0.27; 4.59)
15–25 years 1.14 (0.12; 2.69) 1.35 (0.17; 3.41)
�25 years 0.78 (0.31; 1.40) 0.74 (0.27; 1.57)

Model 4

Piecewise linear 5,428.14 5,424.38

,50 WLM 1.99 (0.98; 3.19) 2.12 (1.07; 3.37)
�50 WLM 0.37 (0.03; 0.98) 0.34 (0.02; 0.98)

Model 5

Piecewise linear 5,426.56 5,422.50

,100 WLM 1.46 (0.84; 2.21) 1.57 (0.92; 2.38)
�100 WLM 0.26 (0.01; 0.88) 0.23 (0.01; 0.84)
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effect-modifying variable in the full cohort and the

attenuation in the exposure-response curve as indicated by

the piecewise linear models persists.

The definition of alternative prior distributions for the

exposure model did not substantially change corrected risk

estimates in the total cohort (results not shown).

Accounting for Exposure Uncertainty in the Post-1955
Cohort

In a subsequent step, we estimated the different disease

models with and without measurement error corrections for

the post-1955 cohort. Table 4 shows the resulting posterior

medians and 95% credible intervals. For the post-1955

cohort, the corrected excess hazard ratio based on the simple

linear model was estimated to be 2.75 per 100 WLM [95%

CI: (1.20; 5.36)].

In contrast to the full cohort, there was no attenuation in

the exposure-response relationship when estimating a

piecewise linear model. On the contrary, the risk estimate

for exposures over 100 WLM was estimated to be

approximately four times greater than for exposures under

100 WLM. This result must be interpreted with great

caution, however, since there were only four miners

exposed to more than 100 WLM in the post-1955 cohort.

Similarly, the uncertainty associated with the risk param-

eters estimated in the model taking into account time since

exposure was very large. Overall, for the post-1955 cohort,

DIC values indicate that none of the models including

effect-modifying variables describe lung cancer mortality

better than the linear model without effect modification.

Comparing these results with the estimates obtained when

accounting for measurement error, we do not observe

substantial differences in risk estimates and in credible

intervals in the post-1955 cohort. Similar to the total cohort,
the definition of alternative prior distributions for the
exposure model did not substantially change corrected risk
estimates in the post-1955 cohort.

DISCUSSION

In this analysis of the lung cancer mortality associated
with cumulative radon exposure in the French cohort of
uranium miners, we built and fitted a Bayesian hierarchical
model to explicitly account for exposure uncertainty. We
chose a Bayesian hierarchical approach because of its ability
to model complex patterns of uncertainty in a coherent and
valid inferential framework. This flexibility in modeling
stems from the modular nature of the Bayesian hierarchical
approach, where submodels are linked by a natural
conditional reasoning, which is inherent in the Bayesian
conception of probability. In a structure resulting from the
conditional linking of submodels, we can arbitrarily
complexify one of the submodels without having to modify
the other parts of the model and without compromising the
validity of inference. Owing to this flexibility, it was
possible to account for heteroscedastic and multiplicative
measurement error in a time-varying exposure variable,
where both type and magnitude of error depend on period of
exposure. In contrast to classical functional approaches such
as regression calibration, where disjoint steps are used to
estimate true exposure and unknown risk parameters, this
Bayesian approach allows for joint estimation of true
exposure and risk parameters in a unique, global and
coherent framework. Consequently, all information avail-
able through the observed quantities described by the
disease, the measurement and the exposure model, is used to
estimate true exposure, while in most classical approaches

TABLE 4
Posterior Medians, 95% Credible Intervals and Deviance Information Criteria (DIC) for

Different Disease Models for the Post-1955 Cohort

Model

Uncorrected Corrected

EHR per 100 WLM DIC EHR per 100 WLM DIC

Model 1

Linear 2.75 (1.18; 5.32) 2,456.09 2.75 (1.20; 5.36) 2,456.09

Model 3

Time since exposure 2,457.56 2,457.55

5–15 years 2.01 (0.10; 7.91) 2.03 (0.09; 7.86)
15–25 years 4.82 (1.01; 11.04) 4.82 (1.01; 10.89)
� 25 years 3.20 (0.77; 7.46) 3.19 (0.79; 7.49)

Model 4

Piecewise linear 2,457.07 2,456.85

,50 WLM 3.20 (0.80; 7.03) 3.22 (0.82; 7.11)
�50 WLM 2.82 (0.19; 8.14) 2.72 (0.16; 7.98)

Model 5

Piecewise linear 2,457.80 2,458.09

,100 WLM 2.90 (1.24; 5.63) 2.85 (1.20; 5.60)
�100 WLM 9.28 (0.36; 43.55) 9.50 (0.36; 43.66)
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only the information available through the measurement
model is used for this purpose. In line with this reasoning,
other structural approaches that allow for this joint
estimation of true exposure and risk parameters have been
found to yield more precise estimations than classical
functional methods for measurement error correction (8, 9).
Moreover, structural likelihood-based approaches will
generally produce consistent and unbiased risk estimates
when accounting for measurement error in proportional
hazards models, in contrast to regression calibration, which
is neither unbiased nor consistent in this situation (7) and
which can be even more biased than the naive estimator in
complex models (9). Compared to other structural likeli-
hood-based approaches, the Bayesian structural approach
has the advantage that all uncertainty, including uncertainty
in exposure assessment and on error variance parameters, is
reflected in credible intervals of risk parameters that are
easily obtained by Bayesian inference. Additionally, this
approach provides the possibility to include external
information on parameters in the form of prior distributions.

Comparison with Other Studies

We modeled measurement error on an individual level
using a proportional hazards model and found no substantial
impact of Berkson and classical measurement error in the
total and in the post-1955 cohort. This is in accordance with
results of other occupational cohort studies in which only
minimal effect of exposure and dose uncertainty on risk
estimates were found (5, 23, 24). In a published
collaborative analysis of individual data from 13 case-
control studies on residential radon, however, Darby et al.
(25) adjusted for uncertainties in radon exposure and
observed a notable increase in relative risk estimates for
lung cancer. This difference may be explained by two
important factors that have a major impact on the influence
of exposure uncertainty on risk estimates, namely the
measurement error variance and the variability of true
exposure. In the case of additive classical measurement
error in linear regression with a continuous dependent
variable, it is straightforward to show that when there is
only one predictor in the model, its estimated coefficient
will be attenuated by the factor r2

x=ðr2
e þ r2

xÞ, where r2
x is

the variance of the predictor X and r2
e is the variance of

measurement error (2). When modeling binary outcomes or
failure times, which present outcomes that are undoubtedly
of more interest in radiation epidemiology, there is in
general no simple expression for this attenuation factor.
However, the magnitude of measurement error and the
variability of true exposure seem to act in the same way
when it comes to the impact of exposure uncertainty (16).

In case-control studies on residential radon, exposure
uncertainty will likely be greater than in occupational cohort
studies, because exposure assessment is mostly performed
retrospectively and few measurements are taken to recon-
struct the exposure history of several decades. In occupa-

tional cohort studies, on the other hand, there is often a
prospective and direct exposure assessment, at least for the
more recent exposure periods. At the same time, the
variability of radon exposure itself is much smaller in
studies on residential radon than in occupational studies on
cohorts of underground miners. The exposure variance in
occupational cohort studies might be further amplified
through the accumulation of annual exposure values.
Indeed, under the assumption of a positive correlation
between the annual exposure values of a miner, the variance
of cumulated exposure is greater than the sum of the
variances of annual exposure. Thus, this accumulation will
probably make the results on the health effects of radon
exposure that are based on cohorts of uranium miners even
less vulnerable to the impacts of exposure uncertainty. In
light of these facts, it seems important to complement the
information obtained by case-control studies on residential
radon by extrapolating results on the association between
radon exposure and lung cancer mortality obtained on
cohorts of occupationally exposed underground miners. In
comparison to most other cohorts of underground miners,
the French cohort of uranium miners is characterized by low
levels and low rates of radon exposure for a long period of
time and prospective exposure assessment of good quality,
making it especially valuable for the definition of
radioprotection standards.

Difference of Retrospective Exposure Assessment and
Prospective Exposure Assessment

The only exposure period characterized by retrospective
exposure assessment in the French cohort of uranium
miners was the period before 1956 for which only few
prospective measurements of radon exposure were avail-
able. Unfortunately, we cannot exclude that the categoriza-
tion made in exposure reconstruction for these early years
led to differential measurement error (26). Moreover, there
might be shared uncertainty among miners at the same
mining location and an auto-correlative structure of
measurement error. There is no conventional method for
measurement error correction that enables modeling of this
potentially shared, correlated and differential measurement
error, since virtually all available methods rely on the
assumption of nondifferential measurement error, at least in
the case when no validation sample is available (2). It would
be possible to build a Bayesian hierarchical model reflecting
this complex error structure. However, this model would
inevitably rely on many hypotheses, for example, on the
autocorrelative structure of measurement error for several
exposure values of a miner or on the magnitude of
nondifferentiality. These hypotheses are very difficult or
even impossible to corroborate for an error that occurred
more than 60 years ago. In this situation, one could
elaborate on different scenarios with varying degrees of
differential, shared and correlated exposure uncertainty for
this period and calculate corrected risk estimates under these
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scenarios. The elaboration of these scenarios was out of the
scope of our study.

In the French cohort of uranium miners, we found period
of exposure to be the most important effect-modifying
variable. The most plausible explanation for this effect
modification is the difference in quality of exposure
assessment marked by retrospective exposure reconstruction
until 1955 and prospective exposure assessment of good
quality after 1955. Moreover, the resulting association of
high exposure rate and low-quality exposure assessment
seems to create an attenuation in the exposure-response
relationship for high-cumulative radon exposures, a phe-
nomenon that has been observed in numerous occupational
cohort studies (27) and previously reported in analyses of
the lung cancer mortality of uranium miners (28). The fact
that this attenuation, as well as the effect modification by
period of exposure, persisted when accounting for mea-
surement error in the total cohort might indicate that other
mechanisms are responsible for this distortion of the
exposure-response relationship. In light of the complex
structure of measurement error caused by the retrospective
exposure assessment until 1955, however, it is more
plausible to assume that it was impossible to completely
correct for the effects of measurement error in this early
period. Moreover, when restricting our analysis to the post-
1955 cohort, which is characterized by prospective exposure
measurements of good quality, we do not observe any
attenuation in the dose-response curve for high cumulative
exposure values. This finding supports the hypothesis that
this nonlinearity is caused by exposure uncertainty, rather
than by other mechanisms that have been proposed in this
context, such as confounding risk factors, a healthy worker
survivor effect or the saturation of biological pathways (27).
Indeed, if any of the latter factors were responsible for the
attenuation of the exposure-response relationship in the
French cohort of uranium miners, one would expect to
observe the same attenuation in the post-1955 cohort as in
the total cohort.

Ignoring the distortion of the exposure-risk relationship
that might be introduced by the difference in quality of
exposure assessment presents a potentially precarious and
jeopardous choice. Indeed, if there is a resulting leveling off
for high exposures, a linear model will substantially
underestimate the risk for low exposures. This further
stresses the importance of the prospective exposure
assessment of good quality in the period after 1955 in the
French cohort of uranium miners. In future studies on this
cohort, we recommend separate analyses on the total cohort
and the post-1955 cohort when accounting for measurement
error. Unfortunately, the modeling of effect modification in
the post-1955 cohort is possible only to a limited extent
because of the reduced number of miners and therefore, the
reduced number of lung cancer deaths observed in this sub-
cohort. This is reflected by the large credible intervals we
observed, such as for effect modification by time since
exposure. Since the information available in the disease

model is involved in the estimation of true exposure, it is
nevertheless important to choose a well-fitting disease
model from which all deviations might be considered as
measurement error. With that in mind, one could attempt to
incorporate model uncertainty in the hierarchical Bayesian
approach proposed here by considering several disease
models simultaneously using a Bayesian model averaging
framework (29).

The examination of the impacts of retrospective exposure
assessment and the resulting differences in exposure
uncertainty are crucial when analyzing the lung cancer
mortality associated with occupational radon exposure,
since all of the eleven most important cohorts of
underground miners partially or fully rely on retrospective
radon exposure assessment (1). Moreover, in most of these
cohorts, the quality of exposure assessment improved with
time while the level of radon exposure decreased due to the
introduction of exposure limits and radiation protection
guidelines. The importance of the quality of exposure
assessment has been discussed previously in the analysis of
lung cancer mortality in the Czech and the French cohort of
uranium miners (30).

Limitations

While measurement error occurring in the exposure
period after 1983 seems to be adequately described by
unshared multiplicative classical error, the period between
1956 and 1982, which was characterized by ambient
measurements, still presents some challenges. These
challenges arise primarily because the measurement error
that occurred in this period might neither be completely
independent among miners nor purely Berkson. Even
though this assumption is likely to hold for the most
important error component in this period, namely local
variations in radon concentration (6), there are other
measurement error components for which this hypothesis
is far more questionable. The precision of the measurement
device used for ambient measurements, for instance, is more
likely to create a measurement error component that is
shared among miners who worked at the corresponding
work location in the week the measurement was taken. If we
had information on the exact work locations of miners
today, it would be straightforward to introduce different
parameters according to these groups of miners, in whom
components of exposure uncertainty in the same week of
exposure assessment are shared, thus facilitating a coherent
hierarchical measurement model. In this framework, the
distribution of the error occurring for the qth measurement
of miner i in the jth group of miners sharing uncertainty
could then be written as [Uiqj] ¼ [Uiqjjcj][cj] dcj, where cj

presents the shared error of group j. Because of its
flexibility, the Bayesian hierarchical approach would allow
us to couple this hierarchical measurement model with the
disease model, as described earlier. Despite this possibility,
it was not feasible to do so in our analyses, since no
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information on the detailed presence of miners at work
stations is available today. Alternative approaches to
account for shared error components are unlikely to resolve
this problem, since they would also require detailed
information on the groups of miners who share a common
source of error. Importantly, in this context it is common to
treat this mixture of shared classical and unshared Berkson
error as pure unshared Berkson error for the sake of
simplicity. Yet, one may assume that almost all observa-
tional studies that assume pure Berkson error are in reality
confronted with an additional component of shared error.
The occurrence of pure Berkson error is presumably quite
rare, since it would imply that the value that is assigned to a
group of subjects is precisely known. This is a reasonable
assumption in experimental settings when there is a prefixed
value, for example a known radiation dose delivered by a
machine, and individual dose values deviate from this value
due to the imprecision in the realization of the experiment.
In the majority of observational studies in epidemiology,
however, where a purported mean value is estimated or
measured for a group of subjects, it is unrealistic to assume
that this assigned value is precisely known. In the French
cohort of uranium miners, considering this error component
as unshared rather than shared uncertainty can be assumed
to have only a negligible impact on risk estimates and their
corresponding credible intervals. Indeed, in the period
1956–1982, there were typically more than 30 measure-
ments of radon exposure per person-year. The fact that
exposures were first summed over work locations to obtain
weekly exposures, which were then again summed to obtain
yearly exposures, will likely attenuate the impact of this
shared error component. In line with this reasoning, Stayner
et al. (24) and Little et al. (23) observed only a minor
impact of shared uncertainty in cumulative occupational
radiation exposure in nuclear workers and in radiologic
technologists, respectively.

Another limitation of this study concerns the assumptions,
which must be made when using a structural likelihood-
based approach to correct for measurement error in survival
analysis. In general, the unbiasedness of this type of
approach comes at the price of making additional model
assumptions on the distribution of true exposures. In
survival analysis, the use of a likelihood-based approach
also implies that one must specify the full likelihood which
entails the specification of the form of the baseline hazard
function. In the French cohort of uranium miners, we
assumed a piecewise constant baseline hazard, based on
data on the general lung cancer mortality in the French male
population. We tested the influence of this modeling choice
under the Cox proportional hazards model in its classical
form hi(t) ¼ h0(t)exp(b1Xcum

i (t)), since partial likelihood
estimates are easily obtained by standard statistical software
for this model. The comparison of risk estimates obtained
by the proposed Bayesian approach with risk estimates
obtained by maximizing the partial likelihood showed that
there were virtually no differences in estimates in the full

and in the post-1955 cohort (see Supplementary Table S1;
http://dx.doi.org/10.1667/RR14467.1.S1). The relative ro-
bustness of risk estimates to this modeling assumption is
also reflected by the fact that we found uncorrected risk
estimates similar to Rage et al. (11), who estimated excess
relative risk in the French cohort of uranium miners by
means of Poisson regression using a large number of strata.

Implications for Radiation Protection

Recommendations for radiological protection against
radon are based considerably on the health effects of
occupational radon exposure observed in cohorts of
uranium miners (31). Therefore, it is important to refine
the estimation of the lung cancer risk associated with radon
exposure in uranium miners by accounting for measurement
error. To further elucidate the effects of radon exposure, the
International Commission for Radiation Protection recom-
mends the use of a dosimetric approach by calculating
radiation doses to the respiratory tract (31). The calculation
of these radiation doses will imply further uncertainties,
which should be accounted for in order to derive credible
intervals that properly reflect both the statistical variability
of the data and the incomplete knowledge of radiation dose
(1).

Finally, it seems important to adjust for exposure to
gamma rays and long-lived radionuclides in the association
between radon exposure and lung cancer, since these
variables present a major potential for confounding. Indeed,
these sources of ionizing radiation are highly correlated in
miners and each substantially contributes to the total lung
dose (13). Modeling individual radiation doses for all
exposures in a common disease model could be possible in
the French cohort of uranium miners, since they were
assessed via ambient measurement and personal dosimetry
beginning in 1956. However, gamma rays and long-lived
radionuclides doses are likely to present measurement error
and dose uncertainties as well. Entering these variables in
the model would complicate the effects of measurement
error and dose uncertainty. The risk estimate for radon
exposure would be further contaminated by the errors in
these confounding variables, and it is impossible to predict
whether this will artificially attenuate or inflate the risk
estimate for radon exposure. Therefore, one must model
dosimetric uncertainties for the three exposures simulta-
neously to obtain an unbiased estimate for radon exposure.
To be able to include doses from all three exposure
variables, it is necessary to reduce the correlation in the
three variables. One way to achieve this could be to add
more precise information on parameters that intervene in the
dose calculation for one or two exposure variables, but not
for all of them.

Because of its flexible and modular nature, the Bayesian
hierarchical modeling approach presents a promising
framework to simultaneously account for measurement
error and other dose uncertainties for all three radiation
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exposures in a unique and coherent framework. The
possibility to include additional information on uncertain
parameters that intervene in the dosimetric model through
the prior elicitation by experts makes this approach even
more appealing in this context. The post-1955 French
uranium miner cohort is characterized by a long duration of
follow-up, good-quality prospective exposure assessment
for radon, gamma rays and long-lived radionuclides, as well
as low levels of cumulative exposure in general. Thus, this
cohort is highly suitable for these future analyses that
account for dose uncertainties in all three sources of
ionizing radiation.

SUPPLEMENTARY INFORMATION

Fig. S1. Distribution of cumulative exposure values for
miners employed until 1955 and after 1955.

Fig. S2. Distribution of cumulative exposure values under
300 WLM for miners employed until 1955 and after 1955.

Table S1. Comparison of estimates obtained by Bayesian
inference, partial likelihood estimation and full likelihood
estimation.

Table S2. Corrected and uncorrected EHR for classical
measurement error and Berkson error under heteroscedastic
measurement error. Data was generated using an EHR value
of 1. Cover probabilities are given for 95% credible
intervals.
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Abstract

Exposure measurement error represents one of the most important sources of

uncertainty in epidemiology. When exposure uncertainty is not or only poorly

accounted for, it can lead to biased risk estimates and a distortion of the shape of the

exposure-response relationship. In occupational cohort studies, the time-dependent

nature of exposure and changes in the method of exposure assessment may create

complex error structures. When a method of group-level exposure assessment is used,

individual worker practices and the imprecision of the instrument used to measure the

average exposure for a group of workers may give rise to errors that are shared between

workers, within workers or both. In contrast to unshared measurement error, the effects

of shared errors remain largely unknown. Moreover, exposure uncertainty and

magnitude of exposure are typically highest for the earliest years of exposure. We

conduct a simulation study based on exposure data of the French cohort of uranium

miners to compare the effects of shared and unshared exposure uncertainty on risk

estimation and on the shape of the exposure-response curve in proportional hazards

models. Our results indicate that uncertainty components shared within workers cause
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more bias in risk estimation and a more severe attenuation of the exposure-response

relationship than unshared exposure uncertainty or exposure uncertainty shared

between individuals. These findings underline the importance of careful characterisation

and modeling of exposure uncertainty in observational studies.

Introduction 1

Exposure measurement error is arguably one of the most important sources of 2

uncertainty in epidemiological studies. It is widely acknowledged that when it is not or 3

only poorly accounted for, measurement error can lead to biased risk estimates, a 4

distortion of the shape of the exposure-response relationship and a loss in statistical 5

power [1, 2]. Accounting for exposure measurement error can be daunting, however, 6

because error characteristics tend to be complex in epidemiological studies. 7

In occupational cohort studies, for instance, one is usually interested in the 8

association between the time until diagnosis or time until death by a certain disease and 9

cumulative exposure to a certain chemical or physical agent. The analysis of this 10

association may require the specification of a proportional hazards model where 11

cumulative exposure is treated as a time-dependent variable. Owing to the 12

time-dependent nature of cumulative exposure, the exposure history of a worker may be 13

collected using different strategies according to the period of exposure. Changes in the 14

methods of exposure assessment can create rather complex patterns of exposure 15

uncertainty, where the type and magnitude of measurement error can vary over time. If 16

no exposure data is available for the earliest years, one usually has to retrospectively 17

reconstruct exposure values for this period. On the other hand, it is common to use a 18

method of prospective, and possibly individual, exposure monitoring for the more recent 19

exposure periods. In the periods of prospective exposure assessment, technical advances 20

in measurement devices may imply more and more precise measures of exposure, which 21

can translate into a decrease in measurement error over time. It has been suggested 22

that the fact that exposure uncertainty and the magnitude of exposure are both highest 23

for the earliest exposure periods may cause an attenuation of the exposure-response 24

curve for high exposure values, a phenomenon frequently observed in occupational 25

cohort studies [3–5]. 26
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As it is virtually impossible to reconstruct the exposure values for each individual 27

worker in a retrospective fashion, one usually has to estimate the exposure levels for 28

different job categories and the same exposure level is affected for all workers in a given 29

job category. In this situation, individual exposure values of workers in a job-category 30

are assumed to vary around the estimated exposure level and measurement error is 31

therefore often described as unshared Berkson error [5–8], i.e., Berkson error that 32

independently affects workers and different exposure values of the same worker. In this 33

conception, the estimated exposure level is implicitly considered to be a precise estimate 34

of the true average exposure in a job category, thereby neglecting the fact that many 35

simplistic and potentially wrong assumptions typically have to be made in retrospective 36

exposure reconstruction. Considering these uncertainties and simplifications, which 37

often arise because working conditions may be very different from those in more recent 38

years, the estimated exposure level can greatly differ from the true average exposure 39

level in a job category. This discrepancy can be modelled as a classical measurement 40

error component that is shared between workers. Indeed, it affects the exposure values 41

of all workers in a given job category in the same way and therefore cannot be 42

considered as independent for workers who belong to this job category. Several authors 43

have described this error structure as a mixture of unshared Berkson and unshared 44

classical measurement error [9, 10], but this view cannot account for the fact that the 45

classical measurement error component affects all individuals in a group in the same 46

way. At the same time, uncertainty components that are shared between individuals 47

have received growing attention in the field of radiation epidemiology in recent years 48

[11–15]. Quite contrary to [9,10], the authors of [14,15] account for the shared nature of 49

error, but not for the fact that this shared error can be of Berkson or classical 50

type [15,16]. Meanwhile, comparatively little attention has been paid to the possibility 51

of error components shared within workers in occupational cohort studies. When 52

cumulative exposure is modelled as a time-dependent variable and a method of 53

group-level exposure estimation is used, individual job conditions and worker practices 54

may create a correlation between measurement errors in the exposure history of a 55

worker [17,18]. This correlation can be described by error shared within workers, i.e. an 56

exposure uncertainty component shared for several years of the same worker. Through 57

the summing of exposure values to obtain cumulative exposure, uncertainty components 58
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shared within workers may be magnified, as the same error term is repeated for every 59

exposure value of a worker. Therefore these components may have more impact on 60

statistical inference than unshared uncertainty components or components that are 61

shared between workers. On the other hand, several authors have argued that errors 62

that are shared between individuals might have fundamentally different consequences on 63

statistical inference than unshared measurement errors [13–16]. To our knowledge there 64

are no studies confirming this assertion for proportional hazards models, which possibly 65

presents the most widely applied class of models in medical research. 66

Stayner et al. [4] and Steenland et al. [5] examined the effects of heteroscedastic 67

measurement error on the shape of the exposure-response curve and only found a 68

modest attenuation of the exposure-response curve at high exposure values. However, 69

the authors treated cumulative exposure in an occupational cohort as time fixed 70

variable known at baseline, thereby ignoring both its time-varying nature and the 71

possibility of exposure uncertainty components shared within individuals. In this 72

context, further analyses are necessary to reassess these results when a more realistic 73

structure of measurement error is assumed with the possibility of shared and unshared 74

uncertainty components for all exposure periods. 75

The aim of this study is to highlight and compare the effects of shared and unshared 76

exposure measurement error on risk estimation and the shape of the exposure-response 77

relationship with the aid of simulated data when statistical inference in proportional 78

hazards models is not corrected for exposure measurement error. In a first step, we will 79

assume measurement models with only one type of error for all periods of exposure to 80

compare the impact of different types of exposure uncertainty on risk estimation in two 81

alternative proportional hazards models. In particular, we will investigate the influence 82

of multiplicative Berkson and classical measurement error that can be shared between 83

workers, within workers, both between workers and within workers, or unshared. In a 84

second step, we will assume more complex measurement models with varying types of 85

multiplicative measurement error for different exposure periods that reflect the 86

conditions in an occupational cohort more realistically to assess the effects of these error 87

structures on the shape of the exposure-response relationship. 88

Our motivating example concerns the potential impact of uncertainty in radon 89

exposure when modelling lung cancer mortality in the French cohort of uranium miners. 90
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Measurement models 91

In the following, we present several measurement models to describe shared and 92

unshared exposure uncertainty components in an occupational cohort, which we will use 93

in our simulation study. These measurement models describe the association between 94

the true Xij(t) and the observed Zij(t) exposure of worker i at time t, where worker i 95

belongs to group j. A group can be formed by all workers belonging to a specific 96

job-category in a retrospective exposure reconstruction or in a prospective method of 97

group-level estimation. For the sake of simplicity, we will assume that each worker can 98

only belong to one group and that the group he belongs to does not vary over time. 99

A large part of the measurement error literature is based on additive error. As it has 100

been repeatedly suggested, however, that multiplicative measurement models may be 101

more realistic in many situations in occupational and environmental epidemiology in 102

general [6] and to describe uncertainty in airborne exposure in particular [3, 7, 19], we 103

will assume a multiplicative log-normal model for exposure measurement error in the 104

following. In order to describe exposure uncertainty in an occupational cohort, we will 105

first consider simple measurement models in which the type (i.e., Berkson, classical, 106

shared, unshared) and magnitude of error remains constant over the years. In other 107

words, even though there may be several exposure periods, we will consider the same 108

measurement error variance for all exposure periods. We will refer to these models as 109

homoscedastic measurement models. In a second step, we will focus on more complex 110

measurement models that may describe exposure uncertainty more adequately in an 111

occupational cohort. Contrary to the homoscedastic measurement models that assume 112

pure shared or unshared measurement error for all exposure periods, we will consider in 113

these complex models that the type of error and the measurement error variances can 114

vary for the different exposure periods. Additionally, we will consider that measurement 115

error occurring in a given exposure period can be characterised by a combination of 116

shared and unshared exposure uncertainty components. We will refer to these models as 117

heteroscedastic measurement models. 118
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Homoscedastic measurement models 119

Unshared measurement error 120

When modelling measurement error, one commonly distinguishes Berkson and classical 121

measurement error. Unshared Berkson error is often presumed when a group-level 122

method of exposure estimation is used. In this case, an observed or estimated exposure 123

value is assigned to a group of workers and the true exposure of each worker is supposed 124

to randomly deviate from this observed exposure value. The variability of true exposure 125

is bigger than the variability of observed exposure and measurement error is independent 126

of observed exposure. Multiplicative Berkson error can be expressed by model 127

M1 : Xij(t) = Zj(t) · Uij(t),

where Zij(t) = Zj(t) for all workers i of group j and E(Uij(t)|Zj(t)) = 1, which implies 128

that E(Xij(t)|Zj(t)) = Zj(t). 129

When individual measurements are obtained through a measuring device, on the 130

other hand, a classical measurement error model is assumed, where the observed 131

exposure of worker i in group j Zij(t) randomly deviates from his true exposure. In 132

contrast to model M1, the variability of observed exposure is bigger than the 133

variability of true exposure and measurement error is independent of true exposure. 134

Multiplicative classical measurement error can be expressed by model 135

M2 : Zij(t) = Xij(t) · Uij(t),

where E(Uij(t)|Xij(t)) = 1 implying that E(Zij(t)|Xij(t)) = Xij(t). Contrary to 136

measurement model M1, we do not dispose of E(Xij(t)|Zij(t)) in measurement model 137

M2. A common way to correct for measurement error in this situation is to use 138

regression calibration, where E(Xij(t)|Zij(t)) is modelled as a function of Zij(t) and 139

the parameters of this function are estimated on a validation sample. 140

We will assume in both models that log transformed measurement errors log(Uij(t)) 141

are independent and normal random variables with mean −σ2

2 and variance σ2, i.e., 142

PLOS 6/33



log(Uij(t)) ∼ N (−σ2

2 , σ
2) 1. This parametrisation ensures that E(Uij(t)|Zj(t)) = 1 and 143

E(Uij(t)|Xij(t)) = 1. In particular, Uij(t) and Ui′j(t
′) are independent for i 6= i′ and 144

t 6= t′ in both M1 and M2. Under this independence assumption, measurement error is 145

considered as unshared. 146

Shared measurement error 147

To describe exposure uncertainty components that are shared between or within workers, 148

one can adapt the unshared Berkson and classical measurement error model described 149

previously by modifying the assumptions on the structure of measurement error Uij(t). 150

For instance, if we suppose that the measurement error term Uij(t) equals Uj(t) for 151

all workers i in group j, we can obtain a Berkson and a classical measurement error 152

model in which the errors are shared for a group of workers. Indeed, in these models, 153

the same error component is presumed at time t for all subjects i belonging to group j 154

(hence the term “shared between workers”) and Uj(t) and Uj′(t
′) are independent if 155

j 6= j′ or t 6= t′. We will denote M3 and M4 the measurement models describing 156

Berkson and classical measurement error shared between workers. 157

Similarly, to describe Berkson or classical measurement error that is shared for 158

several years of the same worker, we assume in this case that the measurement error 159

term Uij(t) neither depends on time t nor on group j: Uij(t) = Ui ∀j∀t. The same error 160

component is supposed for all years of exposure of worker i and Ui and Ui′ are 161

independent if i 6= i′ (hence the term “shared within workers”). We will denote M5 162

and M6 the measurement models describing Berkson and classical measurement error 163

shared within workers. 164

Finally, an error component may simultaneously affect all exposure values received 165

by the workers in a certain group during an exposure period of several years in the same 166

way. This error structure is likely to occur when recent exposure conditions are 167

extrapolated in order to reconstruct exposure values in the past. These extrapolations 168

are typically made for a group of workers and for a period of several years at the same 169

time, as it is difficult to make more precise estimates in a retrospective exposure 170

reconstruction. In this situation, the measurement error induced by estimating the 171

1 Note that if log(W ) follows a normal distribution with mean µ and standard deviation σ, W follows

a log-normal distribution with E(W ) = exp(µ+ σ2

2
) and variance V ar(W ) =

(
exp(σ2)− 1

)
exp(2µ+σ2).
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mean exposure level for a group j affects both all workers in this group and all exposure 172

values received by these workers. Therefore, the measurement error term Uij(t) neither 173

depends on time t nor on subject i, but only on the group j a subject belongs to: 174

Uij(t) = Uj ∀i∀t. In this case, Uj and Uj′ are independent if j 6= j′. We will denote 175

M7 and M8 the measurement models describing Berkson and classical measurement 176

error shared both within and between workers. 177

For a more detailed presentation of models M3 to M8, see S1 Appendix. 178

Heteroscedastic measurement models with three exposure 179

periods 180

In the following, we will extend the measurement models presented so far by considering 181

three exposure periods for which both the type and the magnitude of exposure 182

uncertainty can vary and by allowing for combinations of shared and unshared 183

measurement error in each exposure period. In this section, we denote Xq
ij(t) and Zqij(t) 184

the true and observed exposure for worker i belonging to group j at time t in exposure 185

period q. 186

Unshared measurement error for different exposure periods 187

Motivated by the exposure conditions in the French cohort of uranium miners (see the 188

motivating example described in the presentation of the simulation study for more 189

details), we consider the following model to allow for possible changes in the method of 190

exposure assessment: 191

M9 :





X1
ij(t) = Z1

j · U1
ij(t)

X2
ij(t) = Z2

j (t) · U2
ij(t)

Z3
ij(t) = X3

ij(t) · U3
ij(t)

where log(Uqij(t)) are independent and normal random variables with mean −σ
2
q

2 and 192

variance σ2
q . We suppose three distinct exposure periods, q ∈ {1, 2, 3}, with a 193

retrospective exposure reconstruction for the first period, a prospective method of 194

group-level exposure estimation for the second period and prospective and individual 195

exposure assessment for the third period. A similar reasoning will apply to many 196
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occupational cohort studies, as exposure values for the earliest years of exposure are 197

often reconstructed retrospectively by extrapolating exposure conditions from more 198

recent exposure periods, while methods of prospective exposure assessment are available 199

for more recent years of exposure [3, 20, 21]. The models can also be easily extended to 200

more than three exposure periods. By allowing σ2
q 6= σ2

q′ for q 6= q′, model M9 can 201

describe the varying type and magnitude of error in the three exposure periods by a 202

heteroscedastic and unshared error structure. The error occurring in the first two 203

exposure periods is described as Berkson error with E(U1
ij(t)|Z1

j ) = 1 and 204

E(U2
ij(t)|Z2

j (t)) = 1, following the assumption that a method of group-level exposure 205

estimation will lead to unshared Berkson error. The observed exposure Z1
j for group j 206

in the first period does not depend on time t as only one value is estimated for all 207

exposure years in that group in a retrospective exposure reconstruction. On the other 208

hand, observed exposure Z2
j (t) for group j in the second period depends on time t, as 209

exposure values are estimated by a prospective group-level exposure assessment. The 210

individual and prospective method of exposure assessment in the third exposure period, 211

on the other hand, is supposed to produce independent classical measurement error, 212

which implies that E(U3
ij(t)|X3

ij(t)) = 1. 213

Accounting for the imprecision of the measurement device in group-level 214

exposure estimation 215

When describing exposure uncertainty in an occupational cohort, it may be advisable to 216

account for the imprecision of the measurement device which is used to estimate the 217

average exposure for a group of workers in a group-level exposure assessment. In this 218

vein, we can suppose an additional classical measurement error component, which is 219

shared between and within workers for the for the first exposure period, as this period 220

was characterised by a retrospective exposure reconstruction and the use of a single 221

error prone exposure estimate for a group of workers and several years of exposure. For 222

the second period, the imprecision of the measurement device that is used to obtain 223

measurements for a group of workers in a prospective fashion will likely give rise to a 224

component of classical measurement error that is shared between workers, but not for 225

several years of the same worker. The combination of shared and unshared 226
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measurement error in the first and second exposure period can be expressed by model 227

M10 :





X1
ij(t) = χ1

j · U1
ij(t)

Z1
j = χ1

j · U1∗
j

X2
ij(t) = L2

j (t) · U2
ij(t)

Z2
j (t) = L2

j (t) · U2∗
j (t)

Z3
ij(t) = X3

ij(t) · U3
ij(t).

where χ1
j and L2

j (t) are latent intermediate variables. χ1
j can be interpreted as the true 228

average exposure value of group j in the retrospective exposure reconstruction in the 229

first period. L2
j (t) represents the true average exposure value of group j at time t in the 230

prospective group-level exposure assessment during the second period. In model M10, 231

we assume E(U1
ij(t)|χ1

j ), E(U1∗
j |χ1

j ), E(U2
ij(t)|L2

j (t)), E(U2∗
j (t)|L2

j (t)) and 232

E(U3
ij(t)|X3

ij(t)) all equal to one. Moreover, log(U1∗
j ) ∼ N (−σ

2
1∗
2 , σ2

1∗) and 233

log(U2∗
j (t)) ∼ N (−σ

2
2∗
2 , σ2

2∗). The error term U1∗
j is supposed to be shared both 234

between and within subjects and therefore only depends on group j. The error term 235

U2∗
j (t), on the other hand, is shared between, but not within subjects and therefore 236

depends on group j and time t but not on worker i. 237

Accounting for individual worker practices in the periods of group-level 238

exposure estimation 239

Several authors have pointed out that workers can receive systematically higher or lower 240

exposure values than the exposure level that is measured for their job category, 241

although they work in the same environment and perform basically the same 242

tasks [17,18]. For instance, a comparison between a prospective method of group-level 243

exposure assessment and individual exposure assessment in the French cohort of 244

uranium miners revealed that individual cumulative radon exposure was substantially 245

underestimated for some workers but not for others when exposure was assessed at the 246

group-level [22]. A possible explanation for this finding is that some of the workers 247

sought relief from the strong airstream produced by a ventilation system in their break 248

hours, thereby exposing themselves to very high radon concentrations. The ventilation 249
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system was installed in the mines as a measure of radiation protection and the access to 250

areas where the airflow was too weak was formally forbidden. Miners who infringed this 251

rule received systematically higher true exposure values than their estimated exposure 252

level for all years of exposure, which were characterised by a method of group-level 253

exposure assessment. To account for the effect of these individual worker characteristics 254

and worker practices, it seems adequate to model exposure uncertainty as a combination 255

of a component of unshared Berkson error and a component of Berkson error shared for 256

several years of a worker when a method of group-based exposure assessment is used, 257

expressed by model 258

M11 :





X1
ij(t) = Z1

j (t) · U1∗
ij (t) · U1∗

i

X2
ij(t) = Z2

j (t) · U2∗
ij (t) · U2∗

i

Z3
ij(t) = X3

ij(t) · U3
ij(t).

In this model, we assume log(U1∗
i ) ∼ N (−σ

2
1∗
2 , σ2

1∗) and log(U2∗
i ) ∼ N (−σ

2
2∗
2 , σ2

2∗) with 259

E(U1∗
i |Z1

j ) = 1 and E(U2∗
i |Z2

j (t)) = 1. 260

Simulation study 261

Motivating example 262

To mimic the exposure conditions of a “true” occupational cohort, we used information 263

on annual radon exposure of the French cohort of uranium miners [23,24] as basis for all 264

simulations. Radon is a noble and radioactive gas, resulting from the decay of uranium 265

238. As radon is considered to be the second most important cause of lung cancer after 266

smoking, the main outcome of interest when it comes to radon exposure is lung cancer 267

mortality. Estimated excess relative risk coefficients per 100 working level months2 268

(WLM) vary between 0.8 and 4.2 in occupational cohorts of miners [25] when risk 269

estimation is not corrected for measurement error. 270

The French cohort of uranium miners consists of 5086 uranium miners, who present 271

2Excess relative risk (ERR) is related to relative risk (RR) by the relation RR = 1 + ERR. Radon
exposure in cohorts of underground miners is classically expressed in working level months with one
working level month approximately equal to 6.3× 105Bq h m−3.
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an average follow-up of 35 years between 1945 and 2007 and an average duration of 272

employment of 17 years between 1945 and 1999. The radon exposure data of this cohort 273

reflect conditions which can be seen as typical for an occupational cohort with varying 274

methods of exposure assessment, depending on the period of exposure. For the earliest 275

period of mining (1945-1955), there was no systematic radon exposure monitoring in the 276

mines and exposure values had to be reconstructed retrospectively by a group of 277

experts. The second exposure period (1956-1982) was characterised by a method of 278

group-based exposure monitoring, where information gathered through ambient 279

measurements at work sites was used to estimate the individual exposure of each miner 280

in a prospective fashion. Finally, for the latest period of exposure (1983-1999), radon 281

exposure was assessed individually and prospectively via personal dosimetry. At the 282

same time, starting in 1955, improvements in radiation protection of the workers led to 283

a sharp exposure reduction between 1955 and 1956, which was subsequently followed by 284

a continual decrease in annual radon exposure until the last mine closed in France in 285

1999. The average radon exposure value for exposed miners was 28.28 WLM in 1955 286

and 0.14 WLM in 1999. 287

Despite evidence of multiple sources of shared uncertainty in radon exposure in 288

cohorts of underground miners, attempts to model measurement error in these cohorts 289

so far mainly relied on the hypothesis that all exposure uncertainty can be described by 290

unshared multiplicative measurement error [7, 8, 26–28]. In the French cohort of 291

uranium miners, an attenuation of the exposure response curve for cumulative exposure 292

values exceeding 100 WLM has been observed [26]. This shape of the exposure response 293

curve, which has been observed in many other occupational cohorts [3, 4], persists after 294

unshared measurement error is accounted for. Stram et al. (1999) [1] observe a similar 295

phenomenon when analysing lung cancer mortality in the Colorado Plateau Uranium 296

Miners cohort, where the risk for radon exposures received at a high-dose rate is 297

estimated to be smaller than the risk estimated for radon exposures received at a low 298

dose-rate. The authors refer to this phenomenon, which is commonly observed in 299

cohorts of uranium miners, as the inverse dose-rate effect. When reanalysing lung 300

cancer mortality in the cohort with revised exposure estimates based on a model-based 301

imputation scheme, the authors find that the inverse dose-rate effect is greatly 302

diminished. In this context, it is important to ascertain whether the attenuation of the 303
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exposure-response relationship observed in the French cohort of uranium miners could 304

be due to components of shared exposure uncertainty that are not accounted for. 305

Simulation study 1: The impact of shared and unshared 306

measurement error on risk estimation 307

Based on our motivating example, we performed a series of simulations to assess the 308

impact of shared and unshared exposure uncertainty components on risk estimation in 309

proportional hazard models when statistical inference is not corrected for measurement 310

error. 311

Models used for data generation 312

To generate failure times, we considered two alternative proportional hazards models D1

and D2 to describe the association between instantaneous hazard rate of death by lung

cancer of miner i at age t, hi(t) and his cumulative radon exposure. Both disease

models specify hi(t) as a function of cumulative radon exposure in 100 WLM, Xcum
i (t)

of worker i until time t and the baseline hazard h0(t) of lung cancer mortality at age t.

They are given by

D1 : hi(t) = h0(t)(1 + βXcum
i (t))

and

D2 : hi(t) = h0(t) exp(βXcum
i (t)).

D1 represents an excess hazard ratio (EHR) model, which is commonly used to describe 313

the association between cancer mortality and exposure to radon and to other sources of 314

ionising radiation. D2, on the other hand, is the more classical form of the Cox 315

proportional hazards model. Cumulative radon exposure Xcum
i (t) is a time-varying 316

variable as it represents the sum over all annual exposure values that worker i in group 317

j received before time t: Xcum
i (t) =

∑

u≤t
Xij(u). 318

We considered different measurement models to describe the association between 319

true Xij(t) and observed exposure Zij(t) of worker i at time t belonging to group j. We 320
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used models M1 to M8 presented earlier, which assume one exposure period and 321

specify Berkson and classical measurement error that is either unshared, shared between 322

subjects, shared within subjects or shared both within and between subjects. 323

Data Generation 324

To create unshared exposure uncertainty, measurement errors Uij(t) were sampled 325

independently from a log-normal distribution for each miner i at every time t. For 326

components of exposure uncertainty shared within workers, we generated only one 327

log-normally distributed error Ui for each worker i, which was then used for all times t 328

at which this worker was exposed to radon. Conversely, for exposure uncertainty shared 329

between workers, we generated one log-normally distributed error term, Uj(t) at each 330

time t, which was affected to all workers i in group j. Finally, for an error component, 331

that was both shared between and within workers, i.e., at the same time among a group 332

of workers and for several years of the same worker, we generated one log-normally 333

distributed error Uj for each group of workers, which was applied for all times at which 334

a worker belonging to group j was exposed. When generating exposure data with 335

Berkson error, we made the assumption that observed exposure Zij(t) was equal to the 336

observed exposure values in the French cohort of uranium miners and multiplied Zij(t) 337

by an error term to obtain true exposure Xij(t). Conversely, when generating exposure 338

data with classical measurement error, we made the assumption that true exposure 339

Xij(t) was equal to the observed exposure values in the cohort and multiplied Xij(t) by 340

an error term to obtain observed exposure Zij(t). Since the French cohort of uranium 341

miners did not present a natural partition into groups of workers, we created 342

homogeneous groups of workers via a hierarchical ascendant clustering algorithm after a 343

multiple factor analysis based on some covariates concerning job characteristics: 344

principal type of mine, principal location and principal type of job. 345

We adapted a method proposed by Henry (2014) [29] to generate failure times for a 346

proportional hazards model with time-dependent covariates. To generate survival times, 347

we used a piecewise constant model to specify baseline hazard h0(t) in both the EHR 348

and the Cox proportional hazards model. All data generation was done in R (version 349

3.3.1). 350

We chose a true risk coefficient of β = 5 for the EHR model, which is in the same 351
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order of magnitude as the risk coefficient estimated in the French cohort of uranium 352

miners when restricting analyses to exposure periods characterised by a prospective 353

method of exposure assessment [24,26]. In order to achieve a comparable strength of 354

the association between radon exposure and lung cancer mortality for the Cox model 355

and the EHR model, we chose a risk coefficient of β = 2 for the Cox model. For the 356

sake of completeness, we included results for the EHR model with β = 2 and for the 357

Cox model with β = 5 in Table 4 and Table 5 in S2 Appendix. 358

We compared the impact of large and moderate measurement error, corresponding 359

to values for the variance of measurement error of σ2
ε= 0.8 and σ2

ε= 0.1, respectively. 360

These values were chosen in accordance with the characterisation of exposure 361

uncertainty in the French cohort of uranium miners [27,30]. 362

The combination of all possibilities for the disease model, the measurement model, 363

for the value of the true risk coefficient and for the measurement error variance resulted 364

in 2× 8× 2× 2 = 64 distinct simulation scenarios. Additionally, we compared the 365

results with risk estimates when radon exposure was observed without measurement 366

error, i.e. under measurement model M0, resulting in 68 simulation scenarios in total. 367

Assessment of risk estimates 368

For each scenario, inference was based on 100 simulated data sets. We conducted 369

inference for disease model D1 for data sets that were generated according to the EHR 370

model. Likewise, we conducted inference for the disease model D2 for data sets that 371

were generated according to the Cox model. Observed exposure Zij(t) was treated as an 372

error-free surrogate of true exposure Xij(t) in the analysis of the association between 373

exposure and disease outcome, i.e. measurement error was not accounted for in risk 374

estimation. We used a Metropolis-Hastings algorithm developed and tested in Python 375

version 2.7 for Bayesian inference. We chose a centred normal prior distribution with a 376

large variance (1000) for the risk coefficient β, which was truncated to guarantee the 377

positivity of hi(t) in the EHR model. After checking convergence, inference was based 378

on 20.000 iterations after an initial burn-in phase of 10.000 iterations (thin=1). 379

For each scenario, we estimated: 380

1. An overall 95% credible interval (CI95%), which was obtained by combining the 381
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chains of the 100 replicates for each scenario and by determining the 2.5 and 97.5 382

quantiles of the corresponding pooled chain. 383

2. The relative bias of a Bayesian point estimator β̂, given by (β̂−β)
β , where β is the 384

risk coefficient which served to generate the data. We used the posterior median 385

as Bayesian point estimate for the risk coefficient β̂. 386

3. The coverage rate of 95% credible intervals, which was calculated by counting the 387

proportion of the 100 replicates for which the 95% credible interval included the 388

true value of the coefficient β 389

4. The statistical power, which was estimated by counting the proportion of 390

replicates for which the 95% credible interval for β excluded 0. 391

Simulation study 2: The effects of measurement error 392

characteristics on the shape of the exposure-response curve 393

We performed a second series of simulations to assess the effects of different error 394

structures on the observed shape of the exposure-response curve when risk estimation is 395

not corrected for measurement error. 396

Models used for data generation 397

We used models D1 (EHR model) and D2 (Cox model), described earlier to generate 398

mortality data as a function of true cumulative radon exposure Xcum
i (t). 399

We considered model M0 with no measurement error, model M1 describing 400

unshared Berkson error with one exposure period and the more complex and more 401

plausible models M9,M10 and M11. M9 only describes unshared error, thereby 402

accounting for differences in type and magnitude of error occurring in the three 403

exposure periods, while M10 and M11 also allow for shared components of exposure 404

uncertainty due to the imprecision of the measurement device and individual worker 405

practices, respectively. 406
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Data generation 407

For model M10, the latent intermediate variables χ1
j and L2

j (t) were set to the 408

exposure values observed in the French cohort of uranium miners and both observed 409

exposure Zij(t) and true exposure Xij(t) were obtained by multiplying these 410

intermediate variables with shared and unshared measurement error, respectively. For 411

all other models, Berkson and classical measurement error were generated according to 412

the strategy described earlier. 413

We chose β = 2 for the Cox model and β = 5 for the EHR model. Results for the 414

EHR model with β = 2 and for the Cox model with β = 5 can be found in Figs S1 and 415

S2 and Table 6 of S2 Appendix. 416

In order to be able to assess the impact of the structure of measurement error, 417

rather than the magnitude of error, we tried to keep the total magnitude of error 418

constant for all models. Therefore, we generated data according to model M9 with 419

σ2
1 = 0.8, σ2

2 = 0.15 and σ2
3 = 0.01, following Allodji et al. [27, 30]. To obtain a global 420

variance of log-transformed errors comparable to this scenario, we set σ2 equal to 0.2 in 421

the homoscedastic Berkson error model M1. In accordance with the characterisation of 422

exposure uncertainty made by Allodji et al. [30], the variance parameters in model 423

M10 accounting for the imprecision on the measurement device as shared source of 424

uncertainty, were chosen as σ2
1 = 0.09, σ2

2 = 0.03 and σ2
3 = 0.01, σ2

1∗ = 0.81 and 425

σ2
2∗ = 0.12. For the variance parameters in model M11, accounting for individual 426

worker practices as shared source of uncertainty, we chose the same values for the 427

variance parameters as for model M10. In doing so, we are able to compare the effects 428

of shared exposure uncertainty due to the imprecision on the measurement device in a 429

group-level exposure estimation and due to individual worker practices for a given error 430

variance. 431

Assessing the shape of the exposure-response curve 432

We conducted statistical inference for both models D1 and D2 for all data sets, 433

regardless of the disease model that was used for data generation, to study the effects of 434

different error structures on disease model choice when inference is not accounted for 435
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measurement error. The Deviance Information Criterion3 (DIC) was used to compare 436

the competing disease models with smaller DIC values indicating a better fit to the data. 437

To investigate the possibility of measurement error to induce a non-linear 438

exposure-response relationship, we estimated parameter values in an EHR (D3) and a 439

Cox model (D4) based on natural cubic splines. In these models, we chose interior 440

knots at the 20th, 40th, 60th and 80th percentile of the exposure distribution of cases, 441

i.e. miners who died of lung cancer in our simulation study. 442

While these disease models allow for a graphical evaluation of the impact of different 443

measurement error characteristics, the parameter estimates in these models are not 444

easily interpretable. Consequently, we also fitted continuous piecewise-linear models 445

with a breakpoint at 100 WLM to be able to complement the results of model D3 and 446

D4 with slope estimates for high and low exposure values under the different error 447

structures. D3 and D5 were estimated for data sets that were generated according to 448

the linear EHR model D1 to assess the effect of the different measurement error 449

characteristics when the EHR model was the true disease model. Similarly, D4 and D6 450

were fitted for data sets that were generated according to the linear Cox model D2. All 451

statistical inference was based on the assumption that observed exposure Zqij(t) was a 452

perfect surrogate of true exposure Xq
ij(t). The natural cubic spline basis was 453

constructed in R and Bayesian inference via a Metropolis-Hastings algorithm was 454

conducted in Python. Inference was based on 20.000 iterations after an initial burn-in of 455

10.000 iterations (thin =1). 456

Results 457

The impact of shared and unshared measurement error on risk 458

estimation 459

Table 1 shows risk estimates and overall 95% credible intervals in the Cox proportional 460

hazards model. Exposure uncertainty shared within workers created more relative bias 461

in risk estimates and smaller coverage rates than exposure uncertainty shared between 462

workers. The relative bias of small measurement error of both Berkson and classical 463

3The DIC is a Bayesian model selection criterion, which can be seen as a penalised likelihood criterion
evaluating the trade-off between goodness of fit and model complexity.
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nature, for instance, was more than twice as big when this error was shared within 464

workers rather than between workers. In general, the impact of unshared uncertainty 465

and uncertainty shared between workers was comparable. Error components, which 466

were both shared between and within individuals produced about as much bias as error 467

components that were only shared within individuals. 468

Table 1. Average posterior median (β̂), overall 95% credible intervals
(CI95%), relative bias and coverage rate for 100 data sets generated
according to the Cox model D2, a measurement model among M0 to M8

and a true risk coefficient of β = 2 per 100 WLM

Model Type of Type of Error β̂ CI95% Relative Coverage
sharing error variance bias rate

M1 unshared Berkson 0.1 1.81 [1.64; 1.99] -0.10 0.10
0.8 1.25 [0.97; 1.49] -0.38 0.00

M2 classical 0.1 1.75 [1.55; 1.93] -0.13 0.02
0.8 0.83 [0.45;1.21] -0.59 0.00

M3 between Berkson 0.1 1.82 [1.62; 2.01] -0.09 0.22
0.8 1.25 [1.03; 1.47] -0.38 0.00

M4 classical 0.1 1.75 [1.53; 1.94] -0.13 0.05
0.8 0.80 [0.44; 1.16] -0.60 0.00

M5 within Berkson 0.1 1.45 [1.12, 1.69] -0.28 0.00
0.8 0.76 [0.54; 0.97] -0.62 0.00

M6 classical 0.1 1.33 [1.04; 1.58] -0.34 0.00
0.8 0.39 [0.17; 0.62] -0.81 0.00

M7 both Berkson 0.1 1.46 [1.11; 1.78] -0.27 0.00
0.8 0.77 [0.54; 1.00] -0.62 0.00

M8 classical 0.1 1.42 [1.04; 1.72] -0.29 0.00
0.8 0.49 [0.13; 0.86] -0.76 0.00

M0 none none 0 1.96 [1.80; 2.13] -0.02 0.95

Table 2 presents the same summary statistics concerning risk estimates as Table 1 469

but for failure times generated according to the EHR model. The relative bias 470

introduced by measurement error in the EHR model was smaller than the bias 471

introduced in the Cox model. For big measurement error in the EHR model, we 472

observed the same pattern as for the Cox model where measurement errors shared 473

within workers caused more relative bias and lower coverage rates than unshared 474

measurement error or measurement error that was only shared between workers. For 475

small measurement error, this tendency was less evident. In general, classical 476
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measurement caused more relative bias and smaller coverage rates than Berkson error 477

and big measurement error caused more relative bias and smaller coverage rates than 478

small measurement error, regardless of the disease model and regardless of whether 479

exposure uncertainty was shared or unshared. When data were generated without 480

exposure measurement error, the coverage rates of 95% credible intervals were very close 481

to 95%. 482

The statistical power was estimated to be 100% for all scenarios, both for data 483

generated according to the Cox model and according to the EHR model.

Table 2. Average posterior median (β̂), overall 95% credible intervals
(CI95%), relative bias and coverage rate for 100 data sets generated
according to the EHR model D1, a measurement model among M0 to M8

and a true risk coefficient of β = 5 per 100 WLM

Model Type of Type of Error β̂ CI95% Relative Coverage
sharing error variance bias rate

M1 unshared Berkson 0.1 4.87 [3.07; 7.68] -0.03 0.93
0.8 4.65 [2.89; 7.18] -0.07 0.91

M2 classical 0.1 4.88 [3.13;7.47] -0.02 0.94
0.8 4.34 [2.71; 6.70] -0.13 0.78

M3 between Berkson 0.1 4.77 [3.14; 7.11] -0.05 0.99
0.8 4.69 [2.91; 7.31] -0.06 0.93

M4 classical 0.1 4.79 [3.04; 7.35] -0.04 0.93
0.8 4.44 [2.82; 6.72] -0.11 0.85

M5 within Berkson 0.1 4.88 [3.13; 7.47] -0.02 0.94
0.8 3.98 [2.43; 6.23] - 0.20 0.73

M6 classical 0.1 4.75 [3.01; 7.31] -0.05 0.91
0.8 3.03 [1.86; 4.71] - 0.39 0.13

M7 both Berkson 0.1 4.88 [3.11; 7.69] -0.02 0.94
0.8 3.86 [2.19; 6.59] -0.23 0.55

M8 classical 0.1 4.76 [2.94; 7.29] - 0.05 0.92
0.8 3.15 [1.62; 5.25] - 0.37 0.25

M0 none none 0 4.90 [3.14; 7.45] -0.02 0.96

484
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The effects of measurement error characteristics on the shape of 485

the exposure-response curve 486

As can be seen in Fig 1, exposure-response curves for data generated according to the 487

Cox model with no measurement error (M0) or unshared and homoscedastic Berkson 488

error (M1) were close to linear on the log-scale. Heteroscedastic unshared error (M9) 489

appeared to create a slightly non-linear association. Indeed, Table 3 confirms that the

Fig 1. Estimated exposure-response curve when fitting the Cox model D4

based on natural cubic splines when data are generated according to the
Cox model D2 with a risk coefficient of β = 2. (a) M0, i.e., no measurement
error (b) M1, i.e., unshared and homoscedastic Berkson error, (c) M9, i.e., unshared
error of Berkson and classical type (d) M10, i.e., heteroscedastic error with a shared
classical component describing the imprecision of the measurement device and (e) M11,
i.e., heteroscedastic error with a shared Berkson component describing individual worker
practices

490

slope for exposure under 100 WLM in this scenario is estimated to be more than twice 491

as big as for exposure values over 100 WLM. Moreover, according to the DIC, the EHR 492

model fitted the data better than the Cox model in 34% of cases when exposure data 493

were generated following this unshared and heteroscedastic measurement model, even 494

though the true disease model was the Cox model. For data generated according to the 495

measurement models which incorporated shared sources of uncertainty (M10 and 496

M11) the attenuation of the exposure-response curve at high exposure values was even 497

more noteworthy. The slope estimates for low exposures in these scenarios are about six 498

to eight times bigger than the slope estimates for high exposures. Under these scenarios, 499

DIC values indicated for all replicates that the EHR model fitted the data better than 500

the Cox model, although data were generated according to the Cox model. In the three 501

scenarios using heteroscedastic measurement models (M9,M10 and M11), risk 502

coefficients estimated in the piecewise-linear disease model D6 were overestimated for 503

low exposures and underestimated for high exposure values when data was generated 504

according to the Cox model. Overall, we only observed a substantial attenuation of the 505

exposure-response curve in the Cox model when the first exposure period was 506

characterised by a mixture of unshared and shared measurement error, which was either 507

shared within workers or both within and between workers. 508

Fig 2 suggests that the different patterns of shared or unshared measurement error 509
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Table 3. Comparison of risk estimates when data are generated according to different
disease and measurement models. DICEHR < DICCox gives the percentage of
realisations for which the Deviance Information Criterion (DIC) was smaller for the
Excess Hazard Ratio (EHR) model when the true model was the Cox model and vice
versa for DICCox < DICEHR. The difference in DIC is calculated as difference between
the EHR model and the Cox model.

Disease model Model M0 Model M1 Model M9 Model M10 Model M11

No error Unshared Unshared heteroscedastic Heteroscedastic Heteroscedastic
Berkson error Berkson and classical error shared device worker practices

Data generated according
to the Cox model (D2)
with β = 2

Risk estimate β̂ in the
linear Cox model (D2) 1.97 [1.78; 2.16] 1.67 [1.50; 1.87] 1.23 [1.00; 1.42] 0.57 [0.21; 1.06] 0.77 [0.59; 0.98]

Risk estimates in the
piecewise-linear Cox model (D6)

β̂1 (under 100 WLM) 1.98 [1.57; 2.40] 2.08 [1.65; 2.49] 2.21 [1.78; 2.61] 2.50 [2.06; 2.91] 2.33 [1.93; 2.70]

β̂2 (over 100 WLM) 1.96 [1.68; 2.26] 1.49 [1.22; 1.80] 0.92 [0.64; 1.18] 0.31 [0.06; 0.68] 0.40 [0.20; 0.63]

DICEHR < DICCox 0% 0% 34 % 99% 100%
Difference in DIC -216.08 -142.13 -15.17 169.16 107.24

Data generated according
to the EHR model (D1)
with β = 5

Risk estimate β̂ in the
in the linear EHR model (D1) 4.90 [3.24; 7.62] 4.71 [3.08; 7.19] 4.44 [2.93; 6.81] 4.11 [2.26; 7.21] 4.07 [2.49; 6.28]

Risk estimates in the
piecewise-linear EHR model (D5)

β̂1 (under 100 WLM) 4.95 [2.83; 8.33] 4.81 [2.91; 7.67] 4.75 [2.79; 7.59] 5.58 [3.38; 9.16] 4.73 [2.77; 7.64]

β̂2 (over 100 WLM) 5.14 [2.06; 9.17] 4.72 [2.05; 9.21] 4.16 [1.48; 7.71] 2.18 [0.27; 6.43] 3.09 [0.69; 6.40]

DICCox < DICEHR 0% 0% 0% 0% 0%
Difference in DIC 93.76 87.98 85.62 132.64 83.10

Fig 2. Estimated exposure-response curve when fitting the Excess Hazard
Ratio (EHR) model D3 based on natural cubic splines when data are
generated according to the EHR model D1 with a risk coefficient of β = 5.
(a) M0, i.e., no measurement error (b) M1, i.e., unshared and homoscedastic Berkson
error, (c) M9, i.e., unshared error of Berkson and classical type (d) M10, i.e.,
heteroscedastic error with a shared classical component describing the imprecision of
the measurement device and (e) M11, i.e., heteroscedastic error with a shared Berkson
component describing individual worker practices
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did not produce any notable attenuation in exposure-response curves when mortality 510

data were generated according to the EHR model. The risk estimates in the piecewise 511

linear EHR model in Table 3 reveal that the risk for exposures under 100 WLM is 512

estimated to be more than twice as big as the risk estimated for exposures exceeding 513

100 WLM when exposure data is contaminated with components of Berkson error which 514

are shared for several years of the same worker (M10). This measurement model is the 515

only model for which the risk estimate for low exposures is estimated to be higher than 516

the risk coefficient that was chosen to generate the data. For shared error components 517

reflecting the imprecision of the measurement device (M11), we also observe a higher 518

risk estimate for exposures under 100 WLM than for exposures exceeding 100 WLM in 519

the piecewise linear EHR model. However, in both cases, the credible intervals for the 520

parameters in the piecewise linear model are very large and overlap. In contrast to the 521

Cox model, DIC values always indicated the EHR to be the better fitting disease model 522

when failure times were generated according to the EHR model, regardless of the 523

measurement model. 524

Discussion 525

In the present simulation study, we compared the effects of shared and unshared 526

uncertainty in cumulative exposure in an occupational cohort study on risk estimation 527

and on the shape of the exposure-response relationship in proportional hazards models. 528

In general, exposure uncertainty shared within individuals (i.e., shared for several years 529

of exposure for an individual) caused more bias in risk estimates and smaller coverage 530

rates than unshared exposure uncertainty. In contrast to claims that uncertainty shared 531

between individuals should have fundamentally different effects on parameter estimation 532

than unshared exposure uncertainty [15,16], we found that both error components 533

resulted in comparable relative bias and coverage rates in risk estimation in 534

proportional hazard models. In line with previous findings on the impact of 535

measurement error, we found that classical measurement error had more impact on 536

inference than Berkson error [2], regardless of the extent and type of sharing. While we 537

chose a Bayesian approach to conduct statistical inference on risk estimates, frequentist 538

likelihood-based inference yields the same results when it comes to the bias introduced 539
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by different components of measurement error (results not shown) as we assumed flat 540

prior distributions. In line with this argument, concerning the relative bias in risk 541

estimates in the presence of large and moderate unshared Berkson error, we observed 542

values that were consistent with the results of Bender et al. (2005) and Küchenhoff et al. 543

(2007), who studied the effect of unshared additive and multiplicative Berkson error on 544

frequentist inference conducted for the Cox model. When studying the association 545

between a disease outcome and cumulative exposure, we found that measurement error 546

shared within individuals had more impact on risk estimation than measurement error 547

shared between individuals. This finding is in accordance with the general principle that 548

the impact of measurement error strongly depends on the variance of exposure and the 549

variance of measurement error [2, 31]. In order to obtain cumulative exposure values in 550

an occupational cohort study, the annual exposure values for a worker have to be 551

summed and an error term shared within workers will be repeated for several exposure 552

values in that sum. As the variance of the sum of positively correlated variables is 553

greater than the sum of their variances, this summing will increase the measurement 554

error variance in cumulative exposure. Uncertainty components shared between workers 555

are unlikely to have a similar effect, because exposure values are summed within 556

workers and not between workers. While it is therefore not surprising that error 557

components shared within workers have more impact on statistical inference than 558

components shared between workers when the main risk factor of interest is cumulative 559

exposure, this result has important implications for the analysis of occupational cohort 560

studies. In particular, this finding casts doubt on the common practice to model 561

measurement error occurring in the exposure history of a worker on the sum of these 562

values [4, 5, 32], instead of modelling on their natural level of occurrence, namely on the 563

monthly or annual exposure values. In making this simplifying assumption, one may 564

mistakenly model an error component that is shared for several years of a worker as an 565

unshared error component. Our results suggest that may yield highly misleading 566

results.. We found that the impact of error components that were shared both within 567

and between workers was comparable to the impact of error components that were 568

shared between workers. However, it is likely that an error component that is shared for 569

all members of a cohort could have even larger effects on statistical inference than an 570

error component that is only shared for a sub-group of workers. 571
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In accordance with the results obtained by Steenland et al. [5], we only observed a 572

mild attenuation of the exposure-response curve in the Cox model when assuming a 573

structure of unshared error in which the magnitude of error and the magnitude of 574

exposure was greatest for the earliest years of exposure, which are often characterised by 575

retrospective exposure reconstruction. However, in an occupational cohort, it seems 576

more plausible to assume shared error components due to the imprecision of the 577

measurement device and individual worker practices when exposure values are 578

retrospectively reconstructed. Under these assumptions, we found a considerable 579

attenuation in the exposure-response relationship for high exposure values when data 580

were generated according to the Cox model. Attenuations of the exposure-response 581

curve at high exposure values may pose serious challenges in risk modelling in 582

occupational cohort studies. Indeed, if this attenuation reflects the association between 583

true exposure and the outcome and a linear model is chosen, it may cause a severe 584

underestimation of risk for workers with low exposures. On the other hand, if the 585

association between true exposure and the outcome is linear and the observed distortion 586

of the exposure-response relationship is caused by measurement error, fitting a 587

non-linear or a piecewise-linear model can lead to an overestimation of the risk 588

coefficient for workers with low exposures. To support radiation protection, researchers 589

are particularly interested in the low exposure range, because exposure levels of workers 590

are currently much lower than in the past. Moreover, these exposure values are 591

comparable to exposures received by the general population. Ignoring the cause of an 592

observed distortion of the exposure-response curve may therefore seriously limit the 593

extrapolability of risk estimates obtained in occupational studies to the general 594

population. 595

In accordance with previous findings concerning the relative importance of 596

measurement error in linear and log-linear models [32], we found that distortions in the 597

exposure-response relationship were more severe when data were generated according to 598

the Cox model, rather than according to the EHR model. Moreover, when failure times 599

were generated according to the Cox model and observed exposure values were 600

contaminated with shared and unshared error, DIC values identified the EHR model as 601

the model that best fitted the data. On the one hand, the robustness to measurement 602

error makes the EHR model, which is often considered the best model to describe the 603
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effects of ionising radiation on mortality, attractive for risk modelling in epidemiological 604

studies. On the other hand, this finding casts doubt on the possibility to identify a 605

“true model” to describe the exposure-risk relationship when risk estimates are not 606

corrected for all sources of exposure uncertainty. 607

Concerning the impact of measurement error in radon exposure in the French cohort 608

of uranium miners, our findings strengthen the hypothesis that the observed attenuation 609

of the exposure response relationship might be caused by components of shared 610

measurement error, as these components are likely to have occurred in the first exposure 611

period of the cohort. Moreover, they call into question the results of previous studies 612

accounting for exposure uncertainty, as these studies relied on the hypothesis that all 613

exposure uncertainty occurring in this cohort could be described by unshared 614

measurement error [26–28]. 615

More generally, the results of the present study underline the importance of making 616

a careful characterisation of shared and unshared exposure uncertainty in observational 617

studies if the aim is to account for its potential impacts on statistical inference. In 618

particular, one should be aware of the distortions of the exposure response relationship 619

that may be induced by different degrees of precision and varying amounts of sharing. 620

To obtain corrected risk estimates, it is important to use statistical methods that allow 621

for complex patterns of shared and unshared measurement error. As measurement error 622

shared within individuals appears to have more impact on risk estimation than 623

unshared error components or error components shared between individuals, it is 624

important to correctly specify these error components as such and to account for the 625

fact that the type of exposure uncertainty may vary over time. Up to our knowledge, 626

there is currently no possibility to use classical methods, such as regression calibration 627

or simulation extrapolation to handle these complex patterns of measurement error. In 628

our view, the Bayesian hierarchical approach is the most promising framework in this 629

context [26,33]. It is arguably the most flexible approach to account for exposure 630

uncertainty and corrected parameter estimates can be obtained by Markov Chain Monte 631

Carlo sampling. Additionally, the integration of prior knowledge on unknown 632

parameters available from previous studies or in the form of expert knowledge can lead 633

to more precise risk estimates and help to avoid overfitting, thereby increasing the 634

replicability of findings. 635
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The results of the present study may not only provide new insights in the 636

interpretation and the discussion of analyses conducted on current occupational cohorts, 637

but also for the design of future epidemiological studies. Methods of individual exposure 638

assessment are becoming more accessible than ever with technical advances that 639

facilitate the collection of exposure data. It is often argued that exposure uncertainty in 640

group-level exposure estimation will not bias risk estimates, by combining the two 641

simplifying assumptions that a group-level exposure estimation leads to Berkson error 642

and that Berkson error does not bias risk estimates [5, 6, 34]. The results of the present 643

study suggest that both of these simplifying assumptions do not hold in general and 644

that shared components of Berkson error can even lead to a substantial distortion of the 645

exposure-response relationship in the Cox model. In our view, a method of individual 646

exposure assessment should be preferred over a method of group-level exposure 647

estimation to avoid uncertainty components shared within workers and between workers, 648

which may arise in a method of group-level exposure estimation because of the 649

imprecision of the measurement device and individual worker practices. 650

Supporting information 651

S1 Fig. Estimated exposure-response curve when fitting the Cox model 652

D4 based on natural cubic splines when data are generated according to 653

the Cox model D2 with a risk coefficient of β = 2. (a) M0, i.e., no measurement 654

error (b) M1, i.e., unshared and homoscedastic Berkson error, (c) M9, i.e., unshared 655

error of Berkson and classical type (d) M10, i.e., heteroscedastic error with a shared 656

classical component describing the imprecision of the measurement device and (e) M11, 657

i.e., heteroscedastic error with a shared Berkson component describing individual worker 658

practices 659

S2 Fig. Estimated exposure-response curve when fitting the Excess 660

Hazard Ratio (EHR) model D3 based on natural cubic splines when data 661

are generated according to the EHR model D1 with a risk coefficient of 662

β = 5. (a) M0, i.e., no measurement error (b) M1, i.e., unshared and homoscedastic 663

Berkson error, (c) M9, i.e., unshared error of Berkson and classical type (d) M10, i.e., 664
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heteroscedastic error with a shared classical component describing the imprecision of 665

the measurement device and (e) M11, i.e., heteroscedastic error with a shared Berkson 666

component describing individual worker practices 667

S3 Fig. Estimated exposure-response curve when fitting the Excess 668

Hazard Ratio (EHR) model D3 based on natural cubic splines when data 669

are generated according to the EHR model D1 with a risk coefficient of 670

β = 5 assuming additive measurement error (a) M0, i.e., no measurement error 671

(b) M1, i.e., unshared and homoscedastic Berkson error, (c) M9, i.e., unshared error of 672

Berkson and classical type (d) M10, i.e., heteroscedastic error with a shared classical 673

component describing the imprecision of the measurement device and (e) M11, i.e., 674

heteroscedastic error with a shared Berkson component describing individual worker 675

practices 676

S1 File. A more detailed presentation of measurement models M5, M6, 677

M7 and M8. 678

S2 File. Results for alternative values of risk coefficients and concerning 679

the attenuation of the exposure-response relationship introduced by 680

additive measurement error 681

Acknowledgments 682

This work was partially supported by AREVA NC, in the framework of a 683

bilateral agreement between IRSN and AREVA NC. AREVA NC had no 684

role in study design, data analysis, or in the interpretation of the results. 685

References

1. Stram D, Langholz B, Huberman M, Thomas D. Correcting for

exposure measurement error in a reanalysis of lung cancer mortality

for the Colorad Plateau uranium miners cohort. Health physics.

1999;77(3).

PLOS 28/33



2. Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM.

Measurement error in nonlinear models: a modern perspective.

Boca Raton: Chapman Hall; 2006.

3. Hertz-Picciotto I, Smith AH. Observations on the dose-response

curve for arsenic exposure and lung cancer. Scandinavian Journal of

Work, Environment & Health. 1993;19:217–226.

4. Stayner L, Steenland K, Dosemeci M, Hertz-Picciotto I. Attenuation

of exposure-response curves in occupational cohort studies at high

exposure levels. Scandinavian Journal of Work, Environment &

Health. 2003;29:317–324.

5. Steenland K, Karnes C, Darrow L, Barry V. Attenuation of

exposure-response rate ratios at higher exposures: A simulation

study focusing on frailty and measurement error. Epidemiology.

2015;26(3):395–401.

6. Armstrong BG. Effect of measurement error on epidemiological

studies of environmental and occupational exposures. Occupational

and Environmental Medicine. 1998;55(10):651–656.

7. Bender R, Augustin T, Blettner M. Generating survival times to

simulate Cox proportional hazards models. Statistics in Medicine.

2005;24(11):1713 – 1723.
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27. Allodji RS, Leuraud K, Thiébaut AC, Henry S, Laurier D, Bénichou

J. Impact of measurement error in radon exposure on the estimated

excess relative risk of lung cancer death in a simulated study based

on the French Uranium Miners’ Cohort. Radiation and

Environmental Biophysics. 2012;51(2):151–163.
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Abstract Exposure measurement error can be seen as

one of the most important sources of uncertainty in

studies in epidemiology. It is indispensable to dispose

of reliable methods for measurement error generation

when the aim is to assess the effects of measurement

error or to compare the performance of several meth-

ods for measurement error correction. This paper com-

pares two approaches for the generation of Berkson er-

ror, which have recently been applied in radiation epi-

demiology, in their ability to generate exposure data

that satisfy the properties of the Berkson model. In

particular, we show that the use of one of the methods

produces results that are not in accordance with two

important properties of Berkson error.

Keywords Radon · Measurement error · Uranium

miners

1 Introduction

Exposure measurement error is unavoidable in most

epidemiological studies. In cases where it is not or only

poorly accounted for, it can lead to bias in risk esti-

mates, a distortion of the exposure-response relation-

ship and a loss in statistical power [1]. It can therefore

be seen as one of the most important sources of uncer-
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tainty in epidemiological studies [2]. In radiation epi-

demiology, we are presented with a further challenge,

because disease outcomes may not be directly associ-

ated with exposure, but rather with radiation dose. Ra-

diation dose does not only depend on the exposure to

ionising radiation, but also on other uncertain input

parameters in dose calculation. Therefore, uncertainty

in radiation doses does not only arise because of expo-

sure measurement error, but also because there is often

a lack of knowledge on the exact exposure conditions.

For the analysis and the interpretation of epidemiolog-

ical findings, it is important to be able to assess the

effects of exposure measurement error on risk estima-

tion and to account for them. Several methods for the

correction of measurement error rely on the generation

of error-prone exposure data [3,4]. In particular, a num-

ber of methods for the correction of measurement error

have been proposed in radiation epidemiology that are

based on the generation of possible dose vectors reflect-

ing complex uncertainty structures [3,5,6]. Moreover,

one generally has to generate error-prone exposure data

in simulation studies that aim to assess the effects of

different types of measurement error on risk estimation

and in studies that compare the performance of several

methods for measurement error correction. The correct

generation of exposure measurement error is therefore

a crucial part in its treatment. One traditionally distin-

guishes classical measurement error and Berkson error.

Allodji et al. [7,8] and Hoffmann et al. [9] employed

two different approaches for the generation of Berkson

error when treating exposure uncertainty in the French

cohort of uranium miners. The aim of this paper is to

compare these two simulation approaches in their abil-

ity to generate exposure data that satisfy the properties

of the Berkson model.
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2 Methods

When modeling exposure measurement error, one typ-

ically distinguishes the true Xi and the observed Zi
exposure of study participant i, i = 1, . . . n. Depend-

ing on the error structure, the measurement error term

Ui will describe the difference or the ratio of true and

observed exposure for additive and multiplicative error,

respectively. While it common to suppose that measure-

ment error Ui follows a normal distribution in the case

of additive measurement error, it is convenient to sup-

pose a lognormal distribution for multiplicative expo-

sure measurement error. Another important dimension

Table 1 The Berkson and classical measurement error model
in the additive and the multiplicative case

Additive Multiplicative
error error

Berkson error Xi = Zi + Ui Xi = Zi · Ui

E(Ui|Zi) = 0 E(Ui|Zi) = 1
Classical Zi = Xi + Ui Zi = Xi · Ui

measurement error E(Ui|Xi) = 0 E(Ui|Xi) = 1

to describe the characteristics of measurement error is

the distinction of Berkson and classical measurement

error. In a Berkson model, true exposure Xi is mod-

eled conditional on observed exposure Zi, contrary to

a classical measurement model, where observed expo-

sure Zi is modeled conditional on true exposure Xi.

Moreover, under the assumption of normal additive or

lognormal multiplicative error, the variability of true

exposure exceeds the variability of observed exposure

in the Berkson model, while the opposite is true for

classical measurement error (property 1). Moreover, the

measurement error term Ui is independent of observed

exposure Zi in the former and of true exposure Xi in

the latter. We will consider the four measurement mod-

els summarized in Table 1.

Another important difference between these two mea-

surement models concerns their impact on risk estima-

tion. In particular, in the case of simple linear regres-

sion, analytical results show that classical measurement

error will lead to an underestimation of the regression

coefficient, while Berkson error does not bias the esti-

mation of the risk coefficient in this model [1] (property

2).

In the following, we briefly describe the two different

simulation approaches for the generation of Berkson er-

ror used in Hoffmann et al [9] and Allodji et al. [7,8] .

Method 1 (Hoffmann et al (2017) [9]): For mul-

tiplicative error, given observed exposure Zi of study

participant i, multiply this observed exposure value by

a measurement error term Ui to generate true exposure

Xi:

Xi = Zi · Ui (1)

where Ui follows a log-normal distribution with parame-

ters µ = −σ2

2 and σ. As the expectation of a log-normal

distribution with mean µ and standard deviation σ is

given by exp(µ + σ2

2 ), this parameterization implies

E(Ui) = 1. Moreover, since Ui is generated indepen-

dently of Zi, E(Ui|Zi) = E(Ui) = 1 and E(Xi|Zi) = Zi,

i.e. there is no systematic bias.

Likewise, additive Berkson error can be generated by

Xi = Zi + Ui, where Ui follows a normal distribution

with mean zero and standard deviation σ.

Method 2 (Allodji et al (2012) [7,8]): For multi-

plicative error, which satisfies the Berkson model Xi =

Zi ·Ui and given true exposure Xi of study participant

i, divide this true exposure value by Ui to generate ob-

served exposure Zi:

Zi =
Xi

Ui
(2)

where Ui follows a log-normal distribution with param-

eters µ = −σ2

2 and σ.

Similarly, to obtain additive error, which satisfies the

Berkson model Xi = Zi + Ui, generate Zi as Zi =

Xi − Ui, where Ui follows a normal distribution with

mean zero and standard deviation σ.

In order to assess whether the exposure data generated

by the two methods satisfied the properties of Berk-

son error, we generated 10000 datasets of 5000 workers.

For each dataset, 5000 values of the measurement er-

ror term Ui (i = 1, . . . , 5000) were simulated according

to a lognormal distribution with parameters µ = −σ2

2

and σ for each method. We considered two alternative

values, 0.3 and 0.8, for the standard deviation parame-

ter σ. Observed Zi and true exposure Xi were obtained

according to the two methods described above. Finally,

we simulated 5000 outcome values Yi following a simple

linear regression model Yi = Xiβ + εi for each method,

where β was equal to one and εi was identically and

independently distributed following a normal distribu-

tion with mean zero and a standard deviation of one.

To assess the impact of Berkson error on the estima-

tion of β, we considered the following estimation model:

Yi = Ziβ
∗ + εi, where Zi is error-prone observed expo-

sure. Maximum likelihood estimates of β∗, denoted β̂∗,
were computed via the lm function available in R ver-

sion 3.1.1.
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3 Results

Table 2 and Table 3 show the mean bias of β̂∗, obtained

by averaging the 10000 estimates β̂∗ and subtracting

the true value β, and the mean empirical variance of

Xi and Zi for each method for a standard deviation

of 0.3 and 0.8, respectively. Moreover, the two tables

give information on the 95% quantile interval of bias,

defined as the empirical 2.5% and 97.5% quantiles of

the 10000 computed values for bias.

Table 2 Mean bias, associated 95% quantile interval (95%
QI) and mean empirical variance of the true exposure vector
X and the observed exposure vector Z for Berkson error gen-
erated with a standard deviation of 0.3 and a true regression
coefficient β of 1.

Additive error Multiplicative error
Method 1 Method 2 Method 1 Method 2

Mean bias of β̂∗ 0.00 -0.02 0.00 -0.20
95% QI [-0.01; 0.01] [-0.03; -0.01] [-0.07; 0.08] [-0.27; -0.14]

Mean empirical
variance of X 4.77 4.67 5.37 4.66

Mean empirical
variance of Z 4.68 4.76 4.68 6.41

Table 3 Mean bias, associated 95% quantile interval (95%
QI) and mean empirical variance of the true exposure vector
X and the observed exposure vector Z for Berkson error gen-
erated with a standard deviation of 0.8 and a true regression
coefficient β of 1.

Additive error Multiplicative error
Method 1 Method 2 Method 1 Method 2

Mean bias of β̂∗ 0.00 -0.12 0.00 -0.77
95% QI [-0.02; 0.02] [-0.15; -0.09] [-0.19; 0.27] [-0.85; -0.72]

Mean empirical
variance of X 5.3 4.68 11.33 4.67

Mean empirical
variance of Z 4.66 5.32 4.68 40.41

As can be seen in these tables, Method 1 for the

generation of Berkson error fulfills property 1 and prop-

erty 2 as defined above since the mean bias is close to

0 and the variability of true exposure Xi exceeds the

variability of observed exposure Zi. Method 2 for the

generation of Berkson error, on the other hand, does

not fulfill these two properties. Indeed, the variability

of observed exposure Zi exceeds the variability of true

exposure Xi and Berkson error generated according to

this method introduces moderate to large biases in the

estimation of the regression coefficient β.

4 Discussion

In the present simulation study, we showed that the

use of Method 2 for the generation of Berkson error pro-

duced results that were not in accordance with two im-

portant properties of Berkson error. Contrary to Hoff-

mann et al. [9], Allodji et al. [7,8] found a substantial

impact of measurement error in radon exposure when

analyzing lung cancer mortality in the French cohort of

uranium miners. This discrepancy could be due to the

shortcomings of Method 2 for the generation of Berk-

son error.

These shortcomings can be explained by the fact that

the independence assumption between observed expo-

sure Zi and the measurement error term Ui is violated

when applying Method 2. Indeed, by construction, Zi
is a function of Ui (see equation (2)) and it therefore

seems natural that Zi and Ui cannot be independent.

Due to the symmetry of the Gaussian distribution, in

the additive case, it can be easily seen that Method 2

generates errors following unbiased classical measure-

ment error. In the case of multiplicative error, on the

other hand, it is necessary to take a closer look at the

properties of the lognormal distribution. If a variable U

is log-normally distributed with the mean and standard

deviation of its natural logarithm µ and σ, respectively,

then 1/U is also log-normally distributed, but the mean

and the standard deviation of its natural logarithm are

−µ and σ. Therefore, one can rewrite Method 2 to gen-

erate Berkson error as:

Zi = Xi · U ′i (3)

where U ′i = 1/Ui. If log(Ui) follows a normal distribu-

tion with mean −σ2

2 and standard deviation σ, then

log(U ′i) follows a normal distribution with mean σ2

2

and standard deviation σ. Therefore, the expectation

of U ′i is exp(σ
2

2 + σ2

2 ) = exp(σ2) 6= 1 if σ2 6= 0, which

violates the property of unbiased Berkson error that

E(U ′i |Zi) = 1. A comparison of expression (3) with

Table 4 Mean bias, associated 95% quantile interval (95%
QI) and mean empirical variance of the true exposure vector
X and the observed exposure vector Z for Berkson error gen-
erated by Method 2 and classical measurement error with a
standard deviation of 0.3 and a true regression coefficient β
of 1.

Additive error Multiplicative error
Method 2 Unbiased Method 2 Biased
Berkson classical Berkson classical

Mean bias of β̂∗ -0.02 -0.02 -0.20 -0.20
95% QI [-0.03; -0.01] [-0.03; -0.01] [-0.27; -0.14] [-0.27; -0.14]

Mean empirical
variance of X 4.67 4.67 4.66 4.67

Mean empirical
variance of Z 4.76 4.76 6.41 6.42

the multiplicative classical measurement error model

(see Table 1) shows that Method 2 for the generation

of Berkson error inadvertently generates classical mea-

surement error with a systematic bias (as E(Ui) 6= 1)

instead of Berkson error without bias.
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Table 5 Mean bias, associated 95% quantile interval (95%
QI) and mean empirical variance of true exposure X and ob-
served exposure Z for Berkson error generated by Method 2
and classical measurement error with a standard deviation of
0.8 and a true regression coefficient β of 1.

Additive error Multiplicative error
Method 2 Unbiased Method 2 Biased
Berkson classical Berkson classical

Mean bias of β̂∗ -0.12 -0.12 -0.77 -0.77
95% QI [-0.15; -0.09] [-0.15; -0.09] [-0.85; -0.72] [-0.85; -0.72]

Mean empirical
variance of X 4.68 4.67 4.67 4.67

Mean empirical
variance of Z 5.32 5.31 40.41 40.67

To verify these theoretical results, we can compare the

results obtained for Method 2 with the situation where

exposure data is generated with systematic multiplica-

tive and unbiased additive classical measurement er-

ror. In the multiplicative case, we will generate log(Ui)

according to a normal distribution with mean σ2

2 and

standard deviation σ. The results of this comparison

for a standard deviation parameter of 0.3 and 0.8 are

given in Table 4 and 5, respectively. These findings con-

firm the theoretical results that Berkson error gener-

ated according to Method 2 leads to unbiased classical

measurement error in the additive case and to biased

classical measurement error in the multiplicative case.

5 Conclusion

Berkson error plays an important role in epidemiol-

ogy as many studies rely on a group-based exposure

measurement strategy, for instance via job-exposure-

matrices. Although it is often stated that Berkson error

does not cause bias in risk estimates, this assumption is

not true for logistic regression and proportional hazard

models, in particular in the case of multiplicative errors

[10] or in the case of errors which are correlated within

or among study participants [11]. As it is indispensable

to generate measurement error in order to develop and

to validate methods for measurement error correction,

our results underline the importance of a careful choice

in the method of error generation.
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