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Introduction

Nuclear physics is the study of the atomic nuclei which aims at describing their structure,
their interactions with other particles, and their radioactive decays. Its fields of application are
numerous, including the design of nuclear power plants, radiotherapy, astrophysics, weaponry, or
archaeology and geology. In this work, the applications of interest are more specifically related to
neutronics which is the study of the motion and interactions of neutrons in matter. Neutronics
is a crucial component of the nuclear industry, whereby it serves as a basis for the operation
of nuclear reactors in power plants. Neutronics calculations are also necessary to estimate the
risks of a criticality accident due to a self-sustained uncontrolled chain reaction.

An interaction between a neutron and a nucleus can lead to several kinds of nuclear reactions,
such as the capture of the neutron by the nucleus followed by a fission for instance. Basic data
about the nature of these reactions are required to perform quantitative neutronics calculations,
which are called nuclear data. Among them, one may quote the reaction cross sections which
indicate the probability for a particular reaction to occur, the angular distributions of secondary
emitted particles, or radioactive decay rates such as half-lives of unstable nuclei. Nuclear data
are essential ingredients required by neutronics codes to model the motion of neutrons in any
nuclear facility.

Although many achievements have been accomplished in the nuclear arena, to this day, full
knowledge of the fundamental properties of matter is still a challenge. The precise description
of the behavior of a neutron in the inner parts of a nucleus remains out of reach of theoreti-
cal developments. The current methods rely on experimental approaches to measure relevant
quantities about the neutron-nuclei interactions. These latter are then completed and corrected
during an evaluation process to produce nuclear data libraries, which contain sufficient informa-
tion to reproduce the experimental data. At this stage, nuclear data libraries must undergo an
additional processing step to be turned into forms suitable for applications. This is the goal of
the so-called processing codes, among which the NJOY code developed at Los Alamos National
Laboratory in the United States is the most frequently used. Once processed, the nuclear data
can be used as an input for nuclear applications by computer neutronics codes. Their quality
is tested in benchmarks, that are simple experiments representative of practical cases, and for
which several quantities have been measured like the neutron flux or the effective multiplication
factor keff which expresses the intensity of the chain reactions.

The Institut de Radioprotection et de Sûreté Nucléaire3 (IRSN) is the public institute re-
sponsible for the nuclear safety in France. Its role is to provide a safety expertise for any nuclear
activity in France, from the medical sphere to nuclear power plants. Many research activities
are undertaken at IRSN to support its expertise missions. This is for instance the role of the
Neutronics Laboratory, part of the Criticality and Neutronics Service (SNC), which develops
tools and monitors experimental programs to improve the quality of the criticality safety and

3Institute for Radiological Protection and Nuclear Safety.
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reactor physics analyses performed at IRSN. Due to their importance, assessing the quality of
nuclear data used by neutronics codes is also part of the laboratory activities.

The present work has been achieved in collaboration with the Commissariat à l’énergie
atomique et aux énergies alternatives4 (CEA), the main public organization in France which
performs research in the field of nuclear science. The collaboration arose between the IRSN
SNC and the CEA Service d’Études des Réacteurs et de Mathématiques Appliquées5 (SERMA),
in charge of the development of the nuclear data processing codes and the generation of libraries
for neutronics applications, among many other things.

In the last few years, IRSN has expanded its capability to test and validate nuclear data
and associated uncertainties. In particular the development of an independent nuclear data
processing tool, GAIA-2, was initiated in 2012 during a PhD carried by M. Ghislain Ferran [1].
The development of this code was motivated by the urge to implement new independent methods
to handle the modeling steps carried out during the nuclear data processing in existing software.
The development of independent methods serves to cross-check existing codes outputs, and is
thus relevant for a safety institute. In 2014, the code was able to handle all the formalisms
derived from the general R-Matrix theory and several methods to Doppler-broaden the cross
sections in the so-called resolved resonance range. In addition, both operations were performed
in a single step without relying on an intermediate linearization of the 0K cross sections. Cross-
checking GAIA-2 with NJOY results proved that the methods implemented in the resolved
resonance range led to equivalent results, which validated the first developments of GAIA-2.

In the processing step of nuclear data, another important objective is to handle the cross
sections calculations for another domain of the incident neutron energies, called the unresolved
resonance range. This energy range, adjacent to the resolved resonance range, is characterized
by resonance parameters given as average values due to experimental resolution constraints.
Cross section calculations have to be adapted to manage this new situation, and additional
models are required compared to the resolved resonance range. In this context, the objectives
of the present PhD are to examine the existing procedures of nuclear data treatment in the
unresolved resonance range, develop new methods to improve the quality of the processed data,
and implement them in GAIA-2. The present thesis is thus a straight continuation of the work
carried out in GAIA-2 until now.

The usual practice in the unresolved resonance range is to compute cross sections as probabil-
ity tables. These tables are discrete versions of the probability distributions of the cross section
values at tabulated reference energies. Their computation relies on a Monte-Carlo procedure
called the ladder method, based on the sampling of several statistical acceptable sets of resolved
resonances across the unresolved resonance range. The resonance sampling requires evaluated
average resonance parameters and the knowledge of the theoretical statistical laws they follow.
One of the main objectives of this work is to develop a methodology to compute these proba-
bility tables. All the hypotheses made at any step of their calculation will be presented in this
dissertation and several methods and results will be compared to those obtained with existing
cross section processing codes.

The present document is divided into three main parts, each of them composed of two
chapters. The first part deals with the global aspect of the nuclear data processing in the
unresolved resonance range. In the first chapter, the basics of the neutron-induced nuclear
reactions theory is presented. The scope in which this work has been carried out is briefly
presented, along with a more detailed section related to the R-Matrix theory that structures the
entire nuclear data representation in the resonance ranges. In a second chapter the practical
challenges of the nuclear data processing in the unresolved resonance range are exposed. The
format of the input evaluated nuclear data is described and the two principal manners of data
processing are exhibited. The first one is a direct computation of the average cross section values

4Alternative Energies and Atomic Energy Commission.
5Service for the Study of Reactors and Applied Mathematics.
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using the so-called Hauser-Feschbach formalism. The second route is the aforementioned ladder
method. In particular all the hypotheses and potential sources of disagreement between possible
implementations of the ladder method are listed.

The second part is focused on the cornerstone of the ladder method, which is the statistical
sampling of resonances from their average parameters. The statistical sampling of resonances
is an important exercise in nuclear physics, which also occurs during the exploitation of experi-
mental data to create nuclear data evaluations. In the framework of the ladder method, several
questions arise among which the sampling starting point, the number of resonances to sample,
and the number of Monte-Carlo iterations to run. Some developments performed in this work to
answer these questions notably introduce the definition of a finer set of input resonance param-
eters, referred as elementary spingroups, which turn out to be very useful in many applications.
The fourth chapter tackles a slightly more complex topic which introduces elements of the ran-
dom matrix theory in the resonance sampling. The main idea of the chapter is to abandon
the usual law of the spacing between resonances to adopt a more physical approach that takes
into account correlations between resonances. A variant of the Hauser-Feschbach formalism to
compute average cross sections is also shown, and compared to the usual practice.

The third part is dedicated to the use of probability tables in the unresolved resonance range
for practical applications. In the fifth chapter, the construction of probability tables from the
resulting sampling of the ladder method is investigated. The existing methods are presented as
well as two innovative approaches, based on k-clustering algorithms. The sixth and final chapter
of this thesis deals with the integration of probability tables in the workflow of processing codes.
In particular, the question of the choice of the reference energy mesh on which to compute the
probability tables is examined. Then, probability tables are used in benchmark calculations
to estimate the quality of the developed methods to handle the unresolved resonance range all
along the thesis, and implemented in the IRSN nuclear data processing code GAIA-2.
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Chapter 1

Fundamentals of the
neutron-induced nuclear reactions
theory in the resonance ranges

1.1 Generalities about nuclear reactions

A particular field of interest in nuclear physics is the study of the interactions between an
incident particle and a target nucleus. The interaction is likely to produce a nuclear reaction,
after which the state of the system may have changed. Several kinds of reactions may occur in the
process. For instance, the incident particle may be absorbed, scattered, or even create a fission.
Being able to model in detail the possible nuclear reactions is essential, as their outputs are used
in various physics and engineering simulations at the macroscopic scale. For the applications
which motivated this work such as nuclear reactor physics, radioprotection, and criticality safety,
the incident particle is a neutron1. The target nuclei however depend on the applications. In
the case of a PWR reactor for example, important targets are the uranium isotopes present in
the fuel, many actinides which are created through the irradiation process, oxygen and hydrogen
isotopes which compose water, metallic nuclei in the vessel and the structure around the fuel,
and a few other nuclei as for instance boron isotopes which can be poured in water to decrease
reactivity. These isotopes are quite well studied as they are vital for the nuclear energy industry.
For other applications such as criticality safety or astrophysics the range of nuclides of interest
is much wider.

In this section, the basics of neutron-induced nuclear reactions will be presented, along with
the key-concept of cross section. Then, a subdivision of the incident neutron energy in ranges
of interest will be introduced.

1.1.1 Nuclear reactions modeling

In the following, we will consider the paired system composed of a neutron n, interacting
with a target nucleus Z

AX composed of A nucleons, among which Z protons and N = A − Z
neutrons. The interaction between the neutron and the nucleus may induce a nuclear reaction,
and let the system in a new state, as depicted on Figure 1.1. Reachable states must follow some
conservation rules as:

• System total energy conservation
1This is not necessarily the case in radiotherapy for instance, where the incident particle may be a proton.
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• System total linear momentum conservation

• System angular kinetic momentum conservation

• Conservation of the total number of nucleons A. It should be emphasized that the number
of neutrons and protons are not necessarily conserved, as β+/− radioactivity is able to turn
a proton into a neutron and vice versa. In most nuclear reaction models however, such
radioactive decays are neglected and the number of neutrons and protons is conserved.

Figure 1.1: Example of a reaction (n,p)

Types of nuclear reactions

A typical notation for a nuclear reaction is

A(a, b)B (1.1)

where A is the target nucleus, a the incident particle (in our case a neutron n), B the residual
nucleus, and b the outgoing particle. When there is no ambiguity, or when the detail of the
reaction is not required, A and B may be dropped. In the same way, b is sometimes replaced
by a more general expression, so that most common reactions are written:

• (n,n): elastic scattering

• (n,n’): inelastic scattering

• (n, γ): radiative capture

• (n, f): fission

• (n, p): emission of a proton

• (n, α): emission of an α-particle

• (n, xn): emission of several neutrons

In all cases the output state of the system (characterized by the number and type of nucleons
in B and b along with their excitation energy) defines a reaction. Let us describe more in detail
these reactions.

A scattering corresponds to the case where a neutron is emitted and the residual nucleus is
Z
AX. If the residual nucleus is at ground level, the scattering is said to be elastic. In case the
target nucleus is left in an excited state, the scattering is referred to as an inelastic scattering.
Mechanisms leading to these reactions may be very different.

A capture occurs when the incident neutron is captured by the target nucleus to form a
resulting nucleus with A+ 1 nucleons. In such a case, B is equivalent to A+1

Z X. Such a system
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is usually unstable, and decays by emitting photons (γ-rays), so that the reaction is said to be
radiative.

Sometimes, the neutron influence is able to break the target nucleus into several nuclides,
producing a fission reaction. Fission typically occurs for large mass nuclides (A > 230) which
have more chances to be cut in two under the neutron influence.

Many other reactions are possible, such as the emission of a proton, the emission of an alpha
particle, the emission of several neutrons2, and so on. For an incident neutron, up to several
hundreds of reactions may be defined in practice.

From a terminology point of view, the nature of the reactions actually differs. If the state
of the resulting nuclides (ie. their nature and their excitation energy) is well defined after a
reaction, this reaction is said to be fundamental. This is the case of elastic scattering: resulting
nuclides are well defined, as well as their energies. On the other hand, only mentioning a fission
reaction does not suffice to indicate the nature of the reaction, as nuclides do not always break
up into the same components. In the same way, during an inelastic scattering the nuclide can be
left in different excited levels. The same goes for radiative capture, as there are many possible
ways of decay for the remaining nucleus. Actually, in all those cases the reactions are said
to be composed, as they group many sub-reactions, which are themselves fundamental. It is
sometimes more convenient to deal with composed reactions in practice. A crucial case is the
total reaction, which regroups all the possible reactions. Total reaction is usually subdivided
into scattering reaction and absorption reaction. The latter notably groups fission reactions and
radiative captures. Figure 1.2 summarizes the usual grouping of the most common reactions.
Section 1.3.2 shows that considering the real quantum state of the remaining nuclides (instead
of just their nature and excitation levels) leads to the notion of channel, which plays a major
role in the mathematical framework used to describe the nuclear reactions.

Figure 1.2: Main reactions hierarchy

To each reaction it is possible to associate a Q-value, the energy produced by the reaction.
It corresponds to the mass balance before and after the reaction, multiplied by the square of the
light speed c. The Q-value is an intrinsic quantity of any reaction.

Q = c2[minitial −mfinal] (1.2)

Some reactions are said to be threshold reactions when energy must be provided so that the
reaction happens. This is the case of some fission reactions for example. In particular, a reaction
is always a threshold reaction if its associated Q-value is negative: a negative Q-value means

2(n, xn) is sometimes considered as a kind of inelastic scattering, but this definition is not the one adopted
in the nuclear data formats [2]. (n, xn) reaction contributes along with inelastic scattering and others to the
non-elastic reaction (which is a composed reaction).
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that the reaction is possible only when the neutron kinetic energy is greater than −Q. This is
the case of the inelastic scattering, for example.

Nuclear reaction mechanisms

An interaction between a neutron and a nucleus can occur in several ways which depend
on many factors. The simplest case is a kind of elastic scattering often called potential elastic
scattering: the neutron is deflected by the nucleus, exactly like two billiard balls from a classical
mechanics point of view3 [3]. In this very particular type of interaction, everything appears
as if the neutron does not penetrate in the nucleus. For this reason, this reaction is sometime
refereed to as nuclear scattering.

On the contrary, when the neutron penetrates the nucleus, it mixes with the nucleus’ nu-
cleons. Three different mechanisms are usually differentiated, according to the characteristics
of the interaction: direct, compound nucleus and pre-equilibrium nuclear reactions. Each one
is preponderant for a particular energy range of the incident neutron. As they exhibit quite
different features, several theoretical or empirical models have been developed to represent each
mechanism properly. Among the features used to distinguish these mechanisms one can notice
the reaction time, which is closely related to the number of collisions between the neutron and
the target’s nucleons, and the residual nucleus angular distributions shape.

Below 20 MeV, which actually corresponds to the nuclear reactors operating conditions, the
neutron-nucleus collision is more likely to lead to the formation of a compound nucleus. Such
a formation is a slow reaction (∼ 10−18 s), which indicates many intra-nucleus collisions due
to the low energy of the neutron. During the process, the incident neutron energy (equal to
the sum of the neutron kinetic energy and its binding energy within the nucleus) is shared
among the A+ 1 nucleons and subsequently the composed system forgets the conditions under
which it has been created. This memory loss of the compound nucleus is referred to as Bohr’s
amnesia hypothesis [4]. As a result, the states of the system before and after the reaction
are mainly uncorrelated. It is then relevant to consider the compound nucleus formation as a
two-step process. Once the neutron enters the nucleus, an excited system composed of A + 1
nucleons is formed, in which the incident neutron has shared its energy. Such a system being
highly unstable, the compound nucleus then decays by emitting nuclides or/and radiations. The
angular distributions of these remaining nuclides is mainly isotropic. The compound nucleus
reactions are preponderant in the formalism used to treat the energy range of interest in this
document. Details will be given in Section 1.1.3.

At higher energies (> 20 MeV), direct4 reactions become the dominant reaction scheme.
They are characterized by a short duration length (< 10−22 s), which features only a few intra-
nucleus collisions. In this case, things appear as the neutron traverses the nucleus. The very
short laps of time during which the reaction occurs does not enable the incident neutron energy
to be shared by the nucleons uniformly. As a result, there is a strong correlation between the
system states before and after the reaction. For instance, the angular distribution of the residual
nuclides is strongly peaked in the incident neutron direction, and exhibits a strong oscillatory
behavior.

Between the compound nucleus and the direct reactions models lies an intermediate category
of mechanisms, which embodies features from both. They are referred to as pre-equilibrium,
pre-compound or multi-step processes. They are sometimes themselves distinguished between
multi-step compound (MSC) and multi-step direct (MSD) reactions, according to the weight of
each mechanism to describe the characteristics of the reaction. In these models, the composed

3From a quantum mechanics point of view, the nucleus can be seen as a potential well, and the neutron wave
does not have enough energy to break through the potential barrier.

4About the terminology in use, some references use the term "direct" when an output particle turns out to be
the incident neutron (for instance potential elastic scattering can be featured as a direct reaction for this reason,
as in [3]). Such uses must not be confused, but for direct reaction mechanism, the incoming neutron is often part
of the output particles. In particular, capture reactions mainly follow the compound nucleus scheme.
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system decays without losing its memory.
In this document, we will mainly discuss about the compound nucleus model which best

describes the nuclear reactions mechanism in the energy range of interest for this study, the
so-called unresolved resonance range.

1.1.2 The concept of cross section

Let us imagine a neutron traveling through a material, composed of nuclei of the same type.
The neutron trajectory resembles its course in the void, straight ahead at constant speed, until
it encounters a nucleus5. A very important idea is to state that the probability for a neutron
to provoke a nuclear reaction is proportional to its chances to meet a nucleus. Accordingly this
probability can be expressed as a "characteristic area", called a cross section. The larger the
cross section the higher the probability of interaction. Cross sections are expressed in barns, a
surface unit so that 1b = 10−24 cm2, which is the square of the typical nucleus radius order of
magnitude, 10−12 cm. In a broader approach, cross sections can be defined for all reactions as
the probability of a particular reaction to occur. It is related to the joint probability to meet a
nucleus and provoke a reaction of a certain type.

Two very different kinds of cross sections can be defined. Microscopic cross sections, usually
written σ, are intrinsic properties of nuclei. They can roughly be assimilated to the nuclei
characteristic "size", as seen by the incoming neutron. They depend on the nucleus and the
reaction considered, but also depend on the temperature and on the incident neutron speed, or
equivalently, on the incident neutron kinetic energy6. They can be quite complex functions. As
an example Figure 1.3 displays some reactions cross sections of 140Ba at 0K.

Figure 1.3: 140Ba cross sections

Microscopic cross sections must not be confounded with macroscopic cross sections, usually
written Σ, which are used to describe a neutron probability of interaction within an applied

5The neutron "ignores" the electrons.
6For practical use, microscopic cross sections are provided in the center of mass of the paired system referential.
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geometry7 at the macroscopic level (for instance a nuclear reactor fuel assembly, large of several
meters and composed of many nuclei of different types). The inverse of the macroscopic cross
section Λ = 1/Σ is the mean free path of the neutron in the material. The link between the
macroscopic and microscopic cross sections is quite straightforward. Let us imagine a material
composed of M nuclides, with densities ni(~r, t) ([m−3]) respectively. For a particular reaction
x, the macroscopic cross section is the sum of the product of the density with the cross section
for each nuclide:

Σx(~r,E, t) =
M∑
i=1

ni(~r, t)σx,i(E) (1.3)

From this definition, it is clear that macroscopic cross sections depend on the geometry of the
problem, and are susceptible to be time-dependent.

Cross sections are one of the most important data encountered in the field of nuclear physics
and neutronics, as they are required to solve the well-known Boltzmann equation which expresses
the neutron transport. This equation serves in nuclear reactor physics, radioprotection, critical-
ity safety, etc., to calculate the neutron flux in a real geometry, which is one the main objective
in neutronics. The neutron flux φ is defined as the product of the neutron density with speed.
For instance, taking a mono-energetic8 beam of neutrons with density np, the neutron flux is
simply defined as φ = npv. In the most general case, the neutron flux is a function of the neutron
beam energy, the geometry, the time, and the neutron flux direction ~Ω. When the neutrons flux
is angle-integrated, one may talk of the scalar flux. The Boltzmann equation is established by
balancing the number of neutrons in a tiny element of the configuration space and brings into
play macroscopic cross sections. It is usually relevant to use the lethargy u = ln

(
E

E0

)
instead

of the energy to write the Boltzmann equation. For an isotropic and homogeneous region of
space, the stationary Boltzmann equation becomes:

−~Ω~∇φ(~r, ~Ω, u)− Σt(u)φ(~r, ~Ω, u) + S(~r, ~Ω, u) = 0 (1.4)

where S is a source term, ~Ω the neutron direction, u the lethargy. Solving this equation is the
role of neutronics transport codes which can use Monte-Carlo techniques to simulate neutrons
histories, or deterministic methods often based on finite elements to determine the flux.

It is possible to deduce various quantities from the neutron flux, such as reaction rates for
instance, which quantify the number of reactions by second in a volume element. Reaction rates
are very important in criticality safety where the goal is to apprehend the evolution of chain
reactions. Formally one could define the reaction rate as the number of reactions of a certain
type per unit of time, volume, speed (ie. energy), and solid angle, but useful quantities are often
angle-integrated and energy-integrated. It is the product of the macroscopic cross section and
the neutron flux, and is expressed in m−3s−1.

τ(~r, t) =
∫
E

Σ(~r,E, t)︸ ︷︷ ︸
nt(~r,t)σ(E)

φ(~r,E, t)dE (1.5)

Finally, let us underline that it is also possible to define differential cross sections (written
dσ
dΩ) as the occurrence probability of a reaction (actually a scattering) whose produced neutron
arrives in a solid angle Ω. Formally, scattering cross sections are the angle-integrated differential
scattering cross sections. It is even possible to define double-differential cross sections (written
d2σ
dΩdE ), as the occurrence probability of a reaction whose a product neutron arrives in a solid

7All along this document, a geometry designates not only the proper geometric dimensions of all the materials
which compose a structure of interest, but also the temperatures and isotopic compositions of its constituent
parts.

8So that they all have the same speed.
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angle dΩ with an energy dE.

σ(E) =
∫
dσ

dΩ(E)dΩ =
∫

d2σ

dΩdE′ (E)dΩdE′ (1.6)

The precise knowledge of microscopic cross sections, from which macroscopic cross sections
can be computed, is of major importance to achieve properly any neutronics computations. The
calculation of cross sections relies on the reaction model chosen; in practice, this choice depends
on the considered energy range. In this work, the computation of cross sections for the compound
nucleus reactions is of particular interest. Before dealing with the mathematical background to
establish the analytic expression of cross sections (which will be done in Section 1.3.2), let us
have a look at some qualitative characteristics of the compound nucleus itself.

1.1.3 The compound nucleus model

Quantum numbers conservation

During a nuclear reaction, the total angular momentum ~J of the paired system is conserved.
It can be defined as:

~J = ~I +~i+ ~L (1.7)

where ~I is the target nucleus spin,~i the neutron spin, and ~L the relative angular orbital momen-
tum of the pair neutron-nucleus in the center of mass. In a quantum context, spins are usually
considered to be equivalent to intrinsic angular momenta of the nuclides, even if they are actu-
ally quantum quantities without any real equivalent in classical mechanics. As many quantum
quantities, spins and angular momenta are defined entirely by their norm and their projection
on a single axis only, instead of three in classical mechanics9. Furthermore, spins and angular
momenta are quantized values, which means they can only take discrete values separated by
quantum leaps. In particular the neutron spin value is ‖~i‖= i = ~/2. For the angular orbital
momentum for instance, ∥∥∥~L∥∥∥ =

√
l(l + 1)~ (1.8)

where l is the angular orbital quantum number, a positive integer. The first possible values for
l usually denote "waves". This is the case for l = 0 (s-waves), l = 1 (p-waves), l = 2 (d-waves),
l = 3 (f-waves). Greater values of l are very scarce, although possible. Often these quantities
are normalized, and the Planck constant is dropped (~ = 1).

Another quantity of interest appears in the quantum context, and does not have any classical
equivalent: the parity π of the system. Parity is equal to +1 or -1, and indicates some symmetry
properties of the system’s wavefunction. Usually, quantum quantities are associated to a parity.
Next relation holds for parities:

Jπ = Iπiπ(−1)l (1.9)

Actually, only weak interaction does not conserve the parity. As weak interaction is usually ne-
glected in nuclear reactions models, parity is always conserved, and π is not necessarily precised.

Without loss of generality, the spin of the pair ~s = ~I +~i (referred as channel spin) is usually
introduced so that ~J = ~s+ ~L. Introducing the channel spin ~s is useful in the compound nucleus
model as only a few values of l usually contribute to a reaction. It is no longer the case at higher
energies where the spin-orbit coupling becomes strong, and ~j = ~i + ~L is rather introduced so
that ~J = ~I +~j. We talk of "l-s" and "j-j" couplings. Quantization leads to the next inequalities:

|I − i| < s < |I + i| (1.10)
9This is due to the quantum uncertainty principle and non-commutation between the spin components.
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|l − s| < J < |l + s| (1.11)

Figure 1.4: "l-s" and "j-j" couplings [5]

As an example for 235U, I = 7/2− and for a neutron i = 1/2+ (the sign indicates the parity).
The spin of the compound nucleus is a function of the angular orbital momentum as summarized
in Table 1.1.

l sπ Jπ Spectroscopic notation
0 3− 3− s

4− 4−
1+ 3+ 2+ 3+ 4+ p

4+ 3+ 4+ 5+

2− 3− 1− 2− 3− 4− 5− d
4− 2− 3− 4− 5− 6−

Table 1.1: Spin of the compound nucleus n+235
92 U

Nuclear shell model and resonance phenomenon

An useful description of an atomic nucleus is the nuclear shell model, derived from the well-
established model of the atom. In this model nucleons, both neutron and protons are considered
as independent subgroups, and are allocated on "levels" following the Pauli exclusion principle.
Accordingly only three quantum numbers (n, J,m) serve to define a nucleon state. n defines
the level on which is the nucleon (n ∈ N∗), J is the norm of ~J , the total angular momentum
of the nucleus, and M its projection on an arbitrary axis. For a nucleon on level n, J can
take n values, all positive half-integers. Regarding M , it can take half-integer values under the
condition −M ≤ J ≤M , so thatM can only take 2J+1 values. Pauli exclusion principle states
that nucleons cannot be in the same state (n, J,M). As a direct consequence, each level can
only contain n(n+ 1) nucleons10.

10Of the same type, as neutrons and protons are considered independently.
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Let us assume that the nucleus is spherical, and that each nucleon is moving in a spherical
potential of the type V = V (r) + f(r)~L~s. Such a simplified potential11 is the sum of a harmonic
oscillator, and a spin-orbit coupling, which means the potential depends on the nucleon spin
and momentum orientation. Combining this potential with the shell nuclear model enables us to
draw some conclusions. First, the higher the level, the higher the nucleon energy. Then, within
the same level, nucleons having the same orbital moment l have decreasing energies in function
of J ; we may talk of sublevels (l, J). Finally, the nucleon energy does not depend on M .

Nuclides energy levels are defined as the possible sums of the nucleons energies: together,
their distribution on the several levels defines the so-called energy levels (or excitation energies)
of the nucleus. For instance, the situation in which all nucleons are distributed in increasing order
on the levels define the ground state of the nucleus. Energy levels of the nucleus correspond
to situations in which excited nucleons changed levels or spin, always according to the Pauli
exclusion principle. In a nutshell:

• Nucleus energy levels are discrete. They correspond to stationary solutions of the Schrö-
dinger equation. In other words, they are eigenvalues of the Hamiltonian, as explained in
Section 1.3.2.

• To each energy level corresponds a particular value of the total angular momentum J and
a particular value of the orbital angular momentum l. When energy levels of nuclei are
determined experimentally, it is usually necessary to give them a spin value, which is a
complex task.

• Since the number of nucleons available on each level increases with n, the nucleus energy
levels tend to get closer when the energy increases. This has a strong influence on the
cross section shape.

When the neutron enters the nucleus at a sufficient low energy, a compound nucleus system
of A + 1 nucleons is formed. Except for the recoil energy of the neutron, the excited states of
this system more or less correspond to the energy levels of the isotope A+1

Z X. These energy
levels are discrete, whereas the kinetic energy of the incident neutron is continuous. When the
neutron comes up with an energy corresponding to a transition toward a compound nucleus
with A+ 1 nucleons, the reaction probability increases sharply, which corresponds to a peak in
the cross section. This phenomenon is called a resonance, and is one of the major feature of the
cross sections at low and intermediate energies. Such peaks have a very strong influence on any
neutronics macroscopic calculation, as they multiply the probability for a neutron to undergo a
reaction. It is quite interesting to notice that all reaction cross sections increase at resonance
energies, as a resonance only corresponds to the likelihood of the compound nucleus formation,
which only results from the coupling between the incident neutron energy and the energy levels
of the compound nucleus.

Compound nucleus reaction

The resonance theory enables to give a more detailed insight of the compound nucleus reac-
tion scheme. Figure 1.5 which comes from [3] represents well the compound nucleus mechanism
in case of a large mass nuclide. Once the neutron enters the target nucleus, the excitation energy
of the compound nucleus E∗ is equal to the system nucleus-neutron kinetic energy eexc in the
center of mass plus the binding energy Sn(A+1, Z) of the new neutron in the compound nucleus.
Calling M(A,Z) the mass of the target nucleus A

ZX, M(A + 1, Z) the mass of the compound
nucleus A+1

Z X, c the light speed, and mn the neutron mass,

Sn(A+ 1, Z) = c2[(M(A,Z) +mn)−M(A+ 1, Z)] (1.12)
11A more complete potential would be for instance Wood-Saxon potential.
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E∗ = eexc + Sn(A+ 1, Z) (1.13)

Figure 1.5: Compound nucleus mechanism [3]

Actually, even if E∗ is not strictly equal to a level energy, there is a resonance phenomenon.
Indeed, each level ei has an energy width ∆Ei due to the Heisenberg uncertainty principle:
the compound nucleus at level i has an average lifetime ∆τi = 1/λi, before decaying12 and
Heisenberg principle states that ∆Ei∆τi ≥ ~, so that we can define Γi the level width (in eV,
defined in the center of mass):

Γi = ∆Ei = ~
∆τi

= ~λi (1.14)

The width Γi of an energy level is related to the probability of formation of a compound
nucleus at level i. As a consequence, all resonances of the compound nucleus contribute to the
cross section for a particular energy. This is a very important feature, even if in practice the
influence of a resonance on the cross section decreases when the energy is far from ei.

Once a compound nucleus is formed, it usually decays; some possibilities for the compound
nucleus to decay are represented by arrows on Figure 1.5. 1© corresponds to an elastic scattering,
2© to an inelastic scattering followed by a radiative decay, 3© to a radiative capture, and finally
4© to the compound nucleus fissionning into two fragments.

These decay modes are the several observed nuclear reactions. To each of these reactions one
can attribute a partial reaction width Γix so that each width is proportional to the probability
of decay into this reaction. The sum of all partial widths equals the level width.

Γi =
∑
x

Γix (1.15)

12λi is the radioactive constant
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These widths, along with the level energies, are the so-called resonance parameters which
serve to define the resonances of the compound nucleus. These parameters are the key-data
from which cross sections can be computed in the compound nucleus model. The mathematical
framework which connects the cross sections to these parameters is known as the R-Matrix
theory and will be developed in Section 1.3.

Figure 1.6: Compound nucleus resonances for 140Ba and corresponding elastic and capture cross
sections. The larger the shading on the two subplots, the larger the resonance widths.

Figure 1.6 shows 140Ba neutron and capture resonance widths along with the shape of cross
sections. The elastic cross section presents a combination of a successive minimum off-peaks and
maximum peaks at resonance energies. This phenomenon is typical to elastic cross sections for
s-waves (l = 0). It is due to an interference term between levels for the scattering cross section.

1.1.4 Temperature dependence of cross sections

Temperature effects have to be considered in the computation of cross sections, especially
around resonances. Cross sections are a function of the neutron incident energy in the center of
mass, which is equivalent to state that they are a function of the neutron relative speed to the
target nucleus. If the nucleus is up to some temperature different from 0K (which is obviously
the case in most applications), the nucleus is subjected to thermal agitation, and has a certain
speed, which impacts calculations.

Actually, the situation is similar to the one found in acoustics. If the nucleus is going in
its direction, a neutron with a slightly higher energy than a resonance energy might catch up
with the nucleus with a relative speed corresponding to the resonance. And inversely, for a
nucleus going in the opposite direction, the relative speed corresponding to a resonance would
be reached for neutron with an incident energy slightly lower than the resonance energy at
0K. This phenomenon is called Doppler effect. The main consequences are a flattening and a
broadening of the resonance peaks, as more energies of the incoming neutron are susceptible
to provoke a reaction. Figure 1.7 exhibits this phenomenon for the second resonance of 140Ba.
The flattening and broadening are clearly visible, both for the capture and elastic cross sections.
Note that elastic scattering cross section reversed peaks are flattened as well as peaks.
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Figure 1.7: 140Ba cross sections around the second resonance for different temperatures

Computations of the Doppler effect are an important step, as it has a clear effect on the
reaction rate in the resonances region. The wider the resonances, the higher the capture rate for
instance, and the weaker the reactivity in a nuclear reactor. Mathematical calculations can be
achieved through a convolution between the cross section at 0K with the target’s velocity field.
Equations and several methods of Doppler-broadening are presented in Section 1.3.4.

1.1.5 Separation in energy ranges

In practice, the resonant structure of the cross sections motivates the separation of the
energy domain for each material into several ranges. Before the first resonance of the considered
material the energy range is sometimes called the thermal range. While the capture cross section
decreases in 1

v the elastic cross section is almost constant. Around the first resonance of the
material the resolved resonance range (RRR) begins13. This energy range corresponds to all the
successive resonances of the compound nucleus, and the cross sections exhibit many peaks.

When the energy increases, the compound nucleus lifetime gets shorter, and its energy levels
tend to be wider. In the same time, the energy levels get closer to each other as the possible states
of nucleons on high energy levels increase (cf. Section 1.1.3). At some point resonances recover
each other and the resonance phenomenon disappears. Above this energy the range extending
up to infinity is called continuum, where cross sections are smoothly-varying functions of energy.

For heavy nuclei with many resonances an additional energy range may be defined, the so-
called unresolved resonance range (URR), located between the resolved resonance range and the
continuum. It corresponds to the situation in which resonances still exist, but are so close they
cannot be distinguished experimentally. The unresolved resonance range is thus an artificial
range whose underlying physics corresponds to the resolved resonance range, but individual

13The thermal range may be part of the resolved range according to some terminologies.
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resonances cannot be resolved due to experimental limitations14. The end of the unresolved
range and the beginning of the continuum is often chosen to be the threshold of the first inelastic
scattering, but there is no physical meaning behind that choice. Figure 1.8 displays 235U cross
sections and the corresponding separation between energy ranges.

Figure 1.8: 235U cross sections

There is a strong link between this subdivision and the choice of a nuclear model to use.
The nucleus-nuclide interactions in the resolved resonance range are mainly compound nucleus
reactions. Cross section calculations in the resolved resonance range are achieved through a semi-
empirical mathematical model called the R-Matrix theory, addressed in detail in Section 1.3. In
the continuum however, direct reactions play a dominant role, and optical and statistical models
are used to compute cross sections. These models rely on the description of the nuclear scattering
on the basis of the S-Matrix theory [6] and consider the nucleons within the target as a mean
field interacting with a high-speed neutron. The unresolved resonance range underlying physics
corresponds to the resolved resonance range, and the mathematical framework used to handle
computations is the R-Matrix theory as well. This subdivision is not perfect; in particular, some
direct reactions may occur at each energy and contribute to the cross section. This is the case
of the direct inelastic scattering whose threshold may be located below the continuum. In that
case, corrections must be taken into account to accurately represent the cross sections.

1.1.6 Cross sections representations, probability tables and self-shielding

An analytical form of the cross section as a function of the incident neutron energy is hard
to obtain, and model-dependent: computations rely on R-Matrix theory and experimental pa-
rameters in the resolved resonance range whereas they rely on optical models in the continuum.
In the unresolved resonance range average cross sections in a closed form may be derived from

14For instance, it is a common practice to plot cross sections in this range as regular curves. However in that
case, only average cross sections are represented instead of the actual fluctuating sections. It is the case on
Figure 1.8.
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average experimental parameters. In any case, all these expressions are usually not suitable to
be used directly in neutronics-oriented applications15. In order to be used, cross sections are
usually pre-computed and provided into one of the next forms to neutronics codes:

• Tabulated linearized cross sections
The simplest representation of cross sections is a tabulated function of energy (Ei, σi).
This is the most common representation used by continuous energy codes, such as Monte-
Carlo codes, except for the unresolved resonance range. An accurate representation of
cross sections requires the energy grid to be thin enough in the resolved resonance range
notably. In order to ensure that no resonance is missed during tabulation, cross sections
are linearized. This means the resulting energy grid must be thin enough so that any value
of the cross section σ(E) at some energy Ei < E < Ei+1 can be obtained through linear
interpolation, without huge approximation. Typically, a tolerance level of the order of
0.1% is imposed during the linearization procedure, so that interpolating on the resulting
grid leads to a relative error compared to the real value inferior to 0.1%:

∣∣∣∣σ(E)−
[
σi + σi+1 − σi

Ei+1 − Ei
(E − Ei)

]∣∣∣∣ < 0.1% (1.16)

Linearized grids for all reactions can be fused, in order to ensure a proper representation
of all reaction cross sections on a single common energy grid.

• Multigroup cross sections
Tabulated cross sections may represent a huge amount of data, which is uneasy to deal
with in some formalism. In particular, deterministic codes use as an input flux-weighted
average cross sections on successive energy intervals called groups, instead of the proper
tabulated cross sections. These successive average cross sections are called multigroup
cross sections. In practice, the definition of the groups limits depends on the code and
the application scope. There might be up to several hundreds groups. In order to take
into account a phenomenon known as self-shielding (that is presented in next paragraph),
these average cross sections must be weighted by the neutron flux. As the neutron flux
depends on the geometry of the considered problem, the multigroup cross sections are
actually problem-dependent, and their computation is crucial for deterministic codes.

• Probability tables
A third representation of calculated cross sections may be used as an intermediary between
tabulated and multigroup forms, which is the so-called probability tables approach. This
representation may be used in place of the average cross sections in multigroup codes, and
in the unresolved resonance range where tabulated cross sections are not available. The
main idea is to describe cross sections over energy groups, as in the multigroup approach,
but providing probability distributions p(σ) of the cross section values instead of (weighted)
average values. Doing so the precise energy dependence of the cross section is lost but its
variability is conserved over the interval. Actually when cross sections are used they are
often used in integral quantities (eg. in the Boltzmann equation or in reaction rates), and
it is possible to replace a Riemann integral with an equivalent Lebesgue integral. Calling
Eg and Eg+1 the energy limits of group g,

1
Eg+1 − Eg

∫ Eg+1

Eg
f(σ(E))dE =

∫ +∞

0
p(σ)f(σ)dσ (1.17)

15A very interesting exception is the analytical representation of cross sections as a sum of rational functions,
known as multipole representation. Such analytical form (which relies on some strong assumptions in the form
of the cross section though) can be easily Doppler-broadened [7], and attempts to use it directly in Monte-Carlo
codes to apply the temperature effect "on the fly" have been developed with some success [8].
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and in particular

〈σ〉g = 1
Eg+1 − Eg

∫ Eg+1

Eg
σ(E)dE =

∫ +∞

0
σp(σ)dσ (1.18)

Integrals over σ do not extend down to −∞ as a cross section must be positive.
In practice, only a discretization of the probability distribution is provided to neutronics
codes which is frequently referred as a probability table. Instead of the real knowledge of
the probability density, a set of discrete couples (σk, pk) is provided so that

∑
k

pk = 1 and p(σ) =
∑
k

pkδ(σ − σk) (1.19)

where δ is the Dirac function. Formally, the probability density function (pdf) is replaced
with a probability mass function (pmf), which is the equivalent probability distribution
function for discrete probabilities. The probability tables approach is thus an approxima-
tion of the real continuous density function as a sum of Dirac. This is equivalent to defining
some "bands" along the cross section dimension, meant to match the total cross section
with appropriate weights pk, as shown in Figure 1.9. A probability table is not unique,
as several sets of weights pk and base-points σk may correspond to a same cross section
shape. The construction of such discrete probability tables in the unresolved resonance
range is the whole topic of Chapter 5.
To be even more accurate, the previous definitions concern the total cross section. Indeed,
the transformation of partial reaction cross sections into probability tables needs to be
achieved under the condition that their sum remains equal to the total cross section. In
order to obtain coherent tables, each reaction weight pr,k is set equal to pk, and their
base-points σr,k are defined under the condition that the kth base-point of the total cross
section is σk (cf Chapter 5).
A probability table contains much more information than just an average value. In par-
ticular it efficiently takes into account the self-shielding effect [9].

A brief point about self-shielding

The self-shielding is a major phenomenon which must be considered when dealing with neu-
tronics computations. In a material, the neutron flux φ actually decreases around a resonance,
mainly because the number of neutron decreases around this energy due to higher absorption re-
actions. As a consequence, the reaction rates, defined as the product of flux with cross sections,
are slowly-varying around resonances. This compensating phenomenon between the neutron flux
and the resonance shapes is called self-shielding. A main concern arises when the cross section
resonant structure is replaced with average values, because the self-shielding cannot be consid-
ered in that case. This occurs in two cases: when multigroup cross sections are defined, and
in the unresolved resonance range where the exact resonant shape is not available. Multigroup
codes must use weighted (self-shielded) average cross sections over a group. Such self-shielded
average reaction cross sections can be computed as

〈σr(E)〉ssg =
∫ Eg+1
Eg

σr(E)φ(E,~r)dE∫ Eg+1
Eg

φ(E,~r)dE
(1.20)

where φ(E,~r) is the real flux, which remains unknown as it is geometry-dependent. In the real
treatment of the self-shielding, the flux is thus calculated by the neutronics codes.

Without the knowledge of the nature of the system, a typical assumption is to replace the
unknown flux with a theoretical flux. This enables to compute "theoretical" average self-shielded
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Figure 1.9: Cross sections representations. Left picture is an example of a tabulated cross
section around 1.31e4 eV, superimposed to its average value. Right picture is a corresponding
probability table with 20 entries.

cross sections, which is the best one can do with no prior information about the real geometry of
the system. The most emblematic example is the calculation of Bondarenko self-shielded cross
sections. In that case, the flux is assumed to be a smoothly-varying function of energy C(E),
weighted with the sum of the total cross section reaction for the isotope and a scalar dilution
cross section σ0, representing the combined effect of other isotopes and leakage16.

φ(E) = σ0C(E)
σ0 + σt(E) (1.21)

Peaks in the cross section tend to create inflections in the flux. If σ0 � σt, the self-shielded
average cross sections equals the unshielded ones. In that case, cross sections are said to be
infinitely diluted. There are not enough nuclei of that type in the material so that peaks in their
cross sections have almost no influence on the flux. This equation can be solved numerically for
several values of σ0 and a flux C(E) provided by the user, for instance as a tabulated function.
It can also be calculated from the probability table representation.

Assuming a normalized flat flux for simplicity17 (a tabulated flux would require to cut the
group in subgroups) Equation (1.21) becomes in the Lebesgue continuous formalism:

〈σr〉σ0
g =

∫∞
0 σr(σt) p(σt)

σ0+σtdσt∫∞
0

p(σt)
σ0+σtdσt

(1.22)

When probability tables are used instead of the continuous probability density functions, the
average self-shielded average cross section for a particular reaction r at dilution σ0 is:

16A more realistic theoretical flux could be for instance a Maxwellian spectra in the thermal range combined
with a 1/v contribution, and a fission flux at higher energies.

17This assumption is taken from NJOY [10].
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〈σr〉σ0
g =

(
N−1∑
k=0

σr,k
pk

σ0 + σt,k

)
×
(
N−1∑
k=0

pk
σ0 + σt,k

)−1

(1.23)

And for the total cross-section, the previous expression can be worked to become [11]:

〈σt〉σ0
g =

(
N−1∑
k=0

pk
σ0 + σt,k

)
×
(
N−1∑
k=0

pk
(σ0 + σt,k)2

)−1

− σ0 (1.24)

Probability tables are thus an effective mean to compute self-shielded cross sections [12]. The
previous formulas for the Bondarenko self-shielding have been notably implemented in this work
(cf Section 6.1.1).

1.2 From nuclear data to nuclear safety applications

Some definitions and important aspects of the neutron-nucleus interaction have been pre-
sented in the previous section. It is now of interest to devote some time to describe the actual
requirements of nuclear data, in the scope of the nuclear industry and associated applications.

1.2.1 Suitable nuclear data at stake

The general denomination "nuclear data" applies to all the information related to the atomic
nucleus which are used as input data for calculations by applications-oriented codes. Cross
sections and resonance parameters are for instance certain types of nuclear data. They are
of course not the only ones18, but are of particular importance in this work. Nuclear data are
usually compiled in large files called evaluations that constitute nuclear data libraries. These files
are usually the results of many experimental measurements along with many steps of modeling
and evaluation process. The complex chain of operations required to produce a suitable library
is displayed on Figure 1.10.

Nuclear data evaluations are produced by evaluators. These latter ones can rely on experi-
ments results or theoretical models. Let us discuss the case of cross sections for instance. The
atomic nucleus is composed of neutrons and protons bounded together because of the strong
force. Dedicated quantum mechanics tools (and in particular quantum chromodynamic - QCD)
could in principle lead to a quantitative description of the forces between neutrons and protons
within the nucleus [13]. In such a context, computing cross sections from theoretical models19

sounds appealing. In practice however, two main issues appear. First, the intensity of the strong
force does not allow the use of the perturbation theory in the QCD framework, not to mention
that the exact state of the forces within the nucleus is unknown. Secondly, this approach turns
out to be a many-body problem, involving all the nucleons within the nucleus (around 230 for
uranium isotopes for instance). In order to circumvent this issue it is a common practice to aver-
age all the interactions between the target nucleus nucleons into a large potential field. Rather
than studying the interactions between an incident neutron and all the target nucleons, one
studies the interaction between the projectile and a mean field. This approach is known as the
optical model, first introduced by Bethe [14] in 1935. It has been the reference method used in
the continuum for years. Recently, due to the ever-growing computational power of computers,
these methods are expanding fast: recent codes such as TALYS [15] are now widely used to
produce evaluations from optical calculations directly.

On the other hand optical model approaches are not suited for the study of well-defined
resonances. In the resonance range, cross sections are rather obtained experimentally for each
material with Time-Of-Flight (TOF) experiments. These methods measure a neutron time of

18For instance Table 1.2 summarizes the nuclear data contained in ENDF files.
19One talk about ab initio calculations.
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Figure 1.10: Nuclear data production path

travel to find its energy, related to its velocity. In the same time transmission and reaction mea-
surements performed together enable measurements of the total and reaction cross sections [16].
Presently in Europe, experimental facilities that are able to perform data measurements are the
GELINA linear accelerator in Geel (Belgium) and the n-TOF complex at CERN in Geneva.
Experimental data are stored in the EXFOR database, a devoted international platform. Eval-
uators exploit these data with dedicated tools to produce evaluated nuclear data libraries. For
instance, accurate resonance parameters are required in libraries. They can be obtained from the
evaluation of measured cross sections20. Powerful codes enable the cross-compilation of several
measurements together with complex iterative fitting procedures and correlations accounting to
produce nuclear data evaluation files. Such codes are for example SAMMY [17] from the Oak
Ridge National Laboratory, or CONRAD, developed at CEA Cadarache. Usually, an evaluation
designates an evaluated file for a single isotope. Regularly, sets of evaluated files for all isotopes21

are released in libraries by several groups. Most of them use the well-established ENDF-6 format
presented in Section 1.2.2.

Once the nuclear data libraries are available, they still cannot be used by neutronics codes
directly. They need to be processed by nuclear processing codes. This processing step is often
referred as "turning the data in a form suitable for the different applications codes". In practice
however, nuclear data processing is more than that. Processing codes do not only turn data from
the ENDF format into other formats (which they do), but they undertake several modeling steps
whose relevance is still under study. The most well-known task performed by processing codes

20It might sound surprising that resonance parameters are evaluated from experimental cross sections, as they
are used afterwards to calculate the cross sections. The main reason is that they are more stable data than
tabulated experimental cross sections. In particular, they enable the cross section calculations at any energy.

21"All" isotopes is an ambiguous denomination, as highly unstable isotopes may exist or get artificially created.
Let us say that a typical library regroups several hundreds of isotopes evaluations.
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is the calculation of temperature-dependent Doppler-broadened cross sections from resonance
parameters in the resonance range. Another issue is the calculation of probability tables in the
unresolved resonance range, which is the main object of this document. As processing is a topic
of relevance in our concerns, Section 1.2.3 describes them in more detail.

Neutronics codes use the processed nuclear data libraries as an input to perform their cal-
culations. For instance, some of them solve the Boltzman equation for the neutron transport
in a provided geometry, with applications in nuclear reactor physics and criticality. Among
transport codes, one distinguishes deterministic codes and Monte-Carlo codes. Deterministic
codes are mainly used for nuclear reactor calculations, and make use of finite elements theory to
solve the equation. Well-known codes of this family are for instance APOLLO (CEA), the chain
DRAGON-DONJON (École Polytechnique de Montréal), or the chain CASMO-SIMULATE
(Studsvik). Monte-Carlo codes on the other hand simulate thousands of random histories for
neutrons in the provided configuration. Quantities of interest are obtained from averaging over
the neutron histories, on the base of ergodic properties of the system. Such well-known Monte-
Carlo codes are MCNP (Los Alamos National Laboratory), MORET (IRSN), TRIPOLI (CEA),
KENO/SCALE (Oak Ridge National Laboratory), SERPENT (VTT Technical Center of Fin-
land), OPEN-MC (MIT), etc. If they can be slower and less flexible than deterministic codes,
their results are usually considered more trustworthy. Let us finally mention another important
kind of application codes in the nuclear industry, the depletion codes. These codes are used to
solve the Bateman equations (radioactive decay) to enable burn-up calculations to determine
the isotopic composition of materials under irradiation. Let us quote SERPENT (VTT) and
VESTA (IRSN) as example of depletion codes.

For most applications the main source of uncertainty in neutronics calculations comes from
the input nuclear data [18]. Estimating the quality of evaluated nuclear data is thus a crucial
concern. To reach this goal, simple experimental set-ups referred to as benchmarks are developed,
and integral data22 are measured. Very common measured data are for instance the effective
neutron multiplicity factor keff (the ratio of the number of neutrons created and absorbed in
a configuration, crucial in criticality safety assessment as it indicates the development of a
chain reaction), shielding factors, two-groups cross sections, etc. These measured data are then
compared to the results of calculations performed by neutronics codes, which make use of the
processed nuclear data. The final objective is to adjust the nuclear data to match the benchmarks
results. Recent evaluations systematically provide covariance matrices for energy-grouped cross
sections and resonance parameters. Using these matrices and the perturbation theory, Monte-
Carlo neutronics codes are able to perform sensitivity computations. Such calculations are used
to evaluate the influence of selected parameters on the final uncertainties, which is extremely
useful. Then, in order to investigate susceptible modifications of the nuclear data, dedicated
tools for data assimilation have been developed, such as MACSENS (IRSN) or TSURFER (Oak
Ridge). These tools rely on the GLSM (global least square method) and the Bayes theorem to
compile information from many sensitivity calculations and benchmark results with several codes
and libraries, to incorporate the integral data results into evaluations (in particular, they aim
at improving the covariance matrices in the evaluations). When necessary, it appears that new
measurements are required, for both differential and integral data. For instance, benchmarks in
the epithermal range (and in particular in the unresolved resonance range) are still scarce, and
many evaluations for important isotopes which date from the 60s have been performed without
covariance matrices.

22opposed to differential data, which are intrinsic measure of isotopes properties, like during time of flight
experiments).
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1.2.2 Nuclear data formats

ENDF-6 format

The most common nuclear data format used around the world is the Evaluated Nuclear
Data Format (ENDF), which is currently up to its sixth revision. It has been introduced to
manage the American nuclear data libraries, namely ENDF/B (whose version ENDF/B-VIII
has been released in 2018) and adopted by most libraries around the world. Among them let
us quote JEFF (Joint Evaluated Fission and Fusion) libraries23 – whose version JEFF-3.3 has
been released in 2018 –, the Japanese library JENDL (Japan Evaluated Nuclear Data Library,
currently JENDL-4), the Chinese library CENDL (China Evaluated Nuclear Data Library, cur-
rently CENDL-3.2), the Russian library BROND (currently BROND-3.1), and TENDL (TALYS
Evaluated Nuclear Data Library) which is produced by the TALYS code on the basis of theo-
retical models24. All these libraries use the well-known ENDF-6 format detailed in reference [2].
Most of the released libraries are freely available on the Internet, distributed by the Nuclear
Energy Agency. They usually gather several sub-libraries, such as incident neutron libraries,
photo-atomic libraries, thermal scattering data libraries, decay libraries, etc. In this work, we
focus on incident neutron libraries.

In practice an ENDF-6 format evaluation is a huge ASCII file, written on 80 columns origi-
nally to match the capabilities of FORTRAN-based processing codes, and up to several hundred
of thousands lines. An ENDF tape may contain information relative to several isotopes (referred
as MAT in the ENDF context), even if the usual practice is to write a single isotope by tape. An
ENDF tape is then divided into special-formatted sections called files, referred as MF. Table 1.2
summarizes the nuclear data gathered in an incident neutron evaluation. MF files are sometimes
divided into MT numbers. In particular for File MF3 (reaction cross sections), MT numbers
correspond to reaction identifiers. For instance, "MAT 9228 MF3 MT2" refers to the elastic
scattering cross section of 235U.

The ENDF format introduces some limitations, which become more and more problematic as
experimental and simulations capabilities increase. For instance, some resonance parameters are
not provided for all reactions and spingroups. For our concerns, the format-related limitations
will be discussed in Section 2.1.2. For this reason, a new nuclear data format known as General
Nuclear Data Structure (GNDS) is under development at the Lawrence Livermore National
Laboratory [19], which should enable to alleviate some limitations of the ENDF format. GNDS
should be released in the upcoming years, so that evaluators may issue evaluations in this format.

PENDF format

PENDF (Pointwise ENDF) is a derivation of the ENDF format used in most processing codes
to transmit information between the different steps of calculation (cf. Section 1.2.3). The main
idea is to keep the original ENDF format to write processed data along the calculations pipe.
Some parts of the ENDF files are rewritten, or unused MT sections are filled to be internally used
afterwards. For instance, initial ENDF files may contain tabulated cross sections in File MF3, or
background cross sections to be added to cross sections calculated from resonance parameters25.
Once cross sections have been calculated they might be written on a File MF3 in a PENDF file
as tabulated values, so that a linear interpolation can be used. All the limitations of the ENDF
format are embedded in the processing codes outputs when they rely on PENDF files.

23A common mistake is to think that "E" in JEFF means European, while the JEFF project is actually an
international project, hosted by the National Energy Agency, part of OECD. Countries such as Japan and Canada
are involved in the project, along with most European countries.

24Important isotopes resonance parameters still rely on experimental-based evaluations, taken from JEFF or
ENDF/B for instance.

25Dedicated flags in the evaluations systematically indicate the nature of the contents.
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MF number Nuclear data
1 General information (comments, evaluation type and materials, raw data flag . . . )
2 Resonance parameters
3 Reaction cross sections
4 Angular distributions for emitted particles
5 Energy distributions for emitted particles
6 Energy-angle distributions for emitted particles
7 Thermal neutron scattering law data
8 Radioactivity and fission-product yield data
9 Multiplicities for radioactive nuclide production
10 Cross sections for radioactive nuclide production

12-15 Photon production related data
19-22 Electron production related data
23-27 Photo-atomic related data
31 Covariance matrices for neutron multiplicities
32 Covariance matrices for resonance parameters
33 Covariance matrices for reaction cross sections
34 Covariance matrices for angular distribution
35 Covariance matrices for energy distribution
40 Covariance matrices for radioactive nuclide production cross sections

Table 1.2: Nuclear data and corresponding MF files in an ENDF-6 library

MT number Reaction
1 Total reaction (composed)
2 Elastic scattering
3 Non-elastic reactions (composed)
4 Production of one neutron (composed, sum of MT=50-91)
5 Anything: sum of all reactions not identified by a MT number
18 Fission (composed, sum of 19-21 and 38)
19 First chance neutron-induced fission
20 Second chance neutron-induced fission
21 Third chance neutron-induced fission
27 Total absorption (composed)
50 Production of a neutron leaving the nucleus in its ground state
51 Production of a neutron leaving the nucleus in its first excited state state
. . .
90 Production of a neutron leaving the nucleus in its 40th excited state state
102 Radiative capture
103 (n,p) reaction
107 (n,α) reaction
. . .

Table 1.3: Some available reactions and corresponding MT numbers in ENDF-6 format

ACE format

Monte-Carlo codes such as MCNP and MORET use processed data in ASCII-based ACE
(A Compact ENDF) files. An ACE file contains processed data for a single isotope and a single
temperature. Data are gathered in a compact manner, often hard to decipher.
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1.2.3 Processing codes

Processing codes are meant to turn the evaluated nuclear data libraries into processed li-
braries suitable for applications into neutronics codes. They often adopt a modular design, on
the model of the software NJOY [10] first developed at Los Alamos National Laboratory in the
60s, which is still the most-used processing code in the world. Such a design is mainly motivated
by the fact that the successive transformations of an evaluation are not necessarily identical
according to the final use of the nuclear data. Some steps may not be required, formats usually
differ, and the nuclear data calculations themselves may be different. As stated, Monte-Carlo
neutronics transport codes use tabulated cross sections on a thin energy mesh, whereas deter-
ministic codes often require cross sections and other quantities to be averaged and self-shielded
in groups on a predefined energy mesh. From a practical point of view, a modular design is
easier to develop and maintain, and enables the piping of several modules from different codes.
The latter is of relative importance to investigate the impacts due to a change in a particular
module only, and will be exploited in this document.

Except NJOY whose most recent update dates from 2016 [10], many other processing codes
have been developed in several institutes. In the US let us quote AMPX, which is a module of
the SCALE system developed in Oak Ridge National Laboratory, and FUDGE, currently under
development at Lawrence Livermore National Laboratory. In France, the code GALILEE-1
is being developed at CEA on the basis of the code CALENDF. Other important codes are
PREPRO (International Atomic Energy Agency), ATLAS (China), and FRENDY (Japan).
Recently, IRSN devoted efforts to develop its own processing code, GAIA-2, in order to cross-
check the results obtained with other codes for safety purposes. One of the objectives of this
PhD work is to develop a module equivalent to the "PURR" module of NJOY in order to
compute probability tables in the unresolved resonance range. All developments summarized
in this document have been implemented in GAIA-2, in a module named "TOP" ("Tables Of
Probability").

Figure 1.11 details the successive operations required to produce ACE files for Monte-Carlo
codes and multigroup libraries for deterministic codes. In this figure, NJOY modules and GAIA-
2 modules have been named altogether along their purpose.

First step is to perform the reconstruction of cross sections from resonance parameters, using
formulas detailed further in Section 1.3.2, on a linearized energy grid; at the end of the procedure
all reaction cross sections are furnished as tabulated functions on a grid thin enough so that
a linear interpolation can be carried out between the tabulated values. Computation of cross
sections from resonance parameters is not carried on all reactions (often, it is only achieved for
elastic scattering, fission, and radiative capture), nor on all energy ranges (for instance cross
sections are given as already tabulated values in the continuum). The linearization operation
requires to connect all cross section functions together.

Then, cross sections must be broadened to take into account the Doppler effect. This is usu-
ally achieved with the SIGMA1 algorithm [20] which takes as an input the thinned linearized
cross section at 0K. In GAIA-2 however, the Doppler-broadening takes place at the same time
as the reconstruction of cross sections, so that the error due to the linearization does not prop-
agate to the temperature broadening. An original method relying on Fourier transforms was
implemented in the module DOP [1] to achieve this goal, whose results have been proved to be
very satisfying.

After these steps, the chaining of modules is more flexible, and depends on the needs of the
users. It might be of interest to compute radiation damage cross sections to simulate the aging
of materials under irradiation, which is achieved by the module HEATR of NJOY. It might
also be sometimes useful to compute the gas production26 cross sections (MT=203-207). This
is done in NJOY in the GASPR module.

It is also important to correct the scattering cross sections in the thermal range to take into

26Gas corresponds to light products such as proton, deuterium, tritium, α which can accumulate as gas.
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Figure 1.11: Processing of an ENDF file. Blue steps are mandatory to obtain a suitable file for
criticality applications. Orange modules refer to NJOY, purple ones to GAIA-2.
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account the effect of molecular bounding. This is of particular importance for nuclear reactors
such as PWR or BWR in which water plays a major role as moderator. At low energy the
hydrogen cross section is not the same when the hydrogen is free or bounded within a water
molecule, which is the case in PWR. The module THERMR of NJOY is able to take into
account cross section corrections for these applications. In GAIA-2, this is performed by the
SAB module, developed in 2018 [21].

At this point, the path followed by continuous-energy and multigroup codes starts to differ.
First comes the unresolved resonance range (URR) particular processing. As a reminder, only
average resonance parameters are provided in this range. One may calculate average cross
sections, but as there is still an underlying resonant structure, it is very important to consider
self-shielding. UNRESR computes Bondarenko self-shielded average cross sections in the URR
to consider the resonant structure. Then, the main step for multigroup codes is to average the
reconstructed cross sections on an energy mesh provided by the user (GROUPR), taking into
account the self-shielding in the resonance region too. Then the evaluation’s covariance matrices
must be adapted to the mesh (ERRORR) accordingly.

For Monte-Carlo codes, the processing of the unresolved resonance range is quite different.
They do not rely on average cross sections, but make use of probability tables to capture the
resonant structure of the underlying cross sections. In NJOY, probability tables are computed by
the module PURR. These probability tables enable Monte-Carlo codes to take into account the
self-shielding effect in the URR. The topic of this document is the production of such probability
tables.

Finally, processed data are converted into suitable forms such as ACE files (using the NJOY
module ACER) for Monte-Carlo codes MCNP and MORET, or other modules for other codes.
For instance DRAGR is a NJOY module meant to convert multigroup processed libraries in
DRAGLIB files for the deterministic code DRAGON.

In this section, some important details about the nuclear data were discussed. Next section
will provide a more quantitative description of the mathematical framework used in the resonance
range to calculate cross sections, known as the R-Matrix theory. Resonance parameters are
provided in respect with this theory in the ENDF-6 evaluations.

1.3 R-Matrix theory of nuclear reactions

The R-Matrix theory is a very general and powerful formalism, used to compute cross sec-
tions in the resonance range. It has been developed by Lane and Thomas [22] who worked on an
original idea of Wigner and Eisenbud [23]. R-Matrix main idea is to describe the cross sections
as a function of the eigenvalues and eigenvectors of the system’s Hamiltonian. These values
correspond to the energy states of the system, and turn out to be the resonance parameters
already mentioned. The process to compute cross sections in the resonance range is thus a
two-step process. Experimental measurements are performed from which it is possible to obtain
experimental resonance parameters. These parameters are then used as input to compute cross
sections at any energy with the R-Matrix formulas. The very core of the neutron-nucleus inter-
action is thus considered as a black box. The R-Matrix parametrization is very convenient in
the resonance range but could be used to process direct reactions too.

The presentation made here aims at describing the origin of the equations used in the fol-
lowing to compute cross sections in the resonance range. In this section, the hypotheses of the
R-Matrix theory and the configuration space of the problem are introduced. In particular, a
formal definition of the notion of channel is given. For the sake of consistency, the complex
equations of the R-Matrix are presented, even if steps of calculation are often skipped. More
details are provided for the approximations of the R-Matrix theory known as Single-Level and
Multi-Level Breit-Wigner formalisms, as they are of particular importance for the unresolved
resonance range processing. The presentation makes a great use of materials from Ghislain
Ferran’s PhD thesis [1], from a course given by Luiz Leal at MIT [24], from the ENDF-6 format
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manual [2], and from the Oak Ridge evaluation code SAMMY manual [17]. For a complete
description of the R-Matrix theory, these documents provide a good reference, as well as the
original and exhaustive article of Lane and Thomas.

1.3.1 Hypotheses and configuration space definition

The theory provides a very rigorous and large framework which only relies on a small amount
of hypotheses:

1. Non-relativist quantum mechanics apply

This implies that if Φ is the system’s wavefunction and H its Hamiltonian, for any point
of space the Schrödinger equation holds.

HΦ = i~
dΦ
dt

(1.25)

In particular, the non-relativistic hypothesis is coherent with the reactor physics energy
range where neutrons have energies up to 20 MeV only.

2. A reaction does not produce more than two products

This is quite restrictive considering that a three-products reaction may occur. This hy-
pothesis assumes that this phenomenon is way scarcer than a two-products fission, which
is legitimate in the resonance range. In some cases such a reaction can be approximated
successfully with two successive two-products reactions.

3. Creation and destruction processes are negligible

This hypothesis is actually related to the system’s Hamiltonian structure and is used to
neglect the weak interaction. It implies that there is no creation or destruction operator
in the Hamiltonian. As a consequence β+ and β− radioactive decays are not handled
by the theory, as they produce or destroy a photon and a neutron. They were the main
consequence of the weak interaction, which is thus neglected. Only the strong force and
the electromagnetic interaction are considered during a nuclear interaction.

More generally, this hypothesis would lead to discard any reaction involving photons as
input particles. These reactions can be treated yet adding some more hypotheses, but that
is not a matter here.

4. For each pair of nuclei c, a finite radial distance of separation ac exists

Calling c a pair of nuclei (in our case an incident neutron and a target nucleus), it is
assumed that a finite distance ac exists, beyond which there is no longer any polarizing
action between the nuclei. Thus, a central force can describe the interaction between the
nuclei. As any distance greater than ac must be a separation distance too, ac denotes the
minimal distance beyond which there is no interaction.

If the pair of nuclei does not contain any charged nucleus, ac is the sum of the two
nuclear radii (which mark the end of the strong interaction). If one or more is charged,
electromagnetism will affect the nuclei and ac will be slightly higher.

This distance ac is called the channel radius associated to the pair c.

This hypothesis leads to the distinction between two distinct regions of the phase space,
known as inner region (r < ac) and outer region (r > ac). During a nuclear reaction which
implies a compound nucleus formation, the inner region corresponds to the compound
nucleus, while the outer region corresponds to the situation where the nuclei are well
separated.
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As stated, these hypotheses are quite simple. In particular, hypotheses 1 and 4 are very
important. The objective will be to exploit the system equation (the Schrödinger equation
according to the first hypothesis) in the outer and inner regions, before connecting them.

These considerations require to properly define a pair of nuclides c. Let us imagine a system
composed of A nucleons, divided in two subgroups of A1 and A2 nucleons. For instance, if the
second subgroup is a neutron alone, A2 = 1. Both are in the quantum state α1 and α2, which
characterize the type and the excitation level of each nucleon in the subgroups. In the following
the notation α = (α1α2) will be used. These subgroups have a spin ~I1 and ~I2. In case the second
subgroup is a neutron, ~I2 = ~i and so ~I1 = ~I. Their projections on a given axis are called i1
and i2. Finally, it is necessary to introduce the orbital angular momentum ~l and its projection
m in order to provide information about the relative motion of the nuclides in the pair. A pair
of nuclides as defined in the hypothesis 4 of the R-Matrix theory is thus entirely defined by
the set of quantum numbers c = {αi1i2lm}27. The projections i1 and i2 can be replaced by
an equivalent characterization with the spin of the pair ~s and its projection ν. Likewise, it is
possible to obtain an equivalent characterization with the total angular momentum ~J and its
projection M . An accurate definition of a pair of nuclides is thus

c = {αlsJM} (1.26)

Each nucleon in the paired system has 5 degrees of freedom (three spatial and two for their
intrinsic spin) so the configuration space of the system is a 5A-dimensions space. When the
radial distance between the nuclides is greater than the radius ac (which actually only depends
on the quantum state of the system α = (α1α2) so that ac could be rewritten aα), the pair
of nuclides is well separated and the system occupies a part of the outer region. In the outer
region, each element of the configuration space of the pair c is called a channel. It corresponds
to a characterization of the total system in a separated pair, in the state {αlsJM}. In such
a context, a channel defines a pair of nuclides28. Because the nucleons in each subgroup are
indistinguishable, there are actually

(
N1
N

) (
Z1
Z

)
corresponding channels for a single pair c (N

and Z are the numbers of neutrons and protons in the total system, N1 and Z1 the number of
neutrons and protons in A1). A channel associated to the pair c is actually defined as the sum
of these

(
N1
N

) (
Z1
Z

)
channels. The region of the configuration space such that rc = ac is called

the channel surfaces Sc. The union of all these surfaces forms the inner region surface S which
is the border of the configuration space between the inner and outer regions.

Using this formalism a nuclear reaction in the compound model can be understood as follows:
the system occupies an entrance (or input) channel (rα > aα) in the outer region, then enters
the inner region when it forms a compound nucleus (rα < aα), and occupies a decay (or output)
channel (rα < aα) in the outer region when the compound nucleus decays in a pair of nuclides.
Note that in the case of a fission or a capture, the resulting nuclides are no more a neutron
and the initial target nucleus. The decay channel identifies the type of the reaction. Actually, a
reaction is the sum of all the decay channels whose α corresponds to the reaction. In the case
of an elastic scattering, the resulting pair is the same than the entrance pair. In that case, this
means the output channel of the reaction corresponds to the input channel. Input channels can
thus only correspond to an elastic scattering reaction. However, there can be several different
entrance channels for a nuclear reaction, as they rely on the quantum state of the system α and
the quantum numbers s and l.

All channels with the same quantum numbers J and π (parity) form a spingroup Jπ. As J
and π are conserved during a reaction, entrance and decay channels in a reaction must belong
to the same spingroup: a decay channel is open only if it belongs to the same spingroup than
the entrance channel.

27The norms of intrinsic spins I1 and I2 can be deduced from α, and are not necessarily integrated int the
channel definition.

28This justifies the notation "c" used to define a pair.
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1.3.2 Brief derivation of the R-Matrix theory

In the outer region

Let us consider a system in the outer region with an excitation energy E. The system is in
the channel defined by c = {αslJM}. The wavefunction describing the state of the system is
an eigenvector of the Hamiltonian:

HΨ = EΨ (1.27)

This Hamiltonian can be rewritten H = T + V where T is the kinetic energy operator and V
the potential energy operator. Supposing that the center of mass of the system is at rest (this
hypothesis will be discarded in Section 2.1.2, with minor changes to take into account the change
of referential from the center of mass to the laboratory referential), and defining µc the reduced
mass of the pair, T and V can be rewritten in the outer region as

T = − ~
2µα
∇2
r + Tint,α1 + Tint,α2 (1.28)

V = Vc(rα) + Vint,α1 + Vint,α2 (1.29)

Tint and Vint are the kinetic energy operator and intern potential of the nuclides respectively.
The form of Vc is due to the hypotheses of the R-Matrix theory, which ensure that the potential
of the system can be described by a central force in the outer region. The Hamiltonian can be
rewritten H = Hc +Hα1 +Hα2 . Hc describes the relative motion of the nuclides within the pair
and Hαi the intrinsic state of the nuclides. The wavefunction can be decomposed in the outer
region:

Ψ = ψcψα1ψα2 (1.30)

so that

Hcψc = Ecψc
Hα1ψα1 = Eα1ψα1

Hα2ψα2 = Eα2ψα2

(1.31)

E = Ec + Eα1 + Eα2 (1.32)

The product ψα1ψα2 in Equation (1.30) can be replaced by an expression ψαsν or equivalently
ψαJM . ψαJM describe the system intern states in the channel, and are called the spin channel
wavefunctions.

The equation Hcψc = Ecψc can be developed on a spherical harmonic base. Defining rα and
Ωα the norm and direction of the radial vector between the nuclides of the pair,

ψc = 1
rα
uc(rα)ilY l

m(Ωα) (1.33)

where Y l
m are the usual spherical functions, and uc is a solution of the radial Schrödinger equation

(c marks the channel here):[
d2

dr2
α

+ 2µα
~2

(
Ec − Vc(rα)− l(l + 1)~2

2µαr2
α

)]
uc(rα) = 0 (1.34)

As Vc can be null or expressed as a Coulomb potential (for instance in the case of a reaction
(n,p)), it is possible to solve this equation. Two cases are actually possible, as Ec can be positive
or negative. In the first case the channel is said to be a positive energy channel. In that case,
Equation (1.34) has two independent solutions corresponding to incident and emitted waves,
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Ic = Iαl and Oc = Oαl. In particular these waves are complex conjugates. In the second case
only a real emitted wave vanishes in infinity and has a physical meaning.

Grouping these results in Equation (1.30), the two linearly independent solutions of the
Hamiltonian equation are an emitted and incoming waves such that

Ψinc
c = Ic

v1
α/2rα

ψαJM i
lY l
m (1.35)

Ψout
c = Oc

v
1/2
α rα

ψαJM i
lY l
m (1.36)

It is now relevant to introduce several quantities of interest. In particular we can introduce
the logarithmic derivative of the waves for the channel c:

Lc =
[
rc
Ic

dIc
drc

]
rc=ac

and Lc =
[
rc
Oc

dOc
drc

]
rc=ac

= Sc + iPc (1.37)

Sc is called shift factor as it shifts the resonance energies from the compound nucleus levels in
the cross sections expression, as seen later. Pc is called the penetrability factor as it appears as a
factor in the expression of the resonance widths. It is also useful to introduce the surface waves as
the product of ψαJM and the multiplicative factor of the radial part of ψc (cf. Equation (1.33)):

ζc = 1
rα
ψαJM i

lY l
m (1.38)

These functions form an orthonormal family on the inner region surface S (which is the union of
all the channel surfaces, ie. the regions of the configuration space such that rc = ac). With this
formalism the radial part of the complete wavefunction (ie. uαJM , written uc) on the surface S
can be rewritten as uc(ac) =

∫
S ζ
∗
cΨdS using the properties of the scalar product in a Hilbert

space. It is useful to introduce the quantity Vc and Dc such that

Vc =
√

~2

2µcac
uc(ac) =

√
~2

2µcac

∫
S
ζ∗cΨdS (1.39)

Dc =
√
ac~2

2µc

(
duc
drc

)
rc=ac

= Vc +
√
ac~2

2µc

∫
S
ζ∗c∇nΨdS (1.40)

In the inner region

In the inner region the potential is unknown and the Schrödinger equation cannot be solved.
That means the behavior of the system’s inner wave function of the pair of nuclei is unknown.
The wavefunction is composed of several wavefunctions ΦJM which correspond to the to the
same energy but for different values of J and M .

HΦJM = EΦJM (1.41)

The Hamiltonian of the system is real, which ensures the existence of an orthonormal base of
eigenfunctions (φλJM )λ∈N on which ΦJM can be decomposed.

ΦJM =
∑
λ

AλJφλJM (1.42)

Using the properties of the scalar product in a Hilbert space, the coefficientsAλJ can be expressed
as an integral over the whole inner region τ :

AλJ =
∫
τ
φ∗λJMΦJMdτ (1.43)
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The defined φλJM are associated to real energies EλJ which are eigenvalues of the Hamiltonian,
which do not depend on M . As a consequence, AλJ do not depend on M either.

HφλJM = EλJφλJM (1.44)

Exactly like in the outer region, it is possible to define the radial projection on the surface S of
these functions.

γλc =
√

~2

2µcac

∫
S
ζ∗cφλJMdS (1.45)

δλc = γλc +
√
ac~2

2µc

∫
S
ζ∗c∇nφλJMdS (1.46)

c in the index defines the corresponding channel {αslJM} on the vicinity of the surface (ie on
Sc). This projection on the radial surface around channel c is called the reduced width of the
level EλJ for channel c, usually written γλc. It is directly related to the probability to get in the
channel c around EλJ .

An important fact is the necessity to fix a boundary condition on S to solve the radial
Schrödinger equation. It is possible to achieve it and ensure the orthonormality of the (φλJM ).
This is achieved by setting the ratio γλc/δλc to a constant Bc, independent of the levels EλJ .

γλc
δλc

= Bc (1.47)

Several parametrizations of the theory are possible according to the chosen value of Bc. In
particular, the Wigner-Eisenbud choice consists in setting Bc = Sc

29, which is often convenient30.
It is now relevant to formally introduce the resonance widths (or level widths) used in Section 1.1
as a function of the reduced level widths such that:

Γλc = 2Pcγ2
λc (1.48)

In this equation, Pc is the penetrability factor already mentioned, whose name comes from the
fact it appears in this relation. Γλc has the dimension of an energy and is linked to the probability
that the compound nucleus decays in channel c. It must be underlined that Γλc may depend on
the energy through Pc, while γλc is energy-independent. The level widths and energies are the
resonance parameters.

Connecting the inner and outer region

It is now possible to connect the wavefunctions between the inner and the outer regions on
the surface S. ΦJM describes the whole system with quantum numbers J and M in the inner
region. Its "value" Vc and derivative Dc on the surface must connect to the total wavefunction
in the outer region, ie. to Equation (1.39) and Equation (1.40). Reminding that EλJ is an
eigenvalue of the Hamiltonian corresponding to φλJM and E an eigenvalue corresponding to
ΦJM , and using the Green theorem, the scalar product of ΦJM and φλJM gives:

(EλJ − E)
∫
τ
φ∗λJMΦJMdτ =

∑
c∈Jπ

(γλcDc − Vcδλc) (1.49)

so that we can reformulate the coefficients AλJ of the decomposition of ΦJM and then ΦJM

itself, the total wavefunction in the inner region in function of its value and derivative on the
surface S.

29In the limit kcac → 0, Bc = −l, which is sometimes the provided definition in the literature.
30Another well-known possibility consists to set Bc = Lc, which is the Kapur-Peirls parametrization. Matrix

inversions are easier but resonance parameters depend on the energy implicitly.
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AλJ = 1
EλJ − E

∑
c∈Jπ

(Dc −BcVc)γλc (1.50)

ΦJM =
∑
c∈Jπ

∑
λ

γλcφλJM
EλJ − E

(Dc −BcVc) (1.51)

A last step is necessary to express the information related to the inner region (the reduced
widths and the energy levels) as functions of the quantities of the outer region. Let us consider
another channel c′ = {α′s′l′J ′M ′}. Multiplying Equation (1.51) with the surface wave ζ∗c′ and
integrating over S yields the final equation defining the R-Matrix:

Vc′ =
∑
c∈Jπ

(∑
λ

γλcγλc′

EλJ − E
δJJ ′

)
︸ ︷︷ ︸

Rcc′

(Dc −BcVc) (1.52)

The large matrix whose coefficients are Rcc′ is called the R matrix. Its dimension matches the
number of channels (which can reach numbers up to several thousands). As the γλc are real,
this matrix is real symmetric. The Kronecker symbol appears as J is conserved during a nuclear
reaction, and so the reference to J in the level energies is usually dropped in the R matrix
expression.

The performed manipulations enable to express some inner region related quantities of in-
terest (reduced widths and energy levels) as functions of components of the outer region. The
concept of the R-Matrix theory is to calibrate the outer region behavior (ie. the cross sections)
as a function of these parameters which can be determined experimentally. In the following
part, the link with the cross sections will be briefly exposed.

Collision matrix and link to the cross sections

A general solution of the Schrödinger equation in the outer region can be formulated as a
combination of incoming and emitted waves.

Ψ =
∑
c

(ycΨout
c + xcΨinc

c ) (1.53)

Actually, there must exist a relation between the amplitudes of the incoming and emitted waves,
that is formulated as a matrix relation introducing the so-called collision matrix U:

yc = −
∑
c′

Ucc′xc′ (1.54)

After manipulations, it is possible to connect the collision matrix to the values Vc and Dc on the
surface S, and then to the R matrix. Calculations are not detailed there, but the final matrix
relation between the collision matrix and the R matrix is:

U = ΩcWcc′Ωc′ (1.55)

with Ωc =
(
Ic
Oc

) 1
2

rc=ac
= ei(wc−φc) (1.56)

and W = P 1/2 [I −R(L−B)]−1 [I −R(L −B)]P−1/2 (1.57)

in which only the R matrix is not diagonal. wc is the Coulomb-phase shift difference, null for non-
Coulomb channels, and φc is the hard-sphere scattering phase shift, sometimes named potential
scattering shift. Hard-sphere phase shift is the phase shift due to the scattering on a sphere with
radius ac, which is a well-known problem in quantum physics. Phase shifts expressions can be
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computed from the channel radius for different l-values; when there is no ambiguity φc can be
replaced with φl, even if they depend on α through ac.

Cross sections can be expressed as functions of the collision matrix. The key-point is to
remark that the amplitude of the emitted wave can be connected to the differential cross sections,
and then cross sections by integrating over all the solid angles, like for instance in [1] or [17].
Let us introduce kc = kα the channel wave number and gJ the statistical spin factor31:

kα =

√
2µα|E|

~2 (1.58)

gJ = 2J + 1
(2I1 + 1)(2I2 + 1) (1.59)

= 2J + 1
2(2I1 + 1) for a neutron (1.60)

If the incident particle is a neutron, cross section from a channel c to a channel c′ is given as

σcc′ = π

k2
α

gJ |δcc′ − Ucc′ |2δJJ ′ (1.61)

This expression is assumed in this document. To obtain the expression of the cross section for
the total reaction, elastic scattering reaction and other reactions, σcc′ must be summed over the
right channels. Total cross section is a sum over all incident channels and all exit channels for
all spingroups. As exit channels can be incident channels, summing over all exit channels is
equivalent to summing over all channels:

σtot(E) =
∑
J

∑
c∈Jπ

incident
channels

∑
c′∈Jπ

all
channels

π

k2
α

gJ |δcc′ − Ucc′ |2 (1.62)

= 2π
k2
α

∑
J

gJ
∑
l,s

[
1− Re(UJαls,αls)

]
(1.63)

In the last expression, UJ is the submatrix of U with channels belonging to spingroup Jπ. Elastic
cross section and reaction cross section ("reaction" is any reaction other than elastic scattering)
can be derived too:

σel(E) = σα,α(E) = π

k2
α

∑
J

gJ
∑
c∈Jπ

incident
channels

1− 2Re(Ucc) +
∑
c′∈Jπ

incident
channels

|Ucc′ |2

 (1.64)

= π

k2
α

∑
J

gJ
∑
s,l

1− 2Re(UJαsl,αsl) +
∑
s′,l′

|UJαsl,αs′l′ |
2
 (1.65)

σr(E) = σα 6=α′(E) =
∑
J

∑
c∈Jπ

incident
channels

∑
c′∈Jπ

reaction
channels

π

k2
α

gJ |Ucc′ |2 (1.66)

= π

k2
α

∑
J

gJ
∑

l,s,l′,s′

|UJαls,α′l′s′ |
2 (1.67)

31gJ indirectly depends on α through I1 and I2.
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The indication "reaction channel" designates all channels which contribute to the reaction. Note
that in both cases α′ is well defined (α′ = α for elastic scattering) and the sum over channel c
and c′ is actually a sum over quantum numbers l and s.

Theoretically, the derivation presented here enables the calculation of cross sections as func-
tions of the resonance parameters Γλc and Eλ. However in practice, computations remain uneasy.
Indeed, the R matrix has a very large dimension and is hard to invert. Moreover, the resonance
parameters must be determined for each channel, which is often not possible experimentally.
Some approximations are thus used in the R-Matrix theory, known as formalisms. Next part
will briefly present the most common approximations of the R-Matrix theory, and the conse-
quences on the cross sections.

1.3.3 Formalisms of the R-Matrix theory

Introducing the level matrix

First of all let us introduce another matrix, known as the level matrix, which has as many
entries as the number of levels in the compound nucleus. Again, the demonstration of the
relation between the level matrix Aλµ and the collision matrix is not detailed here. Let us just
say we have the next relations:

Ucc′ = e−i(φc+φc′ )

δcc′ + 2iP 1/2
c

∑
λµ

γλcAλµγµc

P 1/2
c′

 (1.68)

A−1
λµ = (Eλ − E)δλµ −

∑
c

[γλc(Lc −Bc)γµc] (1.69)

The formalisms of the R-Matrix theory are understandable in terms of the level matrix. First
two formalisms are known as Breit-Wigner formalisms. They are not recommended in the
resolved resonance range anymore, as they give poor results in some cases (for instance with
fissile nuclei [25]) and should be replaced with the third one presented here known as Reich-
Moore formalism, or even with the Limited R-Matrix formalism which is very close to the general
R-Matrix theory. However, Breit-Wigner formalisms are of particular interest in this document
as they are the only formalisms for which parameters are provided in the evaluations for the
unresolved resonance range (cf Section 2.1.2).

It must be underlined that ENDF evaluations themselves add several constraints due to
the format. This is the case for Multi-Level Breit-Wigner and Reich-Moore formalisms, whose
implementations in evaluations are very restrained compared to their theoretical frames.

Multi-Level Breit Wigner formalism

In the Multi-Level Breit Wigner formalism (MLBW), the level matrix is considered as a
diagonal matrix. This means the off-diagonal elements of the second term in Equation (1.69)
are neglected. Coefficients of the level matrix become:

Aλµ = δλµ

Eλ − E −∆λ − i
2Γλ

(1.70)

where the level shift ∆λ and the total width Γλ have been introduced so that32

∆λ =
∑
c

(Sc −Bc)γ2
λc (1.71)

Γλ =
∑
c

Γλc (1.72)

32As a reminder, the definition of Lc = Sc + iPc has been used, as well as the relation between the reduced
resonance widths and resonance widths. The total width is the same as the one introduced in Section 1.1.3.
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The shifted energy level is often introduced as E′λ = Eλ − ∆λ. The expression of the cross
section for a reaction other than elastic scattering thus becomes:

σα′ 6=α(E) =
∑
J

∑
c∈Jπ

incident
channels

∑
c′∈Jπ

reaction
channels

π

k2
α

gJ
∑
λ,µ

Γ1/2
λc Γ1/2

λc′ Γ
1/2
µc Γ1/2

µc′(
E′λ − E −

i
2Γλ

) (
E′µ − E + i

2Γµ
) (1.73)

Expanding the summation over µ as in [24], one obtains

σα′ 6=α(E) =
∑
J

∑
c∈Jπ

incident
channels

∑
c′∈Jπ

reaction
channels

4π
k2
α

gJ
∑
λ

Γλ,cΓλc′
Γ2
λ

[
Re(Ccc′λ )ψλ + Im(Ccc′λ )χλ

]
(1.74)

where ψλ and χλ are the Voigt profiles of the reduced variable x = 2(E′λ−E)
Γλ .

ψλ = 1
1 + x2 χλ = x

1 + x2 (1.75)

and Ccc
′

λ = 1 +
∑
µ6=λ

Γµc
Γλc

iΓλ(
E′µ − E′λ

)
+ i

2 (Γµ + Γλ)
Γµc′
Γλc′

(1.76)

For the elastic scattering, a similar equation can be deduced from Equation (1.64):

σel(E) = 4π
k2
α

∑
l

(2l + 1) sin2 φl

+ π

k2
α

∑
J

gJ
∑
c∈Jπ

incident
channels

∑
λ

2(E − E′λ)Γλc sin(2φl)− 2 sin2(φl)ΓλcΓλ(
E′λ − E

)2 + Γ2
λ
4



+ π

k2
α

∑
J

gJ
∑
c∈Jπ

incident
channels


∑
c′∈Jπ

incident
channels

∑
λ,µ

Γ1/2
λc Γ1/2

λc′ Γ
1/2
µc Γ1/2

µc′(
E′λ − E −

i
2Γλ

) (
E′µ − E + i

2Γµ
)


(1.77)

The first term of the sum is the potential elastic scattering, while the second and third ones are
the resonant components of the elastic cross section. It is possible to rewrite this equation as a
function of the Voigt profile, using the previous notation Ccc′λ :

σel(E) = 4π
k2
α

∑
l

(2l + 1) sin2 φl + 4π
k2
α

∑
J

gJ
∑
c∈Jπ

incident
channels

∑
λ

Γλc
Γλ

.

ψλ
(cos(2φc)− 1) +

∑
c′∈Jπ

incident
channels

Γλc′
Γλ

Re(Ccc′λ )

+ χλ

− sin(2φc) +
∑
c′∈Jπ

incident
channels

Γλc′
Γλ

Im(Ccc′λ )




(1.78)

Single-Level Breit Wigner formalism

The simplest approximation of the R-Matrix theory is known as the Single Level Breit
Wigner (SLBW) formalism. In this approximation, interferences between the energy levels are
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neglected. Each level is considered as it was alone. Mathematically, applying this formalism is
equivalent to considering that the level matrix is a scalar. Equation (1.69) simply becomes

1
A

= Eλ − E −∆λ −
i

2Γλ (1.79)

The expression of the cross sections for the SLBW formalism are the same than in the MLBW
case, with Ccc′λ = 1.

Reich-Moore formalism

The Reich-Moore formalism is the most often used in evaluations in the resolved resonance
range. It consists in neglecting the off-diagonal elements of the second term in Equation (1.69),
but only for channels with photons. These channels correspond to a radiative capture. This
might be understood as follows: during a radiative capture, there are many possibilities for the
compound nucleus to decay releasing a photon and so, many radiative capture channels. As
there are many channels it is possible to assume that their resonance widths are small compared
to the level width. Moreover it is possible to suppose (following an hypothesis from Bethe)
that the reduced widths have uncorrelated signs. Statistically, the contribution of the photon
channels is on the diagonal only. The expression of the level matrix coefficients becomes:

A−1
λµ = (E′λ − E − i

Γλc
2 )δλµ −

∑
c/∈γ

[γλc(Lc −Bc)γµc] (1.80)

E′λ = Eλ −∆λ and ∆λ =
∑
c∈γ

[
γ2
λc(Lc −Bc)

]
(1.81)

The computation of cross sections requires now a matrix inversion, which is slightly33 more
expensive than a sum like in the MLBW formulas. However Reich-Moore formalism handles
channels interference, which is very useful for fission reactions34.

1.3.4 Doppler-broadening methods

Cross sections usually need to be Doppler-broadened to take into account the temperature
effects as presented in Section 1.1.4. The equation dealing with the Doppler effect is well-known
and has been established for instance in [26]. The main idea is to perform a convolution product
between the target nucleus velocity field and the cross section at 0K. In the resonance range,
it is possible to neglect the binding of the target nucleus within the structure it belongs to (a
crystal or a molecule for instance), and consider that we are faced to a perfect gas. These effects
cannot be ignored at lower energies [21] where the neutron energy is comparable to the chemical
binding energies. Lamb [27] showed that the velocity field p(~V ) of a huge number of target
nuclei at temperature T follows a Boltzmann distribution with an effective temperature:

p(~V ) =
(
β

π

) 3
2
e−βV

2 (1.82)

with β = M
2kT , M the mass of the target nucleus, k the Boltzmann constant. With such an

hypothesis, the computation of the cross section at temperature T , σT , can be performed from
the cross section at 0K. Calling Er the energy in the center of mass and E the energy in the lab
referential,

σT (E) = 1
E

√
α

4π

∫ ∞
0

√
Erσ0(Er)

[
e−α(

√
E−
√
Er)2 − e−α(

√
E+
√
Er)2]

dEr (1.83)

33In practice the matrix to invert has only three entries due to the ENDF limitations.
34Fission reactions happen usually through two or three intermediary channels.
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using α = A

kT
and A = M

m
(1.84)

This equation is known as the Solbrig equation. Several methods to solve this equation have
been developed.

Method SIGMA1

The most well-known approach is the SIGMA1 method [20], used by NJOY in its module
BROADR (cf Section 1.2.3). It uses the linearized reconstructed cross sections at 0K. A lin-
earized cross section is tabulated as a set of (Ei, σi) values on a grid thin enough so that each
value of the cross sections between the tabulated points can be approximated with a linear
interpolation. If Ei < E < Ei+1, σ0(E) can be calculated as:

σ0(E) = σ0(Ei) + σ0(Ei+1)− σ0(Ei)
Ei+1 − Ei

(E − Ei) = Ai +BiE (1.85)

Introducing this expression of the cross section at 0K in Equation (1.83), one obtains:

σT (E) = 1
E

√
α

4π
∑
i

∫ Ei+1

Ei

√
Er(Ai +BiEr)

[
e−α(

√
E−
√
Er)2 − e−α(

√
E+
√
Er)2]

dEr (1.86)

It is then possible to solve this equation analytically, expressing this integral as a linear combi-
nation of simple error functions. The error achieved with this method is due to the linearization
of the cross section, but does not impact much the results if the cross section has been properly
linearized, as proved in [28].

Method ψ − χ

This method is of particular importance for our purposes. It is only applicable when σ0
is computed with the Breit-Wigner formalism, and assumes that only the energies around the
point of calculation contribute to the integral in Equation (1.83). Latter hypothesis can be
formalized with the next three assumptions:

• The second exponential term in Equation (1.83) is neglected, ie. α
√
EEr � 1. It cannot

be applied at low energies where it tends to underestimate the contribution of small Er,
but rapidly becomes acceptable at higher energies. Actually, this hypothesis is not so
restrictive.

• It is possible to develop
√
Er as a Taylor series around E, so that

α(
√
E −

√
Er)2 ≈

(
E − Er

∆

)2
with ∆ =

√
4E
α

=

√
4EM
kT

(1.87)

∆ is referred to as the Doppler width. This approximation is acceptable at high energies.
For instance, reference [29] provides a table of comparison between e−α(√E−√Er)2

and
e−(E−Er∆ )2

as a function of αE. It appears that the error is less than 1% when αE > 106,
which for instance corresponds to E = 100 eV for 238U at room temperature.

• Negative Er contribution to the integral is neglected, so that
∫∞
0 dEr =

∫∞
−∞ dEr. Accord-

ingly, this hypothesis is less restrictive than the second one.
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With all these hypotheses Equation (1.83) becomes:

σT (E) = 1
E

√
α

4π

∫ ∞
−∞

√
Erσ0(Er)e

−
(√

E−
√
Er

∆

)2

dEr (1.88)

The main idea of the ψ − χ method is to use this approximated kernel with a Breit-Wigner
shaped cross section in which the Voigt profiles ψ = 1

1+x2 and χ = x
1+x2 appear, such as in the

formulas of Section 1.3.3. Assuming that Γλc, φc, Pc and Sc are slowly-varying functions of the
energy so that they can be considered constant for the integration, the Doppler broadening is
only applied to the ψ and χ functions. The broadened ψ̃λ-χ̃λ functions can be rewritten as the
real and imaginary part of the Faddeeva function w [30]:

w(z) = e−z
2erfc(−iz) = e−z

2
(

1 + 2i√
π

∫ z

0
et

2
dt

)
(1.89)

ψ̃λ =
√
π

2ζ Re
[
w

(
x

2ζ ,
1
2ζ

)]
(1.90)

χ̃λ =
√
π

2ζ Im
[
w

(
x

2ζ ,
1
2ζ

)]
(1.91)

using x = 2(E′λ − E)
Γλ

and ζ = ∆
Γλ

(1.92)

The Faddeeva function belongs to the large family of the error functions, and many available li-
braries enable its precise calculation at high speed. The ψ−χ method is of particular importance
for this work, as it enables the fast computation of the Doppler effect at a single energy (while
the SIGMA1 requires to use a tabulated cross section on an energy grid) from Breit-Wigner
analytical forms. In particular, its main defaults (weak precision at low energies, Breit-Wigner
formalism only) are not as critical in the unresolved resonance range which starts at relatively
high energies (for instance it starts at E = 20 keV for 238U in the JEFF-3.2 library, to be
compared with E = 100 eV evoked previously), and still relies on the Breit-Wigner formulas.

1.3.5 Referential of the laboratory

All R-Matrix formulas have been established as functions of the energy in the center of
mass referential. In practice, resonance parameters are provided in ENDF evaluations in the
laboratory referential where cross sections must be computed as well. As a consequence, previous
formulas have to be converted in the lab referential. In the center of mass referential, the kinetic
energy of the system neutron is Ecdm = 1

2µvr, µ being the reduced mass of the system and vr
the relative speed between the neutron and the target nucleus. In the lab referential, nucleus is
at rest for now (T = 0K) so that Elab = 1

2mvr, and so:

Elab = m+M

M
Ecdm (1.93)

All formulas remain true when the energy in the lab referential is used (by now marked E) under
condition that the resonance parameters and channel wavenumber kα are replaced with the next
formulas:

Elabλ = m+M

M
Ecdmλ (1.94)

γlabλc =
√

M

m+M
γcdmλc (1.95)

kα = M

m+M

√
2m|E|

~
(1.96)
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Chapter 2

Unresolved resonance range
processing

As seen in previous chapter, it is observed that as the energy increases, resonances get closer
and closer until experimental resolution is insufficient to separate them (unresolved resonance
range), and until they finally overlap (continuum). In the unresolved resonance range, resonances
can no longer be experimentally distinguished but a resonance structure can still be observed
in the cross section. Evaluators can no longer access the particular detail of each resonance.
On the other hand, they are still able to access their statistical behavior. More precisely, for
resonances belonging to a same spingroup Jπ, the individual knowledge of resonance energies
Eλ is replaced by average values, in particular the average level spacing between resonances
often noted 〈DJ〉λ. In the same way, resonance widths are given as averaged values. These
information characterize ensembles of resonances, and are thus provided at arbitrary tabulated
reference energies along the unresolved resonance range. Average level spacings and average
widths are energy-dependent; it is the role of the evaluator to estimate a proper energy mesh
on which tabulated average parameters can reproduce the average cross sections.

In practice, average resonance parameters are often obtained using a combination of infor-
mation from the resolved resonances and tools mainly used in the continuum, such as averages
from optical models. The approach in use in the unresolved resonance range is based on the
compound nucleus model though: resonance parameters are given in the R-Matrix formalism.
Formulas and methods developed in this chapter to compute cross sections stem from the theo-
retical developments exhibited in the previous chapter.

Experimentally-obtained average resonance parameters are not the only available knowledge
at our disposal in the unresolved resonance range. Indeed, assumptions based on experimental
observations first, and then theoretical developments have led to a complete statistical theory of
resonances, and in particular to a relevant description of the statistical distribution laws followed
by the resonance parameters. For now, let us assume the next results:

• The spacing between resonances from the same spingroup follows a distribution known as
the Wigner surmise [31], defined by:

p(x)dx = π

2xe
−π4 x

2
dx (2.1)

which is actually a Rayleigh distribution with parameter σ =
√

2
π . This law was first

introduced by Wigner, who modified a Poisson process to introduce a level repulsion
to match experimental observations1. Almost surprisingly, it turned out to match the

1This point is addressed in more detail in Section 4.1.1.
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experimental data admirably.

• The reduced widths γλc follow a normal centered law. This hypothesis has been first intro-
duced by Porter and Thomas [32]. The γλc are values of the internal radial eigenfunction
on the channel surface, as defined in Equation (1.45). The integrands in Equation (1.45)
are supposed to be strongly oscillating with random signs [14], so that the integral is sup-
posed to be close to 0, with finite variance

〈
γ2
λc

〉
. With so little information available on the

system, supposing that γλc follow a normal centered law sounded like a reasonable guess2.
Resonance widths are related in quadratic manner to the reduced widths Γλc = 2Pcγ2

λc

with penetrability supposed to be a slowly-varying function of energy. Summing over the
channels contributing to a reaction, the reaction width is a sum of squares of normal cen-
tered laws. As a consequence, the reaction widths follow χ2-law whose degree of freedom
ν is the number of open channels for the reactions:

χ2
ν(x)dx = ν

2Γ
(
ν
2
) (νx

2

)ν/2−1
e−νx/2dx (2.2)

In this expression, Γ designates the classical Γ special function3. In case a single channel
is open for the reaction (ν = 1), the expression of the χ2-law is sometimes referred as the
Porter-Thomas distribution:

p(x)dx = e−x/2√
2πx

dx (2.3)

The Wigner and χ2 distributions are displayed on Figure 2.1. Actually, they proved to be
derived from a more general theoretical framework, the random matrix theory (RMT), a rich
mathematical field which was pioneered notably by Wigner before being applied to many other
domains. The main idea is to replace the unknown Hamiltonian of the system by a very large (in-
finite) matrix with random coefficients, to explore its statistical spectral properties. Mandatory
symmetries of the Hamiltonian enabled to define a remarkable ensemble of random matrices,
the Gaussian Orthogonal Ensemble (GOE) whose spectral distributions matched the resonance
parameters behavior. In particular, the Wigner law appeared as the statistical distribution of
the spacing between eigenvalues of random matrices of the GOE of size 2x2. This particular
topic will be addressed in more detail in Chapter 4.

In brief, even if the individual resonance parameters are not provided in the unresolved
resonance range, knowledge of average values and statistical distributions have proven to be a
turning point in the processing capabilities based on the R-Matrix formalism. Admittedly, cross
sections cannot be computed as pointwise functions of energy, but other representations remain
available. First, the R-Matrix theory has been adapted to compute mean cross sections in the
unresolved resonance range. Secondly, fluctuations of the cross sections can be captured by the
ladder method, whose main point is to sample sets of resonances from their known statistical
distributions. Resolved R-Matrix formulas can then be applied to obtain samples of cross sections
values, from which probability tables can be computed.

The main goal of this document is to describe and estimate the relevance of these techniques.
In the next part, we will present the ENDF-6 format in which resonance parameters are stored,
and most of the matters to consider when processing evaluated data. Then, details of the mean
R-Matrix theory to compute average cross sections in the unresolved resonance range will be
briefly exposed. Finally, the ladder method and its related sources of uncertainty will be listed.
Let us already underline that the validity of the ladder method will be the main topic of the
next chapters.

2Actually, it is the most conservative choice following the maximum entropy principle of probability theory [30].
3It must not be confused with the resonance width.
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Figure 2.1: On left, the Wigner probability distribution for the resonances spacing, superposed
to the exponential distribution (Poisson process) for comparison. On the right, several χ2-
distributions with various degrees of freedom, that are used to sample resonance reaction widths.

2.1 From theoretical framework to ENDF evaluations represen-
tation

Evaluated nuclear data are usually stored in Evaluated Nuclear Data Format (ENDF) files.
These data are meant to be processed before any use in neutronics codes. The ENDF format
was developed at times when computer resources were scarce. It does not permit a full repre-
sentation of the underlying physics of the neutron-nucleus interaction process. The structure
of an ENDF tape has already been shortly introduced in Section 1.2.2. In particular, for cross
sections computations in the resonance ranges4 only two ENDF files are required, MF2 and
MF3. Resonance parameters (resonance widths and energies, or spacings for the unresolved
range case) are provided in MF2, along with the target spin, and channel radii. File MF3 con-
tains energy-tabulated cross sections whose interpretation relies on the nature of the considered
range and flags in MF2.

MF2 file is separated into special formatted subsections, each defining a particular energy
range. They start with a "header", typically three or four dedicated lines. These headers contain
two float values to define the energy range limits, and several flags to indicate the nature and
the format of the data it stores. In particular the flag LRU=1 is used to mark the beginning of
a resolved resonance range, and LRU=2 marks the start of an unresolved resonance range5.

Resonance parameters are always provided with an indication on the formalism meant to
be employed to compute cross sections6, and corresponding formulas must be used. Indeed,
evaluators actually provide resonance parameters in adequacy with a suggested formalism. Care
must be taken when generating cross sections from resonance parameters. The processing must
follow the resonance formalism indicated by the evaluation.

The range of applications of the ENDF-formatted resonance parameters may be quite lim-
ited compared to what the R-Matrix theory actually enables, both for resolved and unresolved
parameters. It should be noticed that these limitations are not due to the format only but also
to an evaluator’s lack of abilities to properly characterize each resonance.

4Both resolved and unresolved.
5Nothing forbids successive ranges of the same type (for instance several ranges defined with different formal-

ism) but usually there is a single resolved resonance range possibly followed by an unresolved resonance range
6For instance for resolved ranges, the LRF flag indicates the formalism in use.
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In the unresolved resonance range, the only formalism permitted in ENDF evaluations is the
SLBW formalism. This formalism is not very powerful, and is even more weakened by the ENDF
formatting. Next section details the resolved Breit-Wigner formalism (actually both SLBW and
MLBW, which share the same ENDF format) and their ENDF interpretation.

2.1.1 ENDF resolved range Single-Level Breit-Wigner format

Open channels

In a Breit-Wigner-formatted resolved resonance range, only three reaction channels are open
for each (l, J, s), which constitutes a first limitation. There is one for elastic scattering (which
is thus the input channel), one for fission, and one for radiative capture. Cross sections can be
computed from resonance parameters for these three reactions only, each being described with
only a single partial width. In order to take into account the influence of all other reactions and
channels, a competitive width may be provided to be added to other partial reaction widths
to retrieve the total width. Note that there is no cross section computed for this competitive
reaction, as it is not a proper reaction in itself.

A second main restriction concerns the quantum numbers. The ENDF format first considers
that the l quantum number is conserved during a reaction. Moreover, as it is often very hard
to distinguish between resonances with different channel spin s, widths are actually summed
over s. This is a turning point in the way calculations are performed, and in the manner
resonance parameters are defined. Notably, resonances are no longer classified into spingroups
Jπ, but are allocated to a spin sequence (Jπ, l). As a consequence,

∑
l,l′,s,s′ =

∑
l, and resonance

parameters are provided according to (l, Jπ) sequences. Usually, the parity is dropped, and such
spin sequences are called spingroups as well, for convenience.

A common practice in ENDF is to work with reaction resonances: channel c is replaced with
reaction y and level λ with resonance r so that:

Γλc → Γyr defined for each (l, J) spin sequence. (2.4)

The adopted notations for the widths are Γγr for the radiative capture, Γfr for the fission, and
Γnr for the elastic scattering reaction. Γnr may be called the neutron width as it is the only
width associated to entrance channels. The total width is written Γr, and is the sum of these
three reaction widths plus the competitive width Γxr, if provided. The resolved range SLBW
formulas7 described in Section 1.3.3 simply become with these notations:

σγ(E) = π

k2
α

∑
J

gJ
∑
l

∑
r

ΓγrΓnr
Γ2
r

ψr (2.5)

σf (E) = π

k2
α

∑
J

gJ
∑
l

∑
r

ΓfrΓnr
Γ2
r

ψr (2.6)

σel(E) = 4π
k2
α

∑
l

(2l + 1) sin2(φl) + 4π
k2
α

∑
J

gJ
∑
l

∑
r

Γnr
Γr

[(
cos(2φl)− 1 + Γnr

Γr

)
ψr − sin(2φl)χr

]
(2.7)

where ψr and χr are the Voigt profiles, whose expression shall be adapted according to the
temperature value.

As a reminder, in the previous expression the reaction widths are supposedly energy de-
pendent through penetrability. Penetrabilities in the ENDF format however, are chosen to

7MLBW formulas could be adapted in the same manner. Let us underline that this format is even more gutted
in practice, as MLBW ENDF files indicate that only the elastic scattering cross section must be reconstructed
using the MLBW formula, while fission and capture must be computed with SLBW formulas.
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be constant equal to 1 for capture and fission widths, so that resonance widths are energy-
independent for these reactions. The ENDF format provides resonance widths at the resonance
energies, GNr, GGr and GFr, so that8:

GNr = Γnr(|Er|) = 2Pl(|Er|)γ2
nr

GGr = Γγr(|Er|) = 2γ2
γr

GFr = Γfr(|Er|) = 2γ2
fr

(2.8)

As a consequence, only the neutron width and total width are energy-dependent in Equa-
tions (2.5)–(2.7). The next relation holds:

Γnr = Γnr(|Er|)
Pl(|E|)
Pl(|Er|)

(2.9)

The explicit dependence in E for the neutron width is usually dropped, and precised when the
neutron width is computed at a resonance energy.

Neutron penetration factor and shifts factors

In previous equations, the hard-sphere penetration factor Pc has been indexed with l instead
of c for neutron elastic scattering. Actually, although it depends on α through the channel radius
and the channel wavenumber, its expression can be established as a function of ρ = kcac = kαaα
for successive l values, which justifies this notation. The same applies for level shift Sc and
hard-sphere phase shift φc. Table 2.1 summarizes the expressions of penetrabilities and shifts
as functions of ρ.

l Pl(ρ) Sl(ρ) φl(ρ)

0 ρ 0 ρ

1 ρ3

ρ2 + 1
−1

ρ2 + 1 ρ− arctan(ρ)

2 ρ5

ρ4 + 3ρ2 + 9
−3ρ2 − 18
ρ4 + 3ρ2 + 9 ρ− arctan( 3ρ

3−ρ2 )

l + 1 ρ2Pl(ρ)
P 2
l (ρ) + (l + 1− Sl(ρ))2

ρ2(l + 1− Sl(ρ))
P 2
l (ρ) + (l + 1− Sl(ρ))2 − (l + 1)

Table 2.1: Penetrabilities, shifts and phase shifts for several l-values. Here, ρ = kcac.

Channel radius

Calculating the channel radius is possible from the information contained in the evaluations,
with some restrictions in the SLBW format. Actually, two radii may be used, namely the "true"
radius and the "effective" (or scattering) radius, in order to compensate for the effect of distant
resonances. The true radius is meant to be used in the calculation of penetrability and shift
factors Pc and Sc, while the scattering radius is used in the phase shift φc calculations. In the
Breit-Wigner formatted values, the ENDF evaluation does not provide a value for both radii.
Instead, it provides a single value AP, and relies on flags NRO and NAPS to detail its use in
calculations. In the most common case (NAPS=0), AP corresponds to the scattering radius,

8The absolute value takes into account the possible negative resonance energies (bound levels), which are
unreachable resonances of the compound nucleus. They structure the cross sections, but their energy is below the
kinetic neutron energy, and thus negative.
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and the true radius is computed from a formula from Lynn [33], so that the channel is slightly
larger than the compound nucleus radius9:

ac = 0.123A1/3 + 0.08 (2.10)

where A is the mass of the target nucleus in atomic mass unit10. Sometimes, the AP value
provided in the evaluation is supposed to be used for both true and effective radius (NAPS=1).
It must be highlighted that for both cases the radii provided are not channel-dependent. This
is not the case for all ENDF formalisms11.

In practice, both these methods are well used. Anticipating a little bit, one can already
precise that the same flags and values are in use in the unresolved resonance range, and for
example Figure 2.2 displays for all the isotopes of JEFF-3.2 with an unresolved resonance range,
the mass against the channel radius. All values out of the ac ≈ M1/3 line correspond to cases
for which the channel radius is directly provided in the evaluation.

Figure 2.2: Mass and scattering radius for isotopes with an unresolved range in JEFF-3.2

To be slightly more flexible, an additional radius as a tabulated function of energy may be
provided, even if it is very rare. For instance in library JEFF-3.2, only one isotope out of 30712

was evaluated using this feature (197Au). If such a tabulated function is provided, the AP(E)
value replaces the provided scalar AP value except for the special case NAPS=2, where the
scalar AP defines the true radius and AP(E) the scattering radius.

9As stated in Section 1.3.2, the R-Matrix theory defines the channel radius as a distance above which interacting
nuclei can be clearly differentiated (and the interaction is only a central force). Once a radius value ac is
determined, any value greater than ac could be an acceptable channel radius. Of course once a channel radius
has been set, the associated resonance parameters depend on it.

10ie. it is the ratio of the target mass to the neutron mass
11In particular ENDF LRF=7 (R-Matrix Limited) format enables the use of a radius for each channel.
12In this library, an unresolved resonance range was defined for 307 isotopes out of 473.

58



Boundary condition

In the ENDF files SLBW-formatted data the boundary condition Bc = Sc has been chosen,
in agreement with the Wigner-Eisenbud R-Matrix parametrization, but this choice is particular
to each resonance. For resonance r, the choice is made to set Bc = Sl(|Er|). This is a calculation
artifact, which enables the resonance shift to be null for s-wave resonances. This choice implies
that the resonance energy shift E′r depends on E in the following manner:

E′r − Er = (Sl(|E|)− Sl(|Er|))
Γnr

2Pl(|E|)
(2.11)

As a reminder, only the elastic scattering (associated to the neutron width Γnr) is an input
channel, which explains this formula. Moreover, it is clear from the expressions of Sl in Table 2.1
that the resonance shift will be null for s-wave (l = 0) at any energy.

Competitive width

In order to take into account the influence of all other reactions and channels, a competitive
width GXr may be provided in ENDF evaluations for resonance r and spin sequence (l, J), to
be added to other partial reaction widths to compute the total width. With explicit dependence
on energy, the total resonance width must be computed as

Γr(E) = Γnr(E) + Γγr + Γfr + Γxr(E) (2.12)

Note that there is no cross section computed for the competitive reaction. This width is
irrelevant for formalism different from SLBW or MLBW. In practice, it is meant to represent a
possibly open decay channel for the inelastic scattering to the first level only (reaction MT51 in
ENDF format). It depends on the energy through the penetrability in the same way than the
elastic scattering, except for the inelastic scattering threshold energy E∗:

Γxr(E) = Γxr(|Er|)
Pl(|E − E∗|)
Pl(|Er − E∗|)

if E ≥ E∗

= 0 otherwise
(2.13)

The inelastic threshold energy E∗ can be computed from the excitation energy QX provided in
File MF2, so that E∗ = M+m

M QX. Strictly speaking, competitive widths are rarely used in the
resolved range (there is not a single one in JEFF-3.2), where the inelastic scattering channel is
rarely open. However, it will be useful for our applications in the unresolved resonance range.

Background cross sections

Evaluators may provide "background cross sections" in the ENDF File MF3, to be added to
the reconstructed cross sections from resonance parameters, for total, elastic, capture, and fission
reactions. Background cross sections play a role to correct the resonant cross sections obtained
from Equations (2.5)–(2.7) in order to match the experimental data. They are supposed to
hold only a tiny fraction of the cross sections. In particular, they are used along calculations
performed at 0K, while their values derive from comparisons with experimental measurements
at room temperatures. The error is assumed to be unimportant if the background is small and
does not structure the shape of the cross section.

Before describing the ENDF format in use for the unresolved resonance range, let us briefly
mention that not only Breit-Wigner formalisms suffer from the ENDF limitations: Reich-Moore
formalism, which is the most-used formalism in the resolved resonance range, is only used to
compute capture, fission, and elastic scattering cross sections as well. The conservation of l is
also assumed, along with the conservation of s. Two channels are open for fission, one for capture
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and one for elastic scattering. The main advantage of this formalism is a better description of the
fission channels, as two widths are provided. The calculation of cross sections from resonance
parameters for more reactions require the use of a more developed formalism, the R-Matrix
Limited Formalism, which enables the evaluator to provide more resonance parameters.

2.1.2 The unresolved resonance range in the ENDF format

Energy-tabulated values

In the unresolved resonance range, the well-defined resonance parameters are replaced with
average values, provided at reference energies. It must be stressed that these energies do not
correspond to resonances, but to arbitrary tabulated values chosen in the range by evaluators
in order to describe the statistics of surrounding resonances. Ideally, evaluators aim at choosing
an energy mesh thin enough so that computed quantities are accurate along the whole interval.
Parameters can be furnished on a grid in three manners in the ENDF format, according to the
values taken by flags LRF and LFW:

• LRF = 1 and LFW = 0: parameters are supposed to be energy-independent, and a single
set is provided for the whole energy range. No fission width is provided.

• LRF = 1 and LFW = 1: same as previously, except for average fission widths, which are
given at several tabulated energies.

• LRF = 2: all parameters are energy-dependent tabulated quantities. In that case, an
interpolation scheme is also provided.

As it will be described in Section 2.2, the calculations of average cross sections can be achieved
at these reference energies. In order to perform calculations between the tabulated energies, two
interpolations may be considered: an interpolation between computed cross sections, or more
physically, an interpolation on resonance parameters prior to the cross sections calculations. For
a long time, the ENDF manual [2] recommended the interpolation to be performed on cross
sections. It turned out that this prescription was a mistake, and led to differences up to 10%
between processing codes, for instance between NJOY and PREPRO [34]. Such differences arise
when the energy mesh chosen by the evaluator is too loose. It is now widely accepted that
interpolation should be performed on parameters rather than cross sections, and codes which
followed the former ENDF recommendation have changed their practice.

Average parameters

In the ENDF evaluations, a single data formatting is available to describe the unresolved
resonance parameters at designated reference energies, which obeys the same limitations than
the resolved Breit-Wigner formalisms. For this reason it is said quite often that SLBW is the only
formalism allowed in the unresolved resonance range, even if Equations (2.5)–(2.7) do not apply
directly. The form of the parameters resemble a lot the resolved Breit-Wigner formalism: only
four (average) widths are provided, corresponding to elastic scattering, capture, fission, plus
an average competitive width to take into account other channels effects. As a consequence,
only elastic, capture, fission and so total cross sections can be computed. The computation
of penetration and shifts factors, as well as the calculation of channel radius follows the same
procedures than the resolved range Breit-Wigner format. For instance, the same flags NRO and
NAPS rule the calculation of the channel radius. Moreover, conservation of l is assumed, and
averages are summed over s-values, so that average parameters are given as (l, J) sequences13.

13The number of values l (increasing integers from 0) is provided in the evaluation with flag NLS, and for each
l-value, the associated J values to consider are provided too.
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The main difference lies in the statistical nature of the provided data. Experimentally,
averaging over many levels is a complex task, which leads to a definition of resonance parameters
not exactly alike the previous resolved Breit-Wigner formats. In the following, an average over
many levels with same quantum numbers is marked with a bar. For example, an average over
(l, J) instances is noted X lJ = 〈X〉lJλ . For each reference energies in the unresolved range and
(l, J) spingroups are given:

• DlJ , the average spacing between resonances. As l is conserved in a reaction, each res-
onance is associated to a single J and l value. As a consequence, the spacing between
resonances of the same (l, J) sequence follows a Wigner distribution.

• Γ0
n
lJ , an average reduced neutron width. Providing an average reduced width instead of

an average neutron width is justified, as the neutron width depends on the energy through
the penetration factor (which is not the case for capture and fission in the ENDF format),
while the reduced neutron width does not.

• Γγ
lJ , an average γ width;

• Γf
lJ , an average fission width;

• Γx
lJ , an average competitive width. As in the resolved Breit-Wigner formalism, the com-

petitive width corresponds to an inelastic scattering to the first excited level. Unlike the
resolved case, the competitive width is quite frequent in the unresolved resonance range,
where the inelastic scattering becomes an important reaction. Its associated penetrability
is defined as in Equation (2.13), but there, no threshold value QX is given in the ENDF
file for the unresolved resonance range. Thus, it is assumed that the corresponding QX
value is to be looked at File MF3 section MT51, which corresponds to the first inelastic
scattering. If another reaction such as (n, p) or (n, α) had a threshold below the inelastic
scattering, it is expected that its contribution is not taken into account in Γx

lJ . The
missing QX entry in the URR-format is a defect of the ENDF standard, due to the lack
of space in files.

Unlike the resolved Breit-Wigner case, in the unresolved resonance range the reduced neutron
width is rather provided than the neutron width, and its relationship with the neutron width
follows the experimental definition instead of the theoretical one Γ = 2Pcγ2:

Γλ,n,lJs(E) = Γ0
λ,n,lJs

√
E
Pl(E)
ρ

(2.14)

Let us establish the relationship between the average reduced neutron width and the average
neutron width. Like in the resolved case, we can suppose that entrance channels for same (l, J)
values may contribute incoherently, so that [35]:

Γ0
n,lJ =

∑
s

Γ0
n,lJs = µlJΓ0

n,lJs (2.15)

where µlJ is the neutron multiplicity, which corresponds to the number of open channels for the
(l, J) couple, ie. to the number of possible s values. Reachable s values must follow the rule
~J = ~s + ~l. In practice µlJ is equal to 1 or 2. Inserting Equation (2.15) in Equation (2.14) one
obtains the next expression for average neutron width:

Γn
lJ(E) = µlJΓ0

n
lJ√

E
Pl(E)
ρ

(2.16)
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Degrees of freedom

The multiplicity µlJ is provided in the ENDF evaluation as the AMUN number, where it
is described as the number of degrees of freedom for the neutron width. As said previously,
one of the hypotheses of the compound nucleus statistics is that reduced widths follow normal
centered law. Reaction widths are then a sum of square of normal laws, so they follow a χ2-
law, whose degree of freedom relates to the number of open channels. In our case, reaction
widths are given for (l, J) sequences, so that the number of open channels for neutron width
only corresponds to the number of possible s-values under condition ~J = ~l + ~s, which is µlJ .
The degrees of freedom for other widths is also provided in the ENDF evaluation for each (l, J)
sequence: AMUG, AMUF and AMUX obviously correspond to capture, fission, and competitive
widths, respectively. They remain the same for all tabulated energies.

The case of fission and capture is different from elastic scattering as they are composed
reactions. The provided degree of freedom rather correspond to an effective number of decays
instead of the exact number of open channels. For fission, AMUF may take floating values
between 1 and 4. This surprisingly small number compared to the many possible fission decay
channels is explained as fission mechanisms actually undergo fission barrier tunneling effects: the
various fission decays all go through a small number of intermediate open channels, known as
Bohr-channels, before other fission mechanisms intervene to lead to the observed various fission
reactions. From the compound nucleus point of view, the reaction appears as a decay into one
of these intermediate channels which are not numerous. For capture, there is in practice a huge
number of open channels (> 30) corresponding to the various radiative decays. As a χ2-law
with a high degree of freedom looks like a Dirac function, the average capture widths Γγ

lJ are
supposed to be constant over the whole unresolved range. AMUG is then set equal to 0, which
actually marks the limit AMUG = +∞. For competitive widths, only the inelastic scattering
channel is open. The degree of freedom is thus µl′J = µlJ in our case as l′ = l.

Background cross sections and LSSF flag

A last important difference with the resolved case shall be highlighted. We mentioned that
the file MF3 of ENDF evaluations contains background cross sections in the resolved range. In
the unresolved resonance range however, two possibilities are available according to the value of
a flag called LSSF14:

• LSSF = 0: In that case, File MF3 for total, elastic scattering, capture, and fission contains
average background cross sections to add to the cross sections computed from resonance
parameters. Everything appears alike the resolved case.

• LSSF = 1. In that case, File MF3 for total, elastic scattering, capture, and fission contains
average cross sections directly15. The ENDF-6 manual then indicates that File MF2 data
are meant to be used to compute self-shielding factors in the unresolved resonance range.
This actually only means that probability tables calculations have to be normalized to the
average data provided in File MF3. This matter will be more detailed in Section 2.3.

The cross sections processing techniques in the unresolved resonance range are twofold.
The first class of method consists in derivation of analytic formulas to compute average cross
sections from the average resonance parameters directly. It will be tackled in the upcoming part.
The second model aims at computing cross sections as probability tables from a Monte-Carlo

14Which is stored in File MF2.
15This means that cross sections data contained in File MF3 for total, elastic, capture, and fission reactions

drastically change at the limit between the resolved and unresolved ranges. Tabulated cross sections turn from
tiny background values to real average cross sections. The limit is marked with a repeated tabulating energy
value.
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sampling of resonances, which provide more information. There, problems related to the right
ways of sampling emerge, and will be presented in the last section of this chapter before being
dealt with in more detail in the next chapters of this document.

2.2 Average cross section calculations in the unresolved reso-
nance range

In this section, the average cross sections calculations in the unresolved resonance range
from average parameters will be derived. This exercise is closely related to the problematic
encountered by evaluators in their journey to obtain accurate parameters. Average cross sections
calculation has been a field of interest for decades to obtain correct average values as a function
of experimental data such as transmission ratios. In the unresolved resonance range, average
calculations can be performed on an interval δ centered on a reference energy of calculation
E, large enough to contain many resonances so that δ � Γλc and δ � 〈DJ〉λ16, and at the
same time small enough so that secular variations of level statistics can be neglected as well as
other slowly-varying energy quantities. Sc, Pc and kα are supposed to be constant over δ, as
well as average reduced widths and average spacings. An average cross section over δ is written
〈σ〉E = σ17, so that:

〈σ〉E = σ = 1
δ

∫ E+δ/2

E−δ/2
σ(E′)dE′ (2.17)

2.2.1 Direct approach

Let us suppose for now that cross sections are described with the SLBW formalism. Under
these conditions, the energy average over the cross section for channel c to reaction channel c′
(c′ is not an input channel) belonging to spingroup Jπ is18:

〈σcc′〉E =
〈
π

k2
α

gJ
∑
λ

ΓλcΓλc′

(E − Eλ)2 + Γ2
λ
4

〉
E

= π

k2
α

gJ
∑
λ

ΓλcΓλc′
δ

∫ E+δ/2

E−δ/2

dE

(E − Eλ)2 + Γ2
λ
4


= π

k2
α

gJ
∑
λ

2ΓλcΓλc′
δΓλ

[
arctan

(2(E − Eλ) + δ

Γλ

)
− arctan

(2(E − Eλ)− δ
Γλ

)]

= 2π
k2
α

gJ
〈DJ〉λ

〈ΓλcΓλc′
Γλ

[
arctan

(2(E − Eλ) + δ

Γλ

)
− arctan

(2(E − Eλ)− δ
Γλ

)]〉
λ

(2.18)

where it has been assumed that a sum of any quantity X over the levels within δ is the mean
value of X times the number of levels in δ, which is just δ divided by the average number of
levels:

∑
λ∈δ

X ≈ 〈X〉λ
δ

〈DJ〉λ
(2.19)

This approximation is a crude ensemble average procedure, in which the energy average is
replaced by an average over the levels without even considering their possible fluctuations.

16Average notations over many levels from previous chapter are used again.
17Which technically, should not be confused with 〈.〉λ the average over many levels around E.
18Let us remind that and Bc = Sc and thus ∆λ = 0.
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Similarly, it is possible to obtain an average expression for the elastic scattering. Without
considering the potential cross section, the average scattering cross section is the sum of a
resonant and interference terms:

〈σcc〉E =
〈
π

k2
α

gJ
∑
λ

Γ2
λc − ΓλcΓλ sin2(φc)

(E − Eλ)2 + Γ2
λ
4

+ 2Γλc (E − Eλ) sin(2φc)

(E − Eλ)2 + Γ2
λ
4

〉
E

(2.20)

The first term can be averaged in an equivalent manner as previously. On the other hand, the
interference term leads to a different expression:

〈∑
λ

2Γλc (E − Eλ) sin(2φc)

(E − E′λ)2 + Γ2
λ
4

〉
E

=
∑
λ

2Γλc sin(2φc)
δ

∫ E+δ/2

E−δ/2

(E − Eλ)

(E − Eλ)2 + Γ2
λ
4

dE

=
∑
λ

Γλc sin(2φc)
δ

ln (E − Eλ + δ/2)2 + Γ2
λ/4

(E − Eλ − δ/2)2 + Γ2
λ/4

= sin(2φc)
〈DJ〉λ

〈
Γλc ln (E − Eλ + δ/2)2 + Γ2

λ/4
(E − Eλ − δ/2)2 + Γ2

λ/4

〉
λ

(2.21)

These expressions can be simplified. Given N levels in δ, neglecting the level fluctuations is
equivalent to considering equidistant levels around E, Ek = E + k〈DJ〉λ, with k an integer
varying between −N

2 and N
2 . Then we can use the square formula to obtain:

〈(E − Eλ)2〉λ = 1
N

k=N
2∑

k=−N2

k2〈DJ〉2λ ≈
〈DJ〉λδ

12 (2.22)

As δ � 〈DJ〉λ, we can neglect E −Eλ compared to δ in the previous formulas. Reminding that
we have supposed that δ � Γλ as well, and that arctan is an impair function whose limit in
infinity equals π2 : 〈

ΓλcΓλc′

(E − Eλ)2 + Γ2
λ
4

〉
E

≈ 2π
〈DJ〉λ

〈ΓλcΓλc′
Γλ

〉
λ

(2.23)

〈∑
λ

2Γλc (E − Eλ) sin(2φc)

(E − Eλ)2 + Γ2
λ
4

〉
E

≈ 0 (2.24)

Inserting these expressions in the average cross section formulations with the limitations intro-
duced by the ENDF format, we get for elastic scattering, radiative capture, and fission:

〈σγ〉E (E) = 2π
k2
α

∑
l

∑
J

gJ

D
lJ

〈ΓλγΓλn
Γλ

〉lJ
λ

(2.25)

〈σf 〉E (E) = 2π
k2
α

∑
l

∑
J

gJ

D
lJ

〈ΓλfΓλn
Γλ

〉lJ
λ

(2.26)

〈σel〉E (E) = 4π
k2
α

∑
l

(2l + 1) sin2 φl + 2π2

k2
α

∑
l

∑
J

gJ

D
lJ

〈Γ2
λn

Γλ

〉lJ
λ

+ 2 sin2(φl)Γn
lJ

 (2.27)

These formulas are the recommended formulas to be used in the ENDF manual [2]. They are
implemented in most processing codes, such as NJOY and PREPRO. The trickiest part is now
to compute the averages

〈
ΓλcΓλc′

Γλ

〉
λ
. Neglecting the χ2 widths fluctuations leads to blatant
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incorrect results. The SAMMY manual [17] provides an insight of an exact analytical solution.
The main idea is to notice that 1

Γ =
∫+∞

0 e−qΓdq. Then for capture for instance

〈ΓλγΓλn
Γλ

〉lJ
λ

=
∫ +∞

0

〈
ΓλγΓλne−qΓλ

〉lJ
λ
dq

=
∫ +∞

0

〈
Γλne−qΓλn

〉lJ
λ

〈
Γλγe−qΓλγ

〉lJ
λ

〈
e−qΓλf

〉lJ
λ

〈
e−qΓλx

〉lJ
λ
dq

(2.28)

where we have decomposed the total width into partial widths, considered as independent ran-
dom values, and used the linearity of the mean. In order to compute each of these averages, one
needs to use the probability distribution of the reaction widths. They follow a χ2-distribution
with νr,lJ degrees of freedom provided in the evaluation. Thus, these averaged exponentials may
be simply rewritten:

〈
e−qΓλr

〉lJ
λ

=
∫ +∞

0
χ2
νr,lJ

(x)e−qxΓr
lJ

dx =
(

1 + q
2Γr

lJ

νr,lJ

)−νr,lJ/2
(2.29)

〈
Γλre−qΓλr

〉lJ
λ

=
∫ +∞

0
χ2
νr,lJ

(x)xΓr
lJ
e−qxΓr

lJ

dx = Γr
lJ

(
1 + q

2Γr
lJ

νr,lJ

)−νr,lJ/2−1

(2.30)

Note that for capture, Γγ
lJ is supposed to be constant as many channels are open, so that〈

e−qΓλγ
〉lJ
λ

= e−qΓγ
lJ

and equivalently
〈

Γλγe−qΓλγ
〉lJ
λ

= Γγ
lJ
e−qΓγ

lJ

(2.31)

It is possible to insert these terms in equations of the type 2.28 to express the average cross
sections as integrals from 0 to +∞ over a product of terms 2.29 and 2.30. Taking advantage of
the fact Γγ

lJ is constant, the change of variable u = e−qΓγ
lJ

enables to bring the integrals limits
over ]0,1[. Then, the integrals and the average cross section values can be easily computed with
an adaptive Gauss-Legendre algorithm.

In a nutshell, the detailed formula used the next assumptions:

- δ is big enough so that δ � Γλc and δ � DJ , and small enough, so that Pc, Sc and φc are
constant over δ.

- SLBW shape of the cross sections.
- The partial widths follow χ2-distributions with ν degrees of freedom. The levels are not
fluctuating too much. The spacings distribution has not been taken into account, and
approximated by a picket fence in the ensemble average in Equation (2.19).

2.2.2 Reformulation as a Hauser-Feschbach problem

The computation of average cross sections was an early problem in nuclear physics. Average
partial cross sections are related to the collision matrix (cf. Equation (1.61)):

σcc′ = π

k2
α

gJ |δcc′ − Ucc′ |2 = π

k2
α

gJ |δcc′ − Ucc′ |2 (2.32)

The computations of the average of squared elements of the collision matrix |Ucc′ |2 are actually
very hard to perform, as they require averaging over quadratic terms U∗abUcd. On the other
hand, it appears that some cross sections only depend on Ucc. More precisely, and as described
in [36], the average elastic scattering cross section can be split up into a potential scattering and
a resonant part:
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σcc = π

k2
α

gJ
(
|1− Ucc|2

)
︸ ︷︷ ︸

σpcc

+ π

k2
α

gJ
(
|Ucc|2 − |Ucc|2

)
︸ ︷︷ ︸

σrcc

(2.33)

Looking at the form of Equation (1.63), the average total cross section is simply obtained as:

σc,T = 2π
k2
α

gJ(1− Re(Ucc)) (2.34)

And we can define the probability of formation of a compound nucleus as the difference between
the total reaction and the potential section:

σc = σc,T − σpcc = π

k2
α

gJ
(
1− |Ucc|2

)
(2.35)

The diagonal entries of the collision matrix Ucc are related to an experimentally measurable
quantity, known as the transmission ratio Tc = 1− |Ucc|2. Consequently, the average total cross
section, the average probability of formation of a compound nucleus, and the average potential
scattering cross section can be obtained from experimental measurements as they only depend
on Ucc and not on the average over the squared elements of the collision matrix. Such average
cross sections are thus very useful for evaluators as they are directly measurable quantities.

In order to obtain a global expression for the more general problem of the decay from channel
c to channel c′, the introduced transmission ratios are quite useful. Indeed, the cross section
σcc′ can be rewritten as:

σcc′ = π

k2
α

gJ
TcTc′∑
i Ti

(2.36)

Averaging over a small interval δ with many resonances like in the previous subsection and
taking into account the potential cross section, a very general expression known as the Hauser-
Feschbach formula for the average cross section can be derived19:

σcc′ = σpccδcc′ +
π

k2
α

TcTc′∑
i Ti

Wcc′ (2.37)

whereWcc′ is the so-called width fluctuation correction factor (WFCF), which takes into account
all the correlations between the ingoing and outgoing waves. The width fluctuation correction
embeds most of the underlying physics of compound nucleus interaction. In the original work
from Hauser and Feschbach,Wcc′ = 1, which was proved wrong afterwards. Then, several models
aimed at calculating the width fluctuation correction.

In particular, the expression of the average cross sections obtained in the previous subsection
can be reinterpreted as a Hauser-Feschbach problem, and a width fluctuation correction factor
can be deduced from it. The equations provided in the previous subsection have been first
established by Moldauer [37], who linked the transmission ratios to the average resonance widths
using the narrow resonance approximation:

Tc = 2πΓc
D

(2.38)

to rewrite as in the previous part the width fluctuation factor as:

Wcc′ =
〈ΓλcΓλc′

Γλ

〉
λ

〈Γλ〉λ
〈Γλc〉λ 〈Γλc′〉λ

(2.39)

and then took advantage of the fact that reaction widths follow a χ2
ν distribution to avoid the

crude approximation Wcc′ = 1 used in the original work from Hauser and Feschbach, which
19We need to redefine the average transmission ratios as Tc = 1− |Ucc|2.
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has been proven wrong since. The average cross sections from previous part (Equations (2.25)–
(2.27)) can thus be rewritten in the very general form of a Hauser-Feschbach problem 2.37, with
the next width fluctuation correction factor, referred from now as theMoldauer width fluctuation
correction factor :

Wcc′ =
(

1 + 2
νc
δcc′

)∫ ∞
0

dq
∏
i

(
1 + q

2Γi
νiΓ

)−δac−δbc−νc/2
(2.40)

=
(

1 + 2
νa
δab

)∫ ∞
0

dq
∏
i

(
1 + q

2Ti
νi
∑
d Td

)−δac−δbc−νc/2
(2.41)

Note that in this equation, the hypothesis of many channels for the capture reaction has not
been applied yet. In this expression, the elastic cross section is enhanced with a factor

(
1 + 2

νc

)
,

and the other partial averages are reduced.
This expression of the width fluctuation correction factor is widely used in practice, and has

been proven to be very accurate when compared to a more precise and much more complex
expression obtained when elements of the collision matrix are calculated in the framework of
the random matrix theory [38]. This more elaborate theory will be dealt with later in this
thesis in Chapter 4. Finally, let us underline that for all models developed to compute the width
fluctuation correction factor, the next relation, which is a direct consequence of the transmission
conservation, holds [39]:

Tc =
∑
c′

TcTc′∑
d Td

Wcc′ (2.42)

This equality is very useful to check the accuracy of the numerical WFCF calculations, and thus

the average cross section values.

Average values can be computed for any energy in the unresolved resonance range, once
resonance parameters have been properly interpolated. However, as it has been pointed out in
Section 1.1.6, such average values are not sufficient to take into account some more subtle effects
like self-shielding. These effects could be handled if cross sections were given in the unresolved
resonance range as continuous energy functions – unreachable, as it is the main characteristic
of the range –, or given as probability tables. It turns out that the knowledge of resonance
parameters average values and probability distributions is enough to produce probability tables
in the unresolved resonance range. This is achieved through a Monte-Carlo method called the
ladder method.

2.3 The ladder method

2.3.1 General presentation

The ladder method was originally introduced by Levitt [9] to produce cross sections as
probability tables20. The ladder method has been successfully adapted afterwards in several
processing codes, among which the well-known NJOY (module PURR), PREPRO, and AMPX
(module PURM) systems. All of them implemented different versions of the ladder method
which will be compared in the following chapters.

The principle of the method is straightforward. Average resonance parameters for all spin
sequences (considered independently) are provided at reference energies, and their distributions
are known. In the vicinity of a reference energy, it is thus possible to sample successive resonances

20Probability tables are a discrete version of the cross sections probability distributions at a particular energy,
or over a group. They have been firstly exposed in this document in Section 1.1.6.
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to form a statistically acceptable set of resolved resonances. Such an ensemble of sampled
resolved resonances is called a ladder. The detail of the sampling of suitable ladders of resonances
is very important, and will be tackled in Chapter 3 and Chapter 4. Once sampled, it is possible
to compute partial cross sections using the resolved R-Matrix formulas, combining the ladders
for all the spin sequences. The obtained values are just a realization of the cross sections at the
reference energy, based on the sampled ladder. As a consequence, it is relevant to repeat many
times the full procedure to implement a Monte-Carlo method in which a single history is a ladder
sampling, from which partial cross section values are retrieved. The cross sections realizations
over the Monte-Carlo iterations form a cross sections sampling. From this sampling, probability
distributions can be estimated, and probability tables derived as mentioned in Section 1.1.6.
The construction of the probability tables from the sampling is the main topic of Chapter 5.

The successive steps of the method are summarized on Figure 2.3.

Figure 2.3: The ladder method steps

The main idea is thus very simple. However, even if this method enables the computation
of probability tables, it includes many subtleties, and some implementation details often remain
murky. In practice, it turns out that processing codes made some hypotheses and choices to
develop Levitt’s idea. Some crucial points will be discussed in this document, and a methodology
to exploit the ladder method at best will be proposed.

2.3.2 Implementing the ladder method

Basically each step of the procedure can be questioned. The next paragraphs detail for all
stages the issues which may arise.

Resonance ladders sampling

Probably the most important topic is the sampling of acceptable resonance ladders. Let us
assume that we are using ENDF-formatted evaluated nuclear data, which is the case in practice,
and so we are bound to the ENDF format limitations in the unresolved resonance range. In
that case, resonances all belong to spin sequences (l, J), considered to be independent from
each other. Moreover, only four average resonance widths are provided, using the Breit-Wigner
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ENDF format. This means that the resolved ladders one can produce adopt the ENDF resolved
Breit-Wigner formalism, and will be treated as such. Note that the general concepts in this
subsection could be also applied to generate resonances suitable for other R-Matrix formalisms,
which would be meaningful if corresponding input parameters were provided.

In general, the most common way to produce complete resonance ladders is to sample suc-
cessive resonances. Assuming a resonance belonging to spin sequence (l, J)21 is placed at energy
Er,i, the next resonance from the same spin sequence can be placed at energy Er,i+1 so that
Er,i+1 = Er,i +Di, where Di is sampled from a Wigner distribution with average DlJ . It is easy
to obtain a suitable Di, using the inverse cumulative distribution function of the Wigner law,
and sampling xi from an uniform distribution over [0, 1]:

Di = D
lJ
√
− 4
π

ln xi (2.43)

Then, reaction widths need to be sampled from χ2-distributions following a certain degree of
freedom22, supposing that each reaction width is independent from the other widths and other
resonances. Obtaining random numbers following χ2-distributions is a well-known issue, and
many libraries perform that job properly. For instance, the BOOST library23 enables χ2-numbers
generation on the basis of the calculation of inverse of incomplete gamma functions [40], using
the fact that χ2-distributions are a particular case of Gamma distributions.

Two main issues may be discussed, and will be investigated in Chapter 3 and Chapter 4:

• The ladders limits. The energy range spanned by the sampled resonances must be finite,
which naturally leads to the next question: where should the ladder start and end ? Or
alternatively, where should the ladder start, and what size should it be ? These questions
are actually quite tricky. First, it seems reasonable that the energies of calculation should
be far from the boundaries of the ladder in order to avoid side effects. When looking at
the form of the partial cross sections then, one realizes that they turn out to be sums of
rational terms whose (E−Er) component in the denominator gets higher as the resonance
energy Er is far from the energy of calculation E. To reach a physical meaning, one may
expect these sums to converge as an addition of terms smaller and smaller in average. This
convergence is displayed in Figure 2.4 which exhibits the contributions to the reaction cross
sections of the 200 resonances closest to a reference energy of calculation E. This example
corresponds to the resonant cross section values of a single spingroup of 235U (l = 0, J = 3)
at at E = 2.25 keV and T = 293.6K.
From Figure 2.4, it appears clearly that the more the resonances are distant from the
reference energy, the more their contribution is likely to be small, even if high values
can still be obtained for some distant resonances due to the randomness of the ladder
sampling. Another important aspect appears for the elastic scattering: resonances below
the reference energy provide a positive contribution, whereas above ones bring a negative
contribution, as mentioned in Section 1.3.4. This compensating phenomenon is typical of
the elastic scattering reaction, which actually has important consequences as described in
next chapter.
In practice, the sampled resolved ladders must be large enough not to miss significant
contributions of far resonances. And, even if this is a less important matter, it might be
interesting not to have too big ladders in order to perform calculations in a manageable
time.

21As both l and J are conserved during the reaction, the resonance ladders for each spin sequence (l, J) are
considered to be independent.

22Again, this comes from the experimental and evaluation limitations, which define reaction widths rather than
the widths of each channel, cf Section 2.1.

23BOOST is a powerful C++ library, sometimes considered as an extension of the STL library, which handles
many aspects of programming, such as linear algebra, random number generation, threading, unit testing, etc. It
is widely used in the GAIA-2 system.
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Figure 2.4: Contributions of resonances around a reference energy E to the cross sections cal-
culated at E

• Resonances correlations. The described one by one sampling method results in un-
correlated sets of resonances, while experimental and theoretical results suggest that the
nuclear levels are highly tied. For instance, the level spacings autocorrelation measure,
corr(Dλ, Dλ+1), should equal -0.27. Thus, the resonance spectrum is in fact quite regular:
a large spacing will have more chances to be followed by a small one, and so on. Such
feature cannot be reproduced with the one by one sampling from a Wigner law, which
then does not reproduce accurate sets of resonances. In fact, the Wigner law, initially
postulated from an ad hoc "guess" and largely used, turns out to be a surprisingly good
approximation of a more elaborated distribution law obtained from the random matrix
theory, based on the properties of the so-called Gaussian Orthogonal Ensemble (GOE).
Working with this more physical framework looks like a reasonable approach to improve
the quality of the resonances sampling, which will be done in Chapter 4.

Cross sections computations

Once appropriate ladders have been sampled, partial cross sections can be computed using
the R-Matrix formulas. There, the situation looks like the resolved case. The main issues are
related to the performance and accuracy of the calculations, and whether full pointwise cross
sections shall be computed on an energy grid. As often in Monte-Carlo applications, it is the
trade-off between speed and precision which is of importance.

• Accuracy of the calculations
In practice, ENDF limitations force us to generate Breit-Wigner shaped resonance lad-
ders. Let us notice that some efforts to provide Reich-Moore compliant average resonance
parameters in evaluations have been attempted recently with some success in a PhD dis-
sertation by A. Holcomb at ORNL [41]. Moreover, the development of GNDS format is
paving the way for a reinforced use of better formalisms in the future, even in the un-
resolved resonance range. This is even more appropriate as the use of SLBW formalism
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in the ladder method sometimes leads to negative resonant elastic cross sections, which
is of course highly nonphysical. Negative values may arise from the contributions of the
asymmetric profile of resonances above the reference energy. If these resonances are much
stronger than the resonances below, the positive contribution from these latter ones may
not be sufficient to ensure a positive scattering resonant cross section at the interference
minimum. Two possible ways to handle negative resonant scattering cross sections are
thus possible:

- Discard the whole ladder. This approach may however bias the procedure, as situa-
tions in which above resonances are stronger than resonances below would be under-
represented.

- Reset the elastic resonant scattering cross section to 0, and consider the total cross
section to be the sum of the potential elastic scattering and other partials. This might
be a correct approximation assuming the negative scattering values are close to 0.

It must be stressed that this defect of the SLBW formalism is enhanced in the ladder
method, in which "unlucky" ladders (with respect to this feature) are potentially sampled.
Using another formalism would remain the best practice, as MLBW for instance, for which
level interferences correct the cross sections minima.
As in the resolved case, the choice of the Doppler-broadening method for temperature
dependence may also have an impact. The Doppler effect is well understood, and using
methods such as SIGMA1 or Leal-Hwang on linearized cross sections could be quite ef-
ficient. The use of ψ − χ Doppler is rather preferred in order to speed up calculations,
as the approximations made by this method are reputed acceptable in the unresolved res-
onance range. In particular, its main disadvantages disappear in our situation (we are
bound to use the Breit-Wigner formalism, and we are far from the low energies), while
advantages seem tremendous (fast calculations, analytical form enabling computations at
a single value, etc.).

• Energy grid
In order to obtain a sampling of the cross section values at a reference energy from which
we will be able to derive a probability table, the most rigorous way is to compute the
cross sections at the reference energy only, for each Monte-Carlo iteration. This means
that a single cross section value for each partial reaction can be obtained from a whole
resonance ladder. This approach requires to sample many resonance ladders, which is
time-consuming.
In order to speed up the calculations, a common practice consists to reconstruct a "contin-
uous" punctual cross section on an energy grid around the reference energy. Then, cross
sections values can be exploited along the y-axis to obtain a probability distribution of the
function on the range. Let us remark that the resulting sample can no longer be inter-
preted as statistical realizations of the cross section values at the reference energy precisely
but over a whole range, which is ladder-dependent. The main advantage of this practice
is to reduce the required number of ladders significantly, as much more information (in
practice, much more sampled values) is grasped in a single round. However, the choice of
the grid is a great additional source of uncertainty. There is no proper choice for such an
energy grid which is highly connected to the resonance ladder. The definition of probabil-
ity tables from the sampling is also less straightforward, as well as the convergence rate of
the method.

Statistical aspects of the sampling

As any Monte-Carlo sampling, the statistical uncertainty associated to the cross section
values decreases when the number of iterations increases. The question is whether enough
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samples have been drawn. Some theoretical results can be useful in this kind of estimation.
For instance, assuming the mean µ and variance σ2 of the underlying cross section distribution
exist, the Central Limit Theorem details the convergence of the empirical cross section mean
σ = 1

n

∑n
i=1 σi of independent realizations σi as a function of the number of iterations n:

√
n
(
Xn − µ

)
→ N (0, σ2) (2.44)

In our case we are not only interested in the cross sections means, but rather on the whole cross
sections fluctuations, and then on the capacity of the sampling to approach the underlying cross
sections distributions. The most useful theoretical support is the Givenko-Cantelli theorem,
sometimes called the fundamental theorem of the statistics, which details the asymptotic behav-
ior of the empirical distribution function as the number of independent observations increases.
Let us call F the cumulative distribution function (cdf) of a random variable X. In case the
random variable takes continuous values, the cumulative distribution function is the integral of
the probability density function (pdf). From X1, X2, ..., Xn independent observations of the
random variable X, one can define the empirical distribution function (ecdf) Fn as:

Fn(x) = 1
n

n∑
i=1

1{Xi<x} for x ∈ R (2.45)

where 1C is the indicator function of the set C. Actually, the empirical distribution is a step
function, that jumps up by 1

n at each value taken by the observed Xi. The Glivenko-Cantelli
theorem ensures that the empirical distribution converges toward the cumulative distribution in
an uniform way, that is:

P
(
||Fn − F ||∞ −−−→

n→∞
0
)

= P
(

sup
x∈R
|Fn(x)− F (x)| −−→

n∞
0
)

= 1 (2.46)

To be even more precise, the Dvoretzky–Kiefer–Wolfowitz inequality (DKW) strengthens this
theorem by specifying the rate of convergence as n increases, and bounds the probability that
Fn differs from F more than a given constant ε for any x ∈ R:

P
(

sup
x∈R
|Fn(x)− F (x)| > ε

)
< 2e−2nε2 (2.47)

This inequality is closely related to the Kolmogorov-Smirnov test of adequacy to a distribution.
It is possible to revert the inequality to draw a simultaneous band confidence around the cumu-
lative distribution as a whole24, which takes the form of a confidence envelope that contains the
whole cdf at the same confidence level. For a tolerance level 1 − α, the interval that contains
the true cdf is bounded with:

Fn(x)− ε < F (x) < Fn(x) + ε with ε =

√
ln(2/α)

2n (2.48)

For instance, if we want to have a simultaneous band confidence of ε = 1% up to probability
1 − α = 95%, the number of iterations to perform is then n = ln(2/α)

2ε2 = 18445 iterations. For
a fixed tolerance level α, the number of iterations is not a linear function of the simultaneous
band confidence tightness. For instance, for 10000 iterations, the reached simultaneous band
interval confidence approximately becomes 1.3% with probability 95%.

24Such a confidence interval is more demanding than a pointwise confidence interval, ie. a simple estimation of
the confidence interval for each value of the cdf which allows for tighter level confidence at some individual points.
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Probability tables computation

The definition of a probability table from a sampling is a step which requires questioning. It
consists to turn a continuous density estimation into a discrete set of values possibly taken by
the cross sections. This means artificially condensing a probability density function (pdf) into
discrete equivalent values. This defines a probability mass function (pmf). A pmf is composed
of a set of probability values pk with associated base-points σk. These couples are called bin
values. Of course, such a transformation is not unique, and the relevance of the selected method
highly depends on the use of probability tables in Monte-Carlo codes afterwards. Are under
study:

• The number of bins to define.
More bins in the probability tables reduce the error due to the discretization of the contin-
uous probability distribution, but slow down the Monte-Carlo codes. A relevant number
of bins is closely related to the number of iterations and to the method used to build the
probability tables.

• The method to choose bin values.
Until now, several methods have been envisaged to build bins:

- Regular binning
- Equiprobable binning
- Geometrical irregular procedures
- The moment method, developed by P. Ribon and implemented in the CEA codes
CALENDF and GALILEE.

We present in Chapter 5 an investigation of these methods, along with original methods
meant to compute reliable probability tables, based on a k-clustering algorithms.

Accurate energy mesh

This presentation of the ladder method described the generation of effective probability
tables at a single reference energy, for which average resonance parameters are available. In the
unresolved resonance range, the reference energies provided by the evaluator seem to be a default
choice to produce energy-tabulated probability tables. However, nothing forbids processing
codes to achieve calculations on a more refined mesh, taking advantage of resonance parameters
interpolation. Investigating the impact of the determined energy mesh for probability tables in
the unresolved resonance range sounds legitimate. In particular, there is almost no additional
cost to produce extra probability tables in the unresolved resonance range. On the other hand,
it provides more information to the Monte-Carlo neutronics codes, which sounds appealing.

In the following parts, these issues related to the ladder method will be tackled. The only
question which will not be addressed is related to the cross sections computations step. In this
work, for each sampled resonance ladder a single cross section value (for each partial reaction)
is computed at the reference energy, relying on the SLBW formulas and ψ − χ Doppler effect.
This seemed like the most conservative choice making use of the nature of the provided input
parameters, and serves as a starting point to investigate the other issues. The chapters consti-
tutive of the next part are focused on the quality of the resonance ladders sampling, but the
question of the number of Monte-Carlo iterations will be also addressed. The quality of the
ladder method sampling will also be tested against average Hauser-Feschbach calculations. In
the final part of this document, the construction of probability tables from the sampled cross
sections from the ladder method will be examined. Then, benchmarks calculations will be per-
formed to investigate the quality of the methodology established to process nuclear data in the
unresolved resonance range.
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Part II

Statistical resonances sampling
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Chapter 3

Statistical resonance ladders
sampling in the unresolved

resonance range

The first critical step of the ladder method in the unresolved resonance range processing is
to fill an energy region of interest with suitable sets of resonances. These sets are called ladders.
Such sets are produced around a reference energy in the unresolved resonance range, at which
cross sections can be computed using the R-Matrix formulas. This operation is repeated many
times, resulting in Monte-Carlo sets of cross section values from which probability tables can
be derived. This chapter aims at describing more in detail the sampling of resonance ladders in
the unresolved resonance range.

The usual approach is to sample resonances one by one for each spin sequence, using the
well-known Wigner and Porter-Thomas distributions of resonance parameters. This method
may seem straightforward, but some questions still remain unanswered, in particular about the
size and the choice of a reasonable starting point for the ladders. For both topics, existing
codes do not clearly describe their strategy and the impact it may have on the cross sections
computations. Moreover, the number of ladders to sample remains an open question as well.

In the following, the strategies adopted by reference codes for the ladder construction will be
exposed, and proved to be equivalent under certain conditions. Afterwards, the question of the
number of resonances to fill the ladders with will be tackled. In the course of our investigations,
such problematic will be reformulated as an input-parameters problem. From this reformulation,
a methodology will be proposed to estimate the proper size of the ladders to consider, along with
the required number of Monte-Carlo iterations to run. At the end of this chapter, a reference
methodology to sample resonances in the context of the ladder method will be set.

3.1 Resonance ladders sampling strategies

Let us focus for now on the usual practice to produce a resonance ladder, in which resonance
energies are determined one by one. As described in Section 2.3, a resonance from the spin
sequence (l, J) (indexed i) of a ladder is placed at distance Di from the previous one, where Di

is the product of a random number from the Wigner distribution W , and the average spacing
of the spingroup D

lJ . Note that for now, only the immediate previous resonance serves to
determine the position of the next one. Resonance widths for reactions α are then sampled from
χ2 distributions with appropriate degrees of freedom, and normalized on the average widths
Γα

lJ . In practice however, ladders cannot extend to infinity: a first and a last resonance have
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to be placed, and the range on which ladders extend must be defined. Two approaches can be
envisaged, as it is possible to place first the farthest or the closest resonance from the reference
energy. From another point of view, this choice is equivalent to building a ladder on a predefined
energy range, or letting it grow until some stop criterion is met. Both methods have actually
already been implemented in existing codes. The first approach is implemented in the PURR
module from NJOY, while the latter is used in the PURM module of AMPX (part of the SCALE
system). Both methods turn out to be equivalent under some conditions, which are about to be
described.

3.1.1 PURR strategy: definition of an energy range

The first idea is to choose an energy interval [E1, E2] for the ladder sampling directly. This
method is implemented in the NJOY module PURR. In order to avoid the resonances to start at
E1 for all ladders, a random shift can be sampled. For instance, the first resonance for each spin
sequence legitimately can be placed in Er,1 = E1 +ξD

lJ (ξ is sampled in an uniform distribution
U [0, 1]). Then, resonances are sampled one by one until E2 is reached.

E1 and E2 must be chosen to obtain ladders large enough so that enough resonances are
sampled within it. Moreover, another important matter must be underlined: the starting point
of the ladder must be far away from the energy of calculations in order to avoid the waiting time
paradox, which will be presented in the next subsections.

Let us already mention that ad hoc practices are usually used to determine a sufficient range.
For instance in PURR (NJOY), the choice of E1 is fixed (E1 = 10 eV), and E2 is determined
according to the following algorithm1:

E1 = 10 # ene r g i e s are in eV
nermax = 1000 # maximal number o f re sonances
erange = 0 .9 ∗ nermax ∗ dmin # dmin i s the sma l l e s t average

# spac ing among a l l sp in sequences
E2 = E1 + erange

This excerpt necessitates brief comments. Only the smallest average spacing among all
spin sequences at the reference energy serves to determine the ladder range. This has several
consequences. First, the resonance ladders are defined on the same energy range for all spin
sequences. Secondly, the size of the ladders only depends on the average spacing values. More
troubling, nothing seems to guarantee that the ladder spans the reference energy.

Actually, PURR circumvents this latter issue during the cross sections calculations step
which comes afterwards. As mentioned in the description of the ladder method in Section 2.3,
the sampled ladders of resonances serve to compute partial cross section values, that are stored
to be turned into probability tables in the final step of the procedure. Two possibilities are
practicable to choose the energy at which the cross sections are calculated. The first one is
to compute the cross sections at the reference energy only, which provides probability tables
representative of the cross sections at the reference energy exactly. The second option is to
compute continuous cross sections on an energy grid around the reference energy. The first
choice provides probability tables representative of the cross sections at the reference energy
exactly, and is the default choice in this work. The second option provides probability tables
representative of the cross sections in the vicinity of the reference energy. This latter method
is the choice of PURR; the precise definition of the energy grid of calculation is presented in
Listing 5.1, later in this document. The energy grid is chosen to be included in the limits of
the ladders. This enables a correct calculations of the differences (E − Er) in the SLBW cross
sections expressions Equation (2.7), and avoids the necessity for the ladder to really span the

1This code snippet has been extracted from NJOY 2016.35, which is open source.

78



reference energy. This second option presents the advantage to produce more than a single cross
section value (for each reaction) for each sampled ladder2, but introduces several additional
questions about the choice of a relevant energy grid. In all the developments performed in this
work, cross sections are only computed at the reference energy.

In any case, the definition of a ladder sampling from its energy limits seems cumbersome.
Instead of choosing a ladder’s edge as a starting point, it is possible to choose the center, as
explained in next subsection.

3.1.2 AMPX strategy: paired sampling

A much more elegant idea than setting ladders boundaries consists to sampling resonances
around the reference energy directly. This method has been initially implemented in the module
PURM from AMPX. First, a central spacing D0 between two resonances surrounding the refer-
ence energy must be sampled. As in the previous case, this central spacing may be randomly
shifted for each ladder, in order to avoid a perfect symmetry between the first resonances. For
example, the first resonances for each spin sequence can be placed at Er,1 = Eref + ξD0 and
Er,−1 = Eref + (1− ξ)D0 (ξ ∼ U [0, 1]). Then, resonances can be drawn successively above and
below the reference energy from these two first resonances. The problem is shifted from the
definition of energy limits [E1, E2] to a possible condition on the sufficient number of resonances
to generate to compute cross sections, which looks more flexible. In order to avoid arbitrary
asymmetric effects, the same number of resonances must be sampled on each side. In practice,
resonances are then sampled as pairs around the reference energy.

Both sampling approaches are illustrated on Figure 3.1

Figure 3.1: Successive samplings of resonances energies. The NJOY-like method determining
[E1, E2] is displayed on the upper figure. The bottom figure shows the AMPX-like method,
where pairs of resonances are sampled around the reference energy.

3.1.3 The waiting time paradox

To our knowledge, there is a very important subtlety concerning the central spacing which has
never been properly underlined. In order to be correct, the initial central spacing D0 between
Er,−1 and Er,1 must not be sampled from the Wigner distribution W , but using the slightly

2There are as many cross section values than there are energies in the chosen grid.

79



different W ∗(x) = xW (x) distribution instead. Indeed, the present situation turns out to be a
variant of the well known bus waiting time paradox3, which states that:

When someone arrives randomly at a bus stop, the elapsed time between the previous
and the next bus is stochastically longer than the mean time between the buses.

This paradox may be surprising at first sight. The main reason in the bus context lies in
the fact buses do not reach the bus stop at equal time intervals due to the traffic conditions.
Their arrival may be considered as a random variable. Intuitively, when a pedestrian reaches a
bus stop at a random moment in a day, he is more likely to arrive at a time when previous and
next buses are far from each other. The waiting time is susceptible to be greater than (half) the
average elapsed time between the buses.

Going back to the resonance ladders, the first described method of sampling (NJOY-like) is
equivalent to the bus problem. The reference energy of calculations plays the role of the bus
stop, and sampled resonances are buses. The reference energy has thus more chances to be
surrounded by distant resonances than close ones. In the second method, the fixed reference
energy is chosen as the starting point, which creates a bias. This bias can be corrected taking
into account the correct distribution of the first central spacing which surrounds the energy.

The distribution of the central spacing can be determined theoretically, which is done in
Appendix A. More precisely, it is proved that if the spacing between resonances follows a dis-
tribution f with mean µ, then the asymptotic distribution followed by the spacing between the
resonances at a fixed energy is f∗(x) = x

µf(x). In the case of a Wigner distribution, µ = 1,
and so W ∗(x) = xW (x) = π

2x
2e−

π
4 x

2 . This corresponds (by chance) to a Maxwell distribution
with parameter

√
2
π , which is easy to sample from. The mean of this distribution is 4

π . The
statistical average value of the spacing between the resonances that surround the reference en-
ergy is thus 4

πD
lJ , which is indeed larger than the mean spacing between resonances. As first

resonances weight more than the others in the cross section calculations, this statistical detail
is of importance, especially for light nuclei with large average resonance spacings.

It has been mentioned thatW ∗, the distribution followed by the central spacing, is an asymp-
totic result. This means it is valid in the limit of many sampled resonances, ie. when ladders
extend to infinity. Accordingly, the AMPX-like method accurately simulates the asymptotic
case, by construction. For the NJOY-like approach however, it seems relevant to investigate the
central distribution behavior according to the number of sampled resonances.

To be slightly more precise, the demonstration presented in Appendix A deals with the
central spacing4 distribution in terms of the waiting time of a pedestrian that would walk by a
bus stop at random time in the day. It is shown that the statistics of the time elapsed between
the previous and next bus at his arrival converges toward a biased distribution T ∗ when the
number of buses in the day becomes large.

For the NJOY-like method of sampling, the question would rather be: how far from the
energy of calculation shall the starting point of the ladder be placed in order to avoid the
central spacing to be biased ? Roughly speaking, if the starting point of the ladder is placed
too close from the energy of calculations, the influence of the starting point is likely to bias
the central spacing. On the other hand, if the starting point is far from the reference energy,
many resonances have to be sampled before reaching it. This might be enough to dissipate the
influence of the fixed starting point. The problem is thus similar than the situation in Appendix
A, but instead of investigating the distribution of the waiting time of a pedestrian according
to the number of possible time intervals one might come in, the question is about the required

3In the literature, this paradox is considered as a particular case of the inspection paradox which occurs
whenever the probability of observing a quantity is related to the quantity itself.

4The spacing between resonances at the reference energy is still called as the central spacing, even though it
might not be the central one in the first sampling method.
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average distance between the starting point of the ladder (buses or resonances) and the point of
interest (reference energy or arrival of the pedestrian).

A numerical simulation is quite easy to implement in order to estimate the minimum distance
required between the starting point of the ladder and the energy of calculation so that the central
spacing distribution reaches its asymptotic form. Figure 3.2 shows the result of such a numerical
study, for which it appears that the starting point of the ladder in the first method must be
taken at least four resonances away (in average) from the energy of calculation. If this condition
is met, the central spacing roughly follows the asymptotic distribution W ∗(x) = xW (x), and
both sampling methods behave equivalently. In practice, this condition is always met.

Figure 3.2: Convergence of the central spacing distribution to W ∗(x) = π

2x
2e−

π
4 x

2 according to
the starting point of the ladder.

Now that the choice of a ladder starting point has been examined, let us try to estimate the
required size of the ladders to perform accurate cross section computations. It turns out that
in the journey to achieve precise calculations, another internal parameter of the method can be
tuned in the same way, namely the number of Monte-Carlo iterations to perform. Both these
variables share common characteristics. Better results are achieved with more resonances and
more Monte-Carlo iterations. Moreover, the minimum size of ladders, as well as the required
number of ladders to sample, depend on the same input parameters. In the next section a
methodology to estimate both these internal variables of the ladder method will be proposed.

3.2 A methodology to estimate the size and the number of lad-
ders to sample

For a particular target nuclide, all resonances contribute to the reaction cross sections cal-
culated at energy E. In practice, this contribution vanishes for distant resonances due to the
(E−Er) term in the denominator in Equations (2.5)–(2.7). In the ladder method for producing
probability tables, the objective is thus to produce resonance ladders wide enough so that all
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"contributing" resonances are taken into account. However, the weight of each resonance cannot
be apprehended analytically due to the random nature of the sampled resonance parameters.
Moreover, the weight of each resonance is not the same for all partial reactions.

Two ways of dealing with this randomness seem practicable. The first one is to estimate
on-the-fly quantities, which would indicate that the ladders are large enough. For example, the
AMPX code makes use of its dynamic pair sampling approach to adopt this strategy. Resonances
are added to the ladder as long as the cumulative number of levels does not approach a straight
line satisfactorily5. The second option is to fix a ladder size a priori, based on the furnished
average resonance parameters. This is for instance what the NJOY code does: it fixes the ladder
limits based on the value of the smallest average spacing found among the target spingroups.

Our first goal is to estimate a sufficient size for the sampled resonance ladders to enable
a proper calculation of cross sections at a reference energy, and thus probability tables. As
mentioned in Section 3.1, defining a ladder over an energy range or with a number of pairs of
resonances to be sampled is equivalent. The pair-based sampling was kept as a reference all
along this thesis, as it seemed more practicable to work with one universal parameter (a number
of pairs). As a consequence, the size of the ladders will be now expressed in terms of the number
of pairs of resonances to be sampled.

Before dwelling into the inspection of the ladders size, let us now introduce an idea which
will be useful to develop a methodology for the ladder method, that is the decomposition of
libraries into elementary spingroups.

3.2.1 Decomposition of a library into elementary spingroups

Nuclear data are stored in libraries in terms of isotopes: a single file usually corresponds to a
single nuclide in a particular isomeric state. In JEFF-3.2 for instance, out of 473 evaluated files,
307 nuclides have an unresolved resonance range defined. Among those 307, 7 are isomeric states
at first excited level of nuclides also provided at ground state; this is the case of 110Ag, 115Cd,
131Te, 152Eu, 166Ho, 180Ta, and 115Am. Considering the content of other libraries, like the more
recent JEFF library JEFF-3.3, ENDF/B-VII-1 and ENDF/B-VIII libraries, and the Japanese
JENDL-4, one may find up to 477 distinct isotopes with an unresolved resonance range, among
which 20 are actually isomeric states. The lightest nuclide for which an unresolved resonance
range is defined is 21Ne, and the heaviest 253Es, both found in JEFF-3.2.

A crucial point in a compound nucleus reaction is the conservation of the total angular
momentum J , and the conservation of l which is assumed implicitly by the ENDF format in the
unresolved resonance range. As a consequence, cross sections are the sum of several components
corresponding to each spingroup6, which do not interfere, as displayed in the R-Matrix formulas
in Equations (2.5)–(2.7). In other words, it is always possible to decompose the computations of
cross sections in the unresolved resonance range for a particular isotope at a particular energy
into several sub-calculations, corresponding to the different spingroups. The important part is
then to remark that each of these cross section sub-calculations in the unresolved resonance
range only depends on 17 scalar parameters7, that can be classified as follows:

1. Five "nucleus-only" related quantities: the target mass and spin, the competitive threshold,
and the true and scattering channel radii8. These parameters are usually fixed for a
nuclide, and are the same for all spingroups at all energies in the unresolved resonance
range9. A summary for this data can be provided for instance in Table 3.1. Let us point

5The reason is related to the random matrix theory and is explained in Section 4.1.3
6Plus a potential cross section for elastic scattering.
7The provided classification is valid for the models used in the unresolved resonance range, such as "theoretical"

average calculations as in Section 2.2, and the ladder method. In the resolved range, the nature of the resonance
parameters differs, and depends on the formalism used.

8Actually, the scattering channel radius may depend on the energy, but that is an almost unused feature, and
the radius remains a slowly-varying function of energy.

9Even if for instance the channel radius might differ between the resolved and unresolved range.
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JEFF-3.2 Mass
(u.a.) Spin True radius

(10−12 cm)
Scattering radius

(10−12 cm)
Threshold

(eV)

min 20.81 0.00 0.42 0.26 -3.29e+06

max 250.91 9.00 0.86 1.05 1.82e+05

mean 137.74 1.49 0.70 0.69 -3.43e+05

median 136.72 0.50 0.71 0.69 -1.23e+05

standard deviation 57.79 1.71 0.10 0.15 4.68e+05

Combined libraries Mass
(u.a.) Spin True radius

(10−12 cm)
Scattering radius

(10−12 cm)
Threshold

(eV)

min 20.81 0.00 0.42 0.22 -3.83e+06

max 250.91 9.00 0.86 1.05 5.27e+05

mean 132.46 1.65 0.69 0.68 -3.49e+05

median 129.78 1.00 0.70 0.67 -1.23e+05

standard deviation 56.45 1.80 0.10 0.15 4.95e+05

Table 3.1: Characteristics of the distinct isotopes with an unresolved range contained in JEFF-
3.2 (307 isotopes), and considering all libraries JEFF-3.2, JEFF-3.3, ENDF/B-VII-1, ENDF/B-
VIII, JENDL-4, (477 isotopes). It should be remarked that the maximum value found for
QX in the libraries is positive, which would correspond to a negative threshold energy for the
competitive width. Actually, these positive values are found for isomers evaluated at the first
excited state.

out that performing statistics for these quantities over all nuclides present in a library have
a physical meaning.

2. One reference energy. During processing, the calculations are performed at the reference
energies at which average resonance parameters are tabulated in the evaluation10. This
is part of the methodology of calculations explained in Section 2.3, in order to provide
probability tables representative of the cross sections at the reference energy11.

3. Ten spingroup related quantities: the quantum numbers l and J , the resonance average
spacing, the four average resonance reaction widths corresponding to neutron, capture,
fission and competitive reactions, and their associated degrees of freedom. It should be
emphasized that the degree of freedom for capture is always set to 0. Usually, the widths
and spacings are energy-dependent, but are provided at the given reference energy.

4. One temperature, which is the only input parameter whose value is fixed by the user
rather than found in libraries. This quantity plays no role in the resonance sampling, but
intervenes at the cross section calculations step, when Doppler-broadening is taken into
account.

From these considerations, a common pattern to process the libraries contents in the unre-
solved resonance range emerges. The goal is no more to process the data isotope by isotope,
but as a collection of elementary spingroups, defined as the combination for a particular isotope
of one of its reference energy, and the associated resonance parameters for each particular sp-
ingroup. Transforming an existing library into a collection of such elementary spingroups is an

10This point will be addressed more in detail in Section 6.1.2. In fact, calculations can be performed at
intermediate energies across the energy range, relying on interpolations of the average resonance parameters.

11This is at least the method retained in this thesis. For instance, PURR module from NJOY rather defines an
energy grid around the reference energy to compute cross section values.
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easy task. JEFF-3.2 for instance can be turned into 41 486 elementary spingroups, presented on
Table 3.2, which are as many sets of input parameters for the sub-calculations. Cross-sections
calculations for such converted libraries are exactly the same ones than during the typical pro-
cessing of a library isotope by isotope: a decomposition of computations into spingroups and
energies has just been carried out.

Library Nu-
clide l J Reference

energy Mass Spin True
radius

Scat.
radius QX

1 jeff32 NE21 0 1.0 3.07e+05 20.81 1.5 0.42 0.51 -3.51e+05

2 jeff32 NE21 0 1.0 3.47e+05 20.81 1.5 0.42 0.51 -3.51e+05

3 jeff32 NE21 0 2.0 3.07e+05 20.81 1.5 0.42 0.51 -3.51e+05

. . . . . .

41485 jeff32 ES253 0 3.5 7.00e+03 250.91 3.5 0.86 0.88 0.00e+00

41486 jeff32 ES253 0 3.5 1.00e+04 250.91 3.5 0.86 0.88 0.00e+00

D Γ0
n Γγ Γf Γx νn νf νx

1 jeff32 NE21 1921.84 14.93 0.89 0.0 0.0 1.0 0.0 0.0

2 jeff32 NE21 1905.58 14.72 0.90 0.0 0.0 1.0 0.0 0.0

3 jeff32 NE21 1635.34 12.71 0.32 0.0 0.0 1.0 0.0 0.0

. . . . . .

41485 jeff32 ES253 3.73 1.371e-03 0.02 0.0 0.0 1.0 0.0 0.0

41486 jeff32 ES253 3.73 1.371e-03 0.02 0.0 0.0 1.0 0.0 0.0

Table 3.2: Elementary sets of input parameters of JEFF-3.2, sorted from the lightest to the
heaviest.

Developing a methodology to compute cross sections in the unresolved resonance range is
much easier from such converted libraries, as the input parameters are defined with a common
formalism: there are just 16 scalar parameters12. More than just a matter of convenience,
thinking in terms of elementary spingroups is useful when trying to quantitatively estimate the
differences between several methods to process cross sections in the unresolved resonance range.
In particular, such conversion may provide some relevant information about the sensitivity of a
model output to each of the 16 input parameters, when the question of interest is related to the
quality of cross section computations. When some aspects of the ladder method will be looked
for later in this document, it will be possible to relate the outcome of the calculations to the
value of the input parameters.

Note that according to the computed quantity and the model used, not all these 16 parame-
ters are useful. For instance, scattering radius is only used in the elastic scattering cross section
formula, and has no impact for fission and capture cross section calculations.

One may go further than converting libraries such as JEFF-3.2 into sets of input elementary
spingroups with 16 parameters: several libraries can be converted, and merged together. In this
work, all the elementary spingroups from the five libraries JEFF-3.2, JEFF-3.3, ENDF/B-VII.1,
ENDF/B-VIII, JENDL-4 were extracted, and combined. Then, all duplicates were dropped.

12Reminding that although temperature is an input parameter, it is not found in the libraries.
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Note that only the elementary spingroups for which all 16 parameters were identical were con-
sidered to be duplicates. Such a situation frequently occurred, since many evaluated files are
reused from a library to another for example. Once dropped, there remained 151514 distinct
elementary spingroups from the combined libraries. Such an ensemble of elementary spingroups
exactly corresponds to the input data to be processed in the unresolved resonance range when
the five libraries are considered.

The statistics of the elementary spingroups from the combined libraries is displayed on
Table 3.3, to be compared with the statistics of the elementary spingroups from JEFF-3.2 on
Table 3.4. It must be pointed out that these statistics do not have a real physical meaning.
Indeed, each elementary spingroup is considered independently from its original nuclide, and
all nuclides do not have the same number of spingroups nor reference energies defined in the
unresolved range. As a consequence, all nuclides do not have the same "weight". For instance,
adding a reference energy in a nuclide evaluation artificially changes the nucleus-related data13.
On the other hand, they can be interpreted as statistics over the input parameters phase space
for the upcoming calculations. This is even more interesting, as the objective of the present
document is to study the models used in the unresolved resonance range, that are actually used
with the elementary spingroups as input data.

l J Energy Mass Spin True
radius

Scattering
radius QX

min 0 0 0.3 20.81 0 0.42 0.06 -3.83e+06

max 3 10.5 5.06e+06 250.91 9.00 0.86 1.05 5.27e+05

mean 1.04 2.34 8.68e+04 134.95 1.94 0.70 0.67 -2.72e+05

median 1.00 2.00 2.50e+04 133.75 1.50 0.71 0.66 -1.13e+05

standard deviation 0.73 1.8 1.99e+05 48.87 1.82 0.08 0.14 3.74e+05

D Γ0
n Γγ Γf Γx νn νf νx

min 0.325 1.0e-06 1.0e-09 0 0 1 0 0

max 3.99e+05 112.95 5.44 2.84 974.57 2 4 2

mean 1.29e+03 0.24 0.18 0.01 0.52 1.22 0.14 0.38

median 5.66e+01 7.2e-03 0.10 0.0 0.0 1.0 0.0 0.0

standard deviation 9.04e+03 2.12 0.32 0.11 13.46 0.41 0.57 0.69

Table 3.3: Statistics of the 151514 distinct elementary spingroups from the combined libraries
JEFF-3.2, JEFF-3.3, JENDL-4, ENDF/B-VII.1, ENDF/B-VIII.

In this thesis, working with all 151514 elementary spingroups resulting from the combined
five libraries was too demanding from both the calculation and computer memory management
point of view. As a consequence, only the 41486 elementary spingroups from JEFF-3.2 were
used as a base of test cases. Considering Table 3.3 and Table 3.4, it seemed that JEFF-3.2 was
representative enough of the input elementary spingroups from the five libraries. In particular,
the maximum and minimum values for all parameters were almost always found in JEFF-3.2.
This is explained by the fact JEFF-3.2 is a slightly older library than the other ones. Many
nuclides have a wide unresolved resonance range, making it a good candidate to be used to test
the models in use in this domain.

Before concluding this subsection, let us present some joint histograms for three parameters
that will prove to be of particular importance, namely the spacing, the reduced neutron width

13One can notice the slight difference between Table 3.1 and Table 3.3 for mass, spin, channel radii and threshold.
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l J Energy Mass Spin True
radius

Scattering
radius QX

min 0 0 1.0 20.81 0 0.42 0.26 -3.29e+06

max 3 10.5 5.06e+06 250.91 9 0.86 1.05 1.82e+05

mean 1.01 2.25 8.29e+04 145.59 1.88 0.72 0.7 -2.56e+05

median 1.0 2.0 2.00e+04 143.67 1.5 0.72 0.7 -9.10e+04

standard deviation 0.72 1.74 2.15e+05 54.81 1.72 0.09 0.16 3.63e+05

D Γ0
n Γγ Γf Γx νn νf νx

min 0.33 3e-5 1e-09 0h 0 1 0 0

max 364536.00 111.54 5.44e+00 2.84 856.26 2 4 2

mean 1519.03 0.31 1.70e-01 0.03 0.52 1.22 0.31 0.29

median 34.19 0.00 8.96e-02 0.0 0.0 1.0 0.0 0.0

standard deviation 11910.99 2.94 3.44e-01 0.15 18.56 0.41 0.86 0.63

Table 3.4: Statistics of the 41486 distinct elementary spingroups from JEFF-3.2.

and the reference energy. Such histograms complete the statistics of Table 3.4. Figure 3.3
displays these joint histograms for the elementary spingroups of JEFF-3.2, using a hexagonal
binning. It appears clearly that the reference energies are especially present between 103 and
105 eV, and that a close positive correlation between the spacing and the reduced neutron width
emerges.

The elementary spingroups of JEFF-3.2 will be used in the next subsections as a base of
test cases to estimate the required size of the ladders, and the minimal number of Monte-Carlo
iterations to be performed to obtain relevant cross sections samplings.

3.2.2 Methodology for the size of the ladders

One of the objectives of this chapter is to determine the required size of the ladders, defined
as a sufficient number of pairs of resonances to sample around a reference energy Eref at which
resonance parameters are provided14. For such a study, calculations for the same inputs have
been made with ladders from different sizes, and their outputs compared. Let us now define
proper inputs, outputs, and the exact adopted procedure.

First of all, the required number of pairs can be expressed as a cross sections calculation
problem. More precisely, as each added pair of resonances has a statistically weaker contribution
than the previous one, our objective is to estimate the minimum number of resonances so that
farther resonances contribution to the cross section is marginal. This decrease will thus depend
on the resonance parameters provided, and will differ for each spingroup for a particular nuclide.
In fact, one is faced to the situation described in previous subsection, and it is interesting to work
out the question with elementary spingroups in place of nuclides. In this thesis, the required
number of pairs of resonances to calculate accurate probability tables will be investigated as a
function of the 17 scalar input parameters which determine each sub-calculation.

The output of the ladder method is an ensemble of 3n cross section values; n is the number
of Monte-Carlo iterations, and for each iteration three partial cross sections are computed, for
elastic scattering, capture and fission reactions. They form a sampling, from which probability
tables can be derived. The construction of a probability table from a cross sections sampling is

14Relying on resonance parameters interpolation, this may be the case of any energy.
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Figure 3.3: Histogrammed joint plots of reference energies, average resonance spacings D and
average reduced neutron widths Γ0

n for the 41486 elementary spingroups from JEFF-3.2. The
central joint plots use a hexagonal binning to represent 2D histograms, where the color of the
cells indicates the number of occurrences.

a secondary step, tackled in Chapter 5, during which information is lost to obtain a tractable
representation of the probability distribution of the cross sections. For this reason, probability
tables are not considered as the output of the ladder method for now. Instead, the samplings
of computed cross section values are directly considered to be the real output of the method, as
they contain more information. When it comes to comparing several samplings, some statistics
might be used to describe them15:

• Moments of the distribution. The infinite series of the moments
(

1
n

∑n
i=1X

k
i

)
1≤k≤∞

en-
tirely defines the distribution. The four first moments are used as shape parameters of
the distributions. They are namely the mean, variance, skewness, and kurtosis. These

15Alternatively, such statistics describe the empirical distribution they compose. As a reminder, the empirical
cumulative distribution function (ecdf) is an estimator of the cumulative of the distribution function which has
generated the sample. Probability tables are then a discretized form of this function.
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quantities correspond to centered and reduced moments.

• Quantile quantities. They measure the value below which a given percentage of observa-
tions fall. One commonly uses the 25th and 75th percentile, also referred to as the first and
third quartile, which indicate the values below which 25% (respectively 75%) of observa-
tions are found. In order to estimate the proper estimation of the weight of the tails, the
95th percentile is also used.

• Kolmogorov-Smirnov statistics. Here, this statistics is used to compare two samples. This
statistics is defined as the maximum of the distance16 between the empirical cumulative
distributions of the samples. The more the samples look alike, the smaller the Kolmogorov-
Smirnov statistics is. Compared to moments and quantiles, this quantity does not charac-
terize a single sample, but its degree of similarity with another one.

In brief, next investigations will be based on comparisons between sampled sets of cross
sections obtained with ladders of different sizes. Such comparisons will be carried out on the
grounds of the presented statistics, and calculations will be performed for each elementary
spingroup found in the libraries, rather than isotopes. In order to get rid of the randomness of
diverse samplings, next methodology is adopted. First, a very large ladder is drawn. Basically,
we chose to sample up to 500 pairs of resonances, to get ladders filled with 1000 resonances17.
Then, partial cross sections are computed taking into account truncations of this large ladder,
centered around the reference energy. More precisely, cross section values are computed taking
into account the 5 first pairs of resonances around the reference energy, then 10 pairs, 15 pairs,
and so on, until the 500 pairs of resonances are considered. As a consequence, differences between
cross sections obtained for ladders of different sizes are only due to the additional resonances
considered, and no longer depend on the fluctuations of the first common resonances18. In the
following, computations performed with 500 pairs of resonances are considered as a reference
calculation, to be compared with calculations made with fewer resonances. Consequently, the
influence of the performed number of Monte-Carlo iterations does not interfere much anymore.

Besides, next strategy is adopted for the cross sections computations: cross sections for elastic
scattering, capture and fission are always reconstructed at each elementary spingroup’s reference
energy, which is used as a base-point for the pairs sampling. For each Monte-Carlo iteration, cross
sections are thus computed at the exact energy at which resonance parameters are furnished.
As a consequence, each ladder only provides a single cross section value for each reaction: the
size of the final cross sections sets equals the number of sampled ladders. Calculations make use
of the SLBW formalism as described in Section 2.1.2, which is the only format permitted in the
ENDF libraries, and the default formulas commonly used in the unresolved resonance range. In
order to take into account the effect of temperature, calculations are performed at 0K and room
temperature (T=293.6K), using the ψ − χ Doppler broadening, which is the state of the art in
the unresolved resonance range. Finally, the potential cross section is added to the resonant
elastic scattering cross section. The contribution of each spingroup to the potential scattering
can be expressed as19 σlJp = π

k2
α

gJ sin2(φl).

We believe such calculations are representative of the usual processing practices in the un-
resolved resonance range. Figure 3.4 summarizes the adopted methodology.

Once all Monte-Carlo iterations and all computations have been carried out, we are left
with sets of 3n sampled cross sections, for each particular elementary spingroup, temperature,
and number of pairs of resonances considered. It is then possible to calculate for each set the
moments and quantiles statistics mentioned previously. Then, the relative difference of these

16The distance is there expressed as an infinity norm.
17One may remark this is the maximum number of resonances allowed for each ladder in the NJOY code.
18Note that fluctuations still occur, but are due to the large ladder sampling only.
19To get back to the expression in Equation (2.7), one must notice that

∑
gJ = 2l + 1.
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Figure 3.4: Computations methodology to estimate the required number of resonances to sample
in the ladders.

statistics is computed for sets corresponding to the same reactions, elementary spingroup and
temperature, but different number of resonances, taking the 500 pairs result as a reference. The
Kolmogorov-Smirnov distance between the 500 pairs set and the sets for smaller ladders is also
computed.

Before moving to the next subsection, it must be pointed out that nothing seems to guarantee
that 500 pairs of resonances may be enough to yield "asymptotic" results, which may constitute
reference calculations. This remains an inherent flaw of the presented methodology, a priori.
However, the outcome of the calculations presented later in Section 3.3.1 seems to confirm that
this number is reasonable, as the speed of convergence of the various statistics is relatively fast
for a vast majority of cases.

3.2.3 Methodology for the number of Monte-Carlo iterations

The size of the ladders is susceptible to impact the cross sections and probability tables
computations, but the number of Monte-Carlo iterations is too. There again, the more iterations
are run, the more the calculations will be statistically precise. There, a theoretical result holds:
the Dvoretzky–Kiefer–Wolfowitz inequality mentioned in Section 2.3, which indicates that the
rate of convergence of the empirical distribution to the cumulative distribution is roughly in√

1/n. Hence, it is possible to investigate the required number of Monte-Carlo iterations in the
case of the ladder method.

As previously, the number of iterations will impact the properties of the sets of calculated
cross sections. It is then expected that the behavior of the sets as a function of the number
of iterations will differ according to the input parameters. As before, an investigation of the
impact of the number of iterations seems more relevant when carried out for the elementary
spingroups. Here, the model outputs are the sampled partial cross sections rather than the
probability tables, for the same reasons as stated before.

In order to estimate the speed of convergence of the ladder method according to the input
spingroups, several calculations with different numbers of Monte-Carlo iterations have been
compared together. In order to get rid of the bias due to the ladder size, large ladders filled with
1000 resonances have been considered. The reconstruction methodology is the same as before.
The method is summarized on Figure 3.5.

To be slightly more precise, four numbers of Monte-Carlo iterations were used. Taking into
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Figure 3.5: Computations methodology to estimate the number of Monte-Carlo iterations to be
run in the ladder method.

account the DKW inequality, n = 10000 Monte-Carlo iterations seemed to be a good start point.
Indeed, with such a large number, the empirical cumulative distribution function was supposed
to be close up to 1% to the cumulative one statistically. In order to estimate the stability of
calculations made at this order of magnitude, n = 20000 iterations was also considered. Then
calculations have also been performed at the next order of magnitude, taking n = 100000 and
n = 200000 Monte-Carlo iterations. All computations made use of different random seeds20.

3.3 Results

3.3.1 Size of the ladders

The GAIA-2 code has been slightly modified to enable the implementation of the proposed
methodology described in Section 3.2.2, to estimate the required number of pairs to sample for
each elementary spingroup found in the JEFF-3.2 library. This represents 41 486 cases, which
are representative of the diversity of the nuclides, and of the work to be achieved during a
library processing. Looking at Table 3.1 and Table 3.3, it appears that the general statistics of
resonance parameters over the JEFF-3.2 do not differ from the other libraries significantly, even
if the detail of the resonance parameters may change. For this reason, we believe JEFF-3.2 is a
good starting point, plus it is widely used in global-purposes nuclear safety studies.

In the following, the convergence of the cross sections statistics as a function of the number
of pairs of resonances will be showed first. Then, the influence of all the input parameters over
the rate of convergence will be described more in detail, using parallel plotting. Finally, a more
precise relationship between the parameters and the number of resonances to be sampled in
ladders will be investigated.

Convergence of the statistical properties of the sampled cross sections sets

For each reaction and each temperature, convergence plots of each statistics of interest have
been produced. They are displayed for T=0K on Figures 3.6–3.8. Such plots were obtained
taking for each elementary spingroup the relative difference between the moments and quantiles

20In that case, and unlike the case of the number of resonances to sample, none of the performed computations
to be compared together were nested. The cross sections values for the case n =20 000 were not obtained from
the 10 000 first cross sections, plus 10 000 other ones; they are, in fact, entirely different. This is relevant because
in this case, we aim at evaluating the real impact of the random fluctuations.
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Figure 3.6: Convergence of various statistics of the sampled elastic cross sections toward the
reference (500 pairs of resonances), at T=0K. (a) mean, (b) variance, (c) skewness, (d) kurtosis,
(e) first quartile, (f) fourth quartile, (g) 95th percentile, (h) Kolmogorov-Smirnov distance
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Figure 3.7: Convergence of various statistics of the sampled capture cross sections toward the
reference (500 pairs of resonances), at T=0K. (a) mean, (b) variance, (c) skewness, (d) kurtosis,
(e) first quartile, (f) fourth quartile, (g) 95th percentile, (h) Kolmogorov-Smirnov distance
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Figure 3.8: Convergence of various statistics of the sampled fission cross sections toward the
reference (500 pairs of resonances), at T=0K.. (a) mean, (b) variance, (c) skewness, (d) kurtosis,
(e) first quartile, (f) fourth quartile, (g) 95th percentile, (h) Kolmogorov-Smirnov distance
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of the cross sections calculated with 500 pairs of resonances in the ladders, and the ones with
fewer resonances. As such, the definition of the relative difference used for each statistics (and
so the definition of the y-axis of the graphs) is the next one, calling "stat(n)" the value taken
by a statistics (mean, variance, first quartile...) computed with n pairs of resonances, so that it
expresses a percentage difference:

dstat
r (n) = 100× stat(n)− stat(500)

|stat(500)| (3.1)

In the same spirit, the Kolmogorv-Smirnov distance has been computed for each elementary
spingroup between the sets of cross sections obtained with 500 pairs and the ones calculated
with fewer resonances. This quantity is the maximum absolute value between the two empirical
distributions, that are scaled over [0, 1]. On the plots, it has been multiplied by 100 to be
displayed on the same scale than the other statistics.

The x-axis of the graphs is the number of resonances which have been considered in the
ladders to calculate the cross sections. On the plots, all elementary spingroups of JEFF-3.2 have
been displayed; each line corresponds to a particular one. In order to make such graphs more
readable, some cases have been highlighted in red or orange. The red line corresponds to the less
converged case, ie. for which the statistics value obtained from ladders filled with 490 pairs of
resonances differed most from the result at 500 pairs. On each graph, the corresponding nuclide
of the elementary spingroup, as well as its energy and the (l, J) values were indicated. Orange
lines correspond to the next 50 less converged cases. The less converged case corresponding
nuclide, energy, and (l, J)-values have been detailed on the bottom right corner of each figure.

Computations have been performed using 100 000 Monte-Carlo iterations, which appeared
as a sufficient large number for our needs (cf. Section 3.3.2). Again, let us remind that the
randomness of the ladder method is attenuated in the study by the fact the truncations of the
main ladder with 500 pairs are actually considered. Computing sets of 100 000 cross section
values obtained for increasing numbers of pairs of resonances from 1 to 500 was a too heavy task
from a computer memory management point of view. Instead, ladder sizes evenly spaced from
5 to 50 with a step of 5 resonances were considered, and with a step of 10 resonances from 50
to 500. Such a mesh was considered thin enough for a safe interpretation of the results.

Figures 3.6–3.8 call many comments. It is of interest first to summarize in a table the
proportions of converged elementary spingroups for the diverse statistics, according to several
levels of convergence considered, at different number of pairs of resonances, in order to get
a more quantitative understanding of the figures. Indeed, on the figures, all fast-converging
elementary spingroups form a cluster of thin overlapping gray lines, which makes them difficult
to differentiate. This is achieved in Tables 3.5–3.7. In these tables, each entry corresponds to
the percentage of elementary spingroups which converged for less than the indicated number of
pairs of resonances, considering a given level of tolerance. The levels considered were 0.1% and
1%. In each case, these thresholds are compared to the percentage difference with the 500-pairs
results, considered as a reference calculation. The number of pairs considered in the tables to
estimate the proportions were 10, 50, 200, and 490. A result different from 100% for the 490
entry indicates that some elementary spingroups are not converged compared to the 500-pairs
result with the selected level of tolerance.

From these considerations, a first very general but actually crucial remark should be made:
except for a few cases, most of the elementary spingroups statistics seem to converge very quickly,
with less than some dozen of resonances required for all reactions. That means that in most
cases encountered in practice, only a few pairs of resonances contribute to the cross sections. As
a consequence, taking a random test case is more than likely not to produce a relevant outcome.
In particular, even the classical distinction between "light", "medium", or "heavy" nuclei does
not seem very relevant. For instance, the lightest 21Ne, the medium 55Mn, and the heavy 242Am
are part of the hard-to-converge cases, whereas the second-lightest 22Na converges for only a
few resonances. One of the aims of this section will be to establish a more relevant criterion
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Level ε = 0.1% Mean Var. Skew. Kurt. Qt1 Qt4 95 Pct. K.S.

≤ 10 pairs 72.87 % 74.91 % 74.07 % 72.47 % 0.11 % 0.32 % 26.76 % 0.0 %

≤ 50 pairs 95.76 % 84.91 % 83.72 % 81.66 % 3.85 % 10.67 % 57.13 % 0.0 %

≤ 200 pairs 99.90 % 97.18 % 96.23 % 94.58 % 32.49 % 76.90 % 88.26 % 5.30 %

≤ 490 pairs 100.0 % 100.0 % 99.92 % 99.95 % 98.68 % 100.0 % 100.0 % 100.0 %

Level ε = 1% Mean Var. Skew. Kurt. Qt1 Qt4 95 Pct. K.S.

≤ 10 pairs 98.49 % 90.15 % 89.10 % 86.80 % 25.09 % 40.96 % 98.08 % 17.01 %

≤ 50 pairs 99.97 % 99.12 % 98.64 % 98.00 % 79.66 % 99.98 % 99.97 % 99.97 %

≤ 200 pairs 99.99 % 99.99 % 99.90 % 99.89 % 99.94 % 99.99 % 99.99 % 99.98 %

≤ 490 pairs 100.0 % 100.0 % 99.99 % 99.99 % 99.98 % 100.0 % 100.0 % 100.0 %

Table 3.5: Proportion of cases for which the statistics values of the elastic cross section samplings
converged for less resonances than indicated, for levels of convergence ε = 0.1% and ε = 1%.
The convergence is measured from the percentage difference to the 500-pairs result.

Level ε = 0.1% Mean Var. Skew. Kurt. Qt1 Qt4 95 Pct. K.S.

≤ 10 pairs 68.05 % 99.99 % 99.99 % 99.98 % 0.0 % 0.0 % 92.55 % 0.0 %

≤ 50 pairs 96.13 % 100.0 % 100.0 % 100.0 % 0.0 % 91.73 % 99.23 % 0.0 %

≤ 200 pairs 99.97 % 100.0 % 100.0 % 100.0 % 13.63 % 99.97 % 99.97 % 98.93 %

≤ 490 pairs 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %

Level ε = 1% Mean Var. Skew. Kurt. Qt1 Qt4 95 Pct. K.S.

≤ 10 pairs 97.91 % 100.0 % 100.0 % 100.0 % 0.0 % 97.44 % 99.97 % 0.0 %

≤ 50 pairs 99.97 % 100.0 % 100.0 % 100.0 % 98.88 % 99.97 % 99.99 % 99.97 %

≤ 200 pairs 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %

≤ 490 pairs 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %

Table 3.6: Proportion of cases for which the statistics values of the capture cross section sam-
plings converged for less resonances than indicated, for levels of convergence ε = 0.1% and
ε = 1%. The convergence is measured from the percentage difference to the 500-pairs result.

to distinguish the few cases that require more resonances. As an example to stress out the
immense majority of fast-converged cases, after only 50 pairs of resonances, around 95.76% of
the elementary spingroups of JEFF-3.2 reach an elastic mean value closer than 0.1% to the
500-pairs outcome, as listed in Table 3.5.

Besides, this fast convergence of most elementary spingroups to the 500-pairs result strength-
ens the method assumption that the 500-pairs results can be considered as a reference. Note that
this claim still depends on the considered statistics and reactions as explained in the following.

Starting with a discussion about the reactions, it looks like more resonances are required to
obtain accurate elastic cross sections values than for capture or fission, whatever the statistics
of interest. This is easily explained. There is a compensating phenomenon observed for elastic
scattering, between the positive and negative contributions of below and above resonances which
might cancel each other. Among other things, it is possible to obtain negative cross sections:
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Level ε = 0.1% Mean Var. Skew. Kurt. Qt1 Qt4 95 Pct. K.S.

≤ 10 pairs 28.69 % 95.57 % 95.19 % 91.41 % 0.0 % 0.0 % 67.42 % 0.0 %

≤ 50 pairs 70.92 % 100.0 % 100.0 % 100.0 % 0.0 % 22.95 % 88.06 % 0.0 %

≤ 200 pairs 99.03 % 100.0 % 100.0 % 100.0 % 0.0 % 99.98% 100.0 % 64.03 %

≤ 490 pairs 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %

Level ε = 1% Mean Var. Skew. Kurt. Qt1 Qt4 95 Pct. K.S.

≤ 10 pairs 78.13 % 100.0 % 100.0 % 100.0 % 0.0 % 77.70 % 93.466 % 0.0 %

≤ 50 pairs 100.0 % 100.0 % 100.0 % 100.0 % 32.31 % 100.0 % 100.0 % 100.0 %

≤ 200 pairs 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %

≤ 490 pairs 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %

Table 3.7: Proportion of cases for which the statistics values of the fission cross section samplings
converged for less resonances than indicated, for levels of convergence ε = 0.1% and ε = 1%.
The convergence is measured from the percentage difference to the 500-pairs result.

looking at the convergence figures for the mean cross sections Figure 3.6, the 500-pairs results
can be reached from above in the case of elastic scattering, whereas it is necessarily reached from
below for capture and fission. In fact, the contribution of each resonance cannot be negative
for capture and fission, while it might be the case for the elastic scattering in the framework of
the SLBW formalism. From a practical point of view, it looks like the elastic scattering is the
reaction which must dimension the number of resonances to sample in the ladders.

Among all the statistics to be converged, some look more stable than other ones. Let us
focus on the mean first. Basically, the more resonances are added, the more the mean values
look like the 500-pairs cases. Soon after 200 pairs, the computed mean value is close to less than
1% from the 500-pairs results for all spingroups and reactions. Moreover, the convergence looks
quite regular: the more the added resonances are close from the energy of calculation, the more
their contribution seems important. This results in such exponential-like curves, which are a
good sign of regularity.

Next comes the variance, which looks even more regular than the mean for all reactions,
and converges very fast. Note that for all reactions, the convergence goes from below, which
indicates the variance obtained from the 500-pairs ladder is greater than for smaller ladders. The
main reason is that computations make use of nested ladders. The dispersion of cross sections
is thus more important for larger ladders, which have additional resonances which bring out
greater cross sections values. This behaviour is observed for all reactions. As in the case of the
mean, elementary spingroups issued from 21Ne seem to be the limiting cases. Note that when
this nuclide – which is the lightest found in the library – is discarded, the variance appears as a
very fast and regular converging quantity.

Skewness and kurtosis convergences should be discussed a little more in detail. As a reminder,
skewness measures the asymmetry of the probability distribution, and kurtosis stands for the
weight of the tails compared to the central part of the distribution21. They are important
statistics to describe the empirical distribution from which the probability tables are to be
derived, and cannot be left out. For capture and fission, the number of required resonances
looks very small to obtain accurate precision. The situations looks like the variance case, except
for the fact this time, it mainly converges from above: skewness and kurtosis tend to be smaller

21It has not been mentioned yet, but all cross sections distributions are unimodal, ie. they have a single highest
value.
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for large ladders, which can be explained considering the stabilization effect of large ladders.
For the skewness, the highest the value, the more the distribution is skewed on the right, ie.

the more huge cross section values weight in the distribution. A smaller value for cross section
sets issued from large ladders means their distribution is a little less skewed. For the kurtosis, a
smaller value means the relative weight of the tails for the cross sections distribution22 obtained
with more resonances is less important than in the case of small ladders. In both cases, this
signifies that with more resonances, the weight of the right tail in the distribution is smaller.
There is actually a stabilization of the cross section values around the mean, which is justified by
the huge number of small values brought by distant resonances: their huge number compensate
randomness. As a consequence, cross sections obtained from larger ladders are more regular,
ie. their values are closer from the mean (when corrected from dispersion, which is measured
from the variance). This is a very important point that will be found again later: large ladders
compensate randomness.

For the case of elastic scattering on the other hand, the situation is less clear. A small but
non-negligible amount of cases do not seem to converge regularly for both skewness and kurtosis.
Even up to more than 5% difference are observed for an elementary spingroup from 246Cm
(skewness) and 21Ne (kurtosis), for ladders composed of 490 pairs. Moreover, the convergence
seem pretty erratic for some hundreds of cases, where the addition of ten or twenty pairs of
resonances looks enough to shamble the convergence dynamic.

For quantile-related statistics, the convergence is well-established for fission and capture.
Once again, the convergence is from below, which is easily explained with the positiveness of
each resonance contribution to the cross sections. Additional resonances for larger ladders lead
to greater cross sections values, and thus increase the quantile and percentile results. This shift
is clearly appreciated from the first quantile. Not a single elementary spingroup of JEFF-3.2
has a first quantile value which remains the same between the reference 500 pairs and the 50
pairs outcome for instance. If this underlines the weight of distant resonances better than the
moment-related statistics did, this should be tempered though when one looks at the two other
quantile statistics. As they do not change a lot, that means huge values of cross sections are
not brought by distant resonance. The first quantile result is just more sensitive to the tiny
contributions brought by the distant resonances than the other ones. For elastic scattering,
the results are more difficult to apprehend, due to the compensation effect of below and above
resonances. The convergence looks more regular than for skewness and kurtosis though.

Finally comes the last statistics of interest, namely the Kolmogorov-Smirnov distance be-
tween the empirical distribution of cross sections from whole ladders and its truncations. By
definition, this distance is positive. It seems to decrease very regularly. This statistics is of
huge interest, because it is an integral measure of the whole distribution from which probability
tables are computed. For all reactions, this distance is below 1%23 after 50 pairs for almost all
elementary spingroups, which underlines the speed of convergence of the empirical distribution
toward the reference 500-pairs cases, and thus, the relevance of the ladder method to produce
probability tables.

Temperature effect

The exact same calculations have been performed at room temperature (T=293.6K). Overall,
the results are the same as in the 0K case. The behavior of each statistics remains the same in
average, and in order to keep the body of this document a little lighter, results have been moved
to the Appendix B on Figures 13–15. Let us stress out that the resonance ladders used to draw
these graphs are the exact same ones than at T=0K.

22Actually, the relative weight of the tails when compared to the central part of the distribution.
23Actually, the real value is 0.01 if we consider the [0, 1] interval in which the real image of the empirical

cumulative distribution lies.
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The influence of temperature is explicit for the variance, for which more resonances seem
necessary to converge toward the reference asymptotic 500-pairs outcome than at T=0K. This
effect is also visible for the mean, skewness and kurtosis, although it seems less preponderant. In
order to justify this behavior, one has to remember that the temperature effect broadens the cross
sections around the resonances. Thus, when the temperature increases, farther resonances are
expected to have an effect, which is indicated in the plots. Depending on the input elementary
spingroups, the effect is more or less marked, but it looks significant enough to shift the required
number of pairs of resonances from 100 to 200 to obtain an accurate elastic scattering variance
for instance.

This underlines the complexity of the question we are faced to, but clearly exhibits the effect
of temperature. Higher values of temperature require more resonances in the ladders. Let us
remind that the temperature broadening has another effect though, it flattens the cross sections.
As a consequence, cross sections are expected to be more regular, as peaky ones are smoothed
by the broadening.

Let us now try to figure out the influence of the other input parameters in the convergence
of the cross sections distribution.

Influence of the resonance parameters

The impact of the input parameters on the number of pairs of resonance to sample to obtain
good cross sections calculations will be tackled in this paragraph. As a first step, a criterion
is required to state whether enough resonances have been sampled. The most straightforward
way would be to consider a tolerance threshold for the relative difference between the final 500-
pairs case and smaller ladders, for the statistics of interest. In this paragraph, the exact value
of that threshold is not very important24. It just needs to be carefully chosen to be selective
enough to highlight the effect of the input parameters. For instance, it could be set to 0.1% for
the Kolmogorov-Smirnov distance in the case of elastic scattering. Let us remind that such a
criterion is for now arbitrary.

Once set, the idea is just to obtain the number of pairs for which the threshold is reached.
It is just equivalent to plotting over Figures 3.6–3.8 a horizontal line, then considering for
each elementary spingroup the corresponding number of pairs above which the threshold is
not exceeded. To be slightly more precise, as not all numbers of pairs of resonances have been
considered, it is the linearly interpolated numbers that are kept. Once a link has been established
between each elementary spingroup and a required number of pairs to sample, it is easy to relate
it to the 16 input parameters of the elementary spingroup.

As a first step in the way to identify the important input parameter, parallel plots have been
drawn. On these plots, each line represents an elementary spingroup. The last column value is
the number of required pairs for a particular statistics, and all previous columns stand out as
input parameters values. As an example, the mean and Kolmogorov-Smirnov distance have been
considered for elastic and fission at T=0K, on Figures 3.9–3.12. There, the obtained number
of pairs on the farthest right column is the minimum number of pairs to sample to obtain a
statistics value close to at least 0.1% to the 500-pairs result. The same convention for orange
and red than previously has been used: red is the critical case, and the next 50 ones are in
orange.

Such plots are useful, as they exhibit input parameters that seem to matter, and for which
a relation can be searched for. In particular, from these plots, the importance of the average
spacing value appears unquestionable. Small spacings seem to be often related to more resonance
needed to obtain accurate resonance cross sections. For the mean, this looks just logical, when
one reminds that the decrease is mainly due to the (E − Er)2 term in the denominator of the
cross sections. If the spacing is small, more resonances are necessary to reach a given energy E

24One may note that for instance, in Tables 3.5–3.7, the number of converged elementary spingroups has been
presented for the various statistics according to two threshold levels (1% and 0.1%).
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Figure 3.9: Parallel plot of input parameters of elementary spingroups of JEFF-3.2. Last column
is the number of pairs of resonances required for the mean elastic cross section to be converged
up to 0.1% at T=0K. In red, the critical case, in orange, the next 50 ones.

Figure 3.10: Parallel plot of input parameters of elementary spingroups of JEFF-3.2. Last
column is the number of pairs of resonances required for the Kolmogorov-Smirnov distance for
elastic scattering to be converged up to 0.1% at T=0K. In red, the critical case, in orange, the
next 50 ones. Only the fissionable isotopes of JEFF-3.2 were retained (they are 5311).
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Figure 3.11: Parallel plot of input parameters of elementary spingroups of JEFF-3.2. Last
column is the number of pairs of resonances required for the mean fission cross section to be
converged up to 0.1% at T=0K. In red, the critical case, in orange, the next 50 ones. Only the
fissionable isotopes of JEFF-3.2 were retained (they are 5311).

Figure 3.12: Parallel plot of input parameters of elementary spingroups of JEFF-3.2. Last
column is the number of pairs of resonances required for the Kolmogorov-Smirnov distance for
fission to be converged up to 0.1% at T=0K. In red, the critical case, in orange, the next 50
ones. Only the fissionable isotopes of JEFF-3.2 were retained (they are 5311).
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Figure 3.13: Histogram of all the Γ/D values for all elementary spingroups of JEFF-3.2

when the sampling starts from Eref . Actually, this dependence seems to have a influence on the
Kolmogorov-Smirnov distance too, and so on the whole empirical distribution. This influence is
visible for all the other statistics, even if this has not been presented in this document.

Trying to go further in the exploration of the link between the input parameters and the
required number of pairs, it appeared that the spacing was not enough alone. After several
attempts, the more interesting variable to introduce turned out to be the ratio Γ/D of the
total average width associated with the elementary spingroup and the average spacing. The
average total width Γ(E) is there simply calculated at the reference energy of the elementary
spingroup25:

Γ = Γn(Eref ) + Γγ + Γf + Γx (3.2)

Note that a proper definition of this quantity is thus only possible in the framework of
the elementary spingroups calculations. The reason why this quantity seems more adapted to
describe the necessary number of resonances to fill the ladders is again related to the denominator
in the cross sections formulas, which exhibit a competition between the square of the total
width and the average spacing. This quantity looks like a well-known value in the evaluator
community, namely the strength function. However, the strength function S is usually defined as
the ratio of the reduced neutron width, which does not depend on the energy, and the average
resonance spacing, such that S = Γ0

n/D. As an example, previous Figure 3.3 exhibited the
strong relation that occurs between these values in average. There, the quantity put forward is
slightly different. Figure 3.13 displays the histogram of all Γ/D values found in the elementary
spingroups of JEFF-3.2.

In most cases encountered in JEFF-3.2, Γ/D is below 1, which means the average spacing
between the resonances is usually greater than the average total width. This remains logical as
in the unresolved resonance range, although resonances are indistinguishable, they do not fully
overlap. The grater value obtained for Γ/D in JEFF-3.2 equals 4.552, and is obtained for the
upper limit of the unresolved resonance range of the first spingroup of the light nuclide 21Ne,
namely Eref = 0.347221 MeV, l = 0, J = 1. The smallest value, which equals 2.842201.10−7, is
found for the smallest reference energy of 197Au, for l = 2, J = 1.

The required number of pairs of resonances estimated for each elementary spingroup to reach
a relevant level of convergence compared to the asymptotic case have been plotted against cor-

25Actually, it is the neutron width which is calculated at the reference energy from the reduced neutron width.
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responding Γ/D values on Figure 3.14 for T=0K, and Figure 3.15 for T=293.6K. The threshold
level has been set to 0.1% of the reference 500-pairs outcome.

From these figures, the ratio Γ/D looks like a relevant quantity to consider to estimate the
required number of resonances to sample. Even if the behavior slightly changes according to
the reaction, temperature, and statistics, a positive correlation between Γ/D and the number
of resonances to sample in the ladder is undeniable. The more the spacing is big compared to
the average total width, the less resonances need to be sampled. This makes sense compared to
what has been said previously about the role of the spacing in the formulas, and even precise
its weight compared to the average widths.

Let us be slightly more precise, starting with capture and fission reactions. Both reactions are
computed from the same formulas, where Γγ and Γf play an interchangeable role. As such, they
roughly adopt the same behaviour on Figures 3.14–3.15. For all statistics, the required number of
resonances to sample seems to increase according to the Γ/D value of the elementary spingroups.
Although this remains a crude statement, this increase seems to follow an exponential trend,
which really starts after Γ/D exceeds a given value. For the mean, variance, skewness, kurtosis
and 95th percentile in particular, the 5-pairs result corresponds to the 500-pairs result before
such threshold, which depends on the statistics. For the mean, the number of required pairs
exceeds 5 (the smallest ladder size considered) when26 Γ/D ≥ 10−2. Of course, this latter value
is purely arbitrary, as it depends on the previously fixed convergence criterion, here 0.1% of
the reference 500-pairs outcome. It is also statistics-dependent. For instance, it seems that the
required number of resonances to obtain an accurate variance, skewness, or kurtosis estimation
starts to raise around Γ/D = 0.5 for both capture and fission at T=0K. For the 95th percentile,
a quadratic increase occurs around Γ/D = 0.1. For the first and third quartile, as well as for
the Kolmogorov-Smirnov distance, greater Γ/D values seem to increase the number of required
resonances too after the same 10−2 threshold. The main difference for these latter statistics is
that even for very small values of Γ/D, the required number of resonances remains high; it lies
around 200 for the first quartile at 0K for instance. For T=293.6K – and although the figures
are more complex, especially for quantile-related quantities – the same trends appear.

As expected, the number of resonances to be considered for the elastic scattering is more
difficult to apprehend, due to the cross sections more complex shape. Still, the required number
of resonances for the ladders to be filled seems to follow the same trend than fission and capture.
Namely, the number of resonances increase with Γ/D. Even more useful, it seems that this
number starts to raise at the same level too. Having set a 0.1% tolerance threshold, the number
of required resonances starts to increase for input sets which verify Γ/D > 5.10−3 for the mean
for instance. For elastic scattering, all moment-statistics seem to raise around this point. A main
difference with capture and fission is there the possibility to require only a few number of pairs
of resonances to be converged even at high Γ/D values. Inversely though, an important required
number of resonances seems to imply a high Γ/D value. The quantile-related statistics are
more difficult to interpret there, in particular because the convergence criterion is too strong:
the 500 pairs-result is often reached. Instead, one may consider Figure 16 and Figure 17 in
the appendix B, which are the same scatter plots than Figures 3.14–3.15, except the retained
convergence criterion was only 1% of the 500-pairs result. Even if a direct relationship is still
hard to decipher, it must be underlined that the hardest-to-converge spingroups are again the
ones with a high Γ/D value. The same behaviour is observed for the Kolmogorov-Smirnov
distance.

It seems that the Γ/D value is a relevant quantity to estimate, in order to determinate the
size of the ladders to sample. Providing such criterion will be useful, but let us for now focus
on the detail of the number of Monte-Carlo iterations to be run in the ladder method.

26Considering Figure 3.13, half of the elementary spingroups have a Γ/D value greater than 10−2.
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Figure 3.14: Required number of resonances to reach close to 0.1% of the 500-pairs values
for each spingroup, plotted against their Γ/D value, at T=0K. Each figure corresponds to a
statistics of interest: (a) mean, (b) variance, (c) skewness, (d) kurtosis, (e) first quartile, (f)
fourth quartile, (g) 95th percentile, (h) Kolmogorov-Smirnov distance
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Figure 3.15: Required number of resonances to reach close to 0.1% of the 500-pairs values for
each spingroup, plotted against their Γ/D value, at T=293.6K. Each figure corresponds to a
statistics of interest: (a) mean, (b) variance, (c) skewness, (d) kurtosis, (e) first quartile, (f)
fourth quartile, (g) 95th percentile, (h) Kolmogorov-Smirnov distance
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3.3.2 Number of Monte-Carlo iterations

The goal of this subsection is to observe the impact of additional Monte-Carlo iterations over
the sampled cross sections sets for each elementary spingroups, as put forward in Section 3.2.3.
Here, only large 500-pairs ladders are considered. An important goal is to observe the evolution
of the cross sections sets when the number of Monte-Carlo iterations increases – keeping in mind
that the more Monte-Carlo iterations are run, the more the results are precise. As such, the
objective is twofold. First, roughly estimating a minimum number of repetitions for the ladder
method in order to get acceptable results seems to be a minimum target. Secondly, it is of main
interest to investigate the dependence of the convergence according to the input parameters sets,
like what has been carried out in the previous subsection for the size of the ladders.

The most straightforward idea is to compare cross section distributions obtained with dif-
ferent numbers of Monte-Carlo iterations, in order to estimate the influence of additional runs.
Thus, ladder method calculations have been performed using different random seeds, for 10000,
20000, 100000, and 200000 Monte-Carlo iterations, for each elementary spingroups of JEFF-3.2.
Moment and quantile statistics have been computed, and their percentage difference computed.
In particular, it is interesting to focus on the impact on the outcomes when the number of
iterations is doubled, as it brings a comparable amount of iterations, which still remain in the
same order of magnitude. As a result, the percentage of difference between 10000 and 20000
iterations was computed for all quantile and moment statistics, as well as between 100000 and
200000 iterations.

The results have been displayed for all elementary spingroups on Figure 3.16 for T=0K,
and Figure 3.17 for T=293.6K. Each figure corresponds to a particular statistics – four moment
ones, and three quantile ones. The left column displays the percentage difference for each
elementary spingroup between 10000 iterations and 20000 iterations. On the right column
stands the percentage difference between 100000 and 200000 runs. On these figures, the x-axis
displays the indexed 41 486 elementary spingroups of JEFF-3.2. Instead of displaying them in
an arbitrary order27, a more clever option is to sort all spingroups according to their Γ/D value,
which has been proven to be relevant in the number of resonances study. On Figures 3.16–3.17,
spingroups have been sorted in ascending order by Γ/D values, so that the more the points are
on the left, the more their ratio Γ/D is small28.

As in previous subsection, these figures call out many comments. First of all, the percentage
difference observed between the 10 000 and 20 000 cases is much bigger than between 100 000
and 200 000, for both temperatures and reactions. At T=0K, 100% difference is even reached
regularly, for moment-related statistics of the elastic scattering29. Even if the immense majority
of the cases reaches acceptable levels of convergence, this pushes forward the idea that 10 000
iterations do not constitute a sufficient order of magnitude.

The most interesting feature is the apparent correlation between the low Γ/D values and
huge percentage differences, especially for moment-related quantities such as average. Even if
less marked, quantile-related statistics seem to follow the same trend. Accordingly, the density
of highly-fluctuating outcomes is more important in the left part of the plots than on the right,
ie. for elementary spingroups whose average total width is lower than average spacing. Such
density seems to decrease regularly when moving toward higher Γ/D values30. As a reminder,

27For instance, on Table 3.2, elementary spingroups are sorted in ascending mass units, then l-value, J-value,
and finally reference energy. This corresponds on a straightforward way of parsing libraries.

28Note that the x-axis has not been chosen as the Γ/D quantity directly, even if such a choice would have been
possible. However, it turned out that choosing an x-axis on which all points are arbitrarily fixed and equally
distant was just more efficient to exhibit the calculations sensibility to fluctuations. To be more precise, setting
the Γ/D as the x-axis would have resulted in many points in the middle of the graphs, making it less readable.
As a consequence, sorted-indexed x-axis were preferred in this part.

29Let us notice that this reaction is once more the limiting case, as it fluctuates much.
30Again, there is no such thing as a regression in this affirmation, as the x-axis is not Γ/D, but sorted indexes.

At best, this defines a rank correlation.
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Figure 3.16: Percentage of difference for several statistics ((a) mean, (b) variance, (c) skewness,
(d) kurtosis, (e) first quartile, (f) fourth quartile, (g) 95th percentile) of the cross section sets
corresponding to the elementary spingroups of JEFF-3.2 sorted in ascending Γ/D, at T=0K.
On the left, the comparison is between 10 000 and 20 000 iterations, on the right for between
100 000 and 200 000 iterations.106



Figure 3.17: Percentage of difference for several statistics ((a) mean, (b) variance, (c) skewness,
(d) kurtosis, (e) first quartile, (f) fourth quartile, (g) 95th percentile) of the cross section sets
corresponding to the elementary spingroups of JEFF-3.2 sorted in ascending Γ/D, at T=293.6K.
On the left, the comparison is between 10 000 and 20 000 iterations, on the right for between
100 000 and 200 000 iterations 107



the median of the set is around Γ/D = 10−2. This is important from a practical point of view,
as this supposes that more iterations could be required for elementary spingroups whose average
spacing is much greater than average total width.

This behavior is actually related to the apparent size of the ladders at the energy of calcu-
lations. As seen in the previous subsection, low Γ/D lead to only a few resonances contributing
to the cross sections at Eref . However in this case, this also means their randomness is less
susceptible to be compensated by other resonances from the ladder. In other words, when Γ/D
is huge, many resonances from the 500-pairs ladders effectively contribute to the cross sections,
so that from the basic point of view of random numbers generation, more generated numbers
are taken into account. As a consequence the Monte-Carlo technique that underpin the ladder
method is more efficient. This interpretation is supported by another fact: when temperature
increases, the percentage difference between the several numbers of iterations decreases. This
is due to the flattening effect of the Doppler-broadening, which implies that more resonances
contribute to the cross sections, and thus stabilize the Monte-Carlo fluctuations.

From a very practical point of view, a trade-off seems to emerge: huge Γ/D values means
the ladders have to be filled with many resonances, and on the other hand, small Γ/D implies
more Monte-Carlo iterations. Let us underline that a structural difference remains between the
number of resonances to consider and the number of Monte-Carlo iterations to be run. The latter
one behaves more like a numerical artifact than it relies on a strong physical meaning. Cross
section distributions obtained with a few Monte-Carlo iterations could lead to precise results
even for elementary spingroups with a low Γ/D, if the random numbers are "luckily drawn". On
the contrary, taking small ladders for huge Γ/D is more than likely to lead to false results: the
physical reason is that ignored resonances would actually have contributed to the cross sections.
Considering too small ladders in such case actually adds a systemic error to the statistical one,
whereas running too little Monte-Carlo iterations only brings up statistical uncertainty.

The case of the average cross section values is particular for several reasons. First of all,
it remains the most important statistics to obtain in the unresolved resonance range. Average
cross sections are sometimes used directly in the unresolved range in neutronics codes, and even
if probability tables are preferred, the crucial reaction rates quantities still depend on them.
Secondly, average cross sections are useful in the context of the ladder method because they also
can be computed from the resonance parameters directly.

In the present work, mean values derived from the ladder method cross sections sets have
been compared with the average values computed from the resonance parameters. These latter
ones were gotten from the Moldauer method of calculation of the widths fluctuation factor, as in
Section 2.2. Average comparisons have been carried out with the values corresponding to several
numbers of Monte-Carlo runs. The percentage differences have been summarized on Figure 3.18
for T=0K and T=293.6K. On this figure, the x-axis is the same one than previously: it is just
the indexed elementary spingroups, sorted according to their Γ/D ratio.

Very briefly, the more Monte-Carlo iterations are run, the closer the averages draw up the
Moldauer calculations. The less converged cases are obviously the low Γ/D values regardless of
the number of Monte-Carlo runs, but it has been proven they were the more fluctuating cases.
Moreover, adding Monte-Carlo runs seems to bring the average values closer to the Moldauer
calculations for any Γ/D value. It is also of interest to remark that the calculations at T=293.6K
need less iterations than at T=0K to reach the same level of convergence. It is believed the reason
is here again related to the more important number of contributing resonances in the ladder,
which reduces the fluctuations.

This brings up two important consequences: the proposed implementation of the ladder
method provides average values in agreement with the theory developed in Section 2.2. Sec-
ondly, and even if the immense majority of spingroups seems to converge, the number of itera-
tions definitely needs to be raised for elementary spingroups with low Γ/D values for practical
applications, especially at low temperatures. The proposed 100 000 iterations reference was fine
enough for the studies conducted in this chapter, which were quite computationally intensive,
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Figure 3.18: Percentage of difference between cross sections mean values from the ladder method,
and average calculations using the Moldauer method to compute widths fluctuation factors.
Elementary spingroups of JEFF-3.2 sorted in ascending Γ/D are indexed on the x-axis. On
the left, calculations are made at T=0K, on the right at T=293.6K. Each line deals with cross
section sets of different sizes: (i) 10 000, (ii) 20 000, (iii) 100 000, (iv) 200 000 iterations.
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but we believe an additional order of magnitude could be required for low (below 10−2) Γ/D
spingroups in practical applications. Let us finally note that in some cases, an additional possi-
bility exists: when the LSSF flag is set to 1 in the ENDF evaluation, the calculations only serve
to produce probability tables which are normalized on a mean value provided in the evaluation.
As a conclusion, the present study recommends the evaluators to consider this option in the
case of low Γ/D values.

Conclusion of the chapter

The work carried out in this chapter consisted to develop a resonance sampling methodol-
ogy for the ladder method, in the perspective to compute probability tables in the unresolved
resonance range. The sampling aims at building sets of resolved resonances around a reference
energy in the unresolved resonance range – referred as ladders – from the tabulated average
parameters provided in the evaluations. The most straightforward way is to sample successive
resonances, using the classical Wigner law for the resonance spacings, and χ2 distributions for
the resonance widths.

The choice of the first resonance to place must be handled carefully. Two methods, im-
plemented in the NJOY and AMPX codes respectively, have been investigated. The first one
defines two energies as the limits of the ladder, and fills the interval with resonances. The second
method starts with setting the two resonances which surround the reference energy, and then
successively adds the next lower and upper resonances, which defines a paired sampling. In both
methods, it has been shown in this chapter that the central spacing which contains the reference
energy must follow a distribution slightly different than the Wigner surmise W (x). Indeed, the
situation is a natural application of the well-known bus waiting time paradox, which states that
the law of the central spacing must rather be xW (x), in case of an infinite number of resonances.
In the second method of sampling, this asymptotic law can be obtained by construction. For the
NJOY energy-based method of sampling, a numerical simulation proved that a few resonances
were enough to ensure this result.

The next crucial question tackled in this chapter is related to the size of the ladders. Indeed,
all resonances in the sampled ladders contribute to the cross sections calculation at the reference
energy, but their influence decreases when they are distant. As a consequence, resonances have
to be sampled until their contribution to the final cross sections becomes marginal. In this thesis,
a methodology has been developed to estimate the required number of pairs of resonances to
sample around a reference energy, according to the value of the input resonance parameters. To
do so, the calculations in the unresolved resonance range for each nuclide have been divided into
cross sections sub-calculations for independent spingroups at each reference energy. These sub-
calculations make use of 16 scalar input parameters (plus the temperature), referred to in this
document as elementary spingroups. The number of required resonances in the ladder sampling is
actually easier to investigate for such elementary spingroups than for nuclides directly, especially
because the role of each resonance parameters can be highlighted. In order to obtain a base
of test cases, the unresolved resonance ranges of the entire nuclear data library JEFF-3.2 have
been converted into 41 486 elementary spingroups. Working with an entire library presents the
interest to explore most of the practical situations. The choice has been made to focus on JEFF-
3.2, which is well-used in the industry and criticality safety studies, and contains more "extreme
cases" than some other more recent libraries. The decomposition of libraries into elementary
spingroups is a major component of the work carried out in this thesis. In particular, it turned
out to be very practical to investigate several questions about the in-use methodologies in the
unresolved resonance range, starting with the size of the ladders to be sampled.

Relying on the proper definition of the elementary spingroups, a methodology to estimate a
sufficient number of pairs of resonances to sample has been established. The idea is to consider
the output distribution of cross sections sampled from large ladders composed of 500 pairs of
resonances as a reference result. Then, cross sections distributions calculated from truncations of
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these ladders were considered, and compared to the reference result. The resulting distributions
were tested against each other relying on diverse statistics, such as several moments, quantiles,
and the Kolmogorov-Smirnov distance between the empirical distributions. This operation has
been performed for all the elementary spingroups of JEFF-3.2, to identify the input sets of
average resonance parameters which require more pairs of resonance to converge toward the
reference 500-pairs result. It has been shown that the convergence is more difficult for the elastic
scattering reaction systematically, for all the considered statistics. Actually, a compensating
phenomenon between the upper and lower resonances exists for the elastic scattering, which
explains the more difficult convergence. This makes elastic scattering the reaction to consider
when choosing a number of resonances to fill the ladders. In the same way, it has been observed
in this chapter that higher temperatures calculations require wider resonance ladders, as the
Doppler-broadening effect extends the resonances influence.

Looking for a relation between the input resonance parameters and the required size of the
ladders, a clear positive correlation has been highlighted between the number of resonances to
sample and the ratio between the total average width and the average resonance spacing of each
considered elementary spingroup, Γ/D. It is believed this constitutes one of the more important
result of this chapter. An exact value of the number of resonances to sample depends on the
level of precision required for the cross section distributions. Such a criterion of convergence is
uneasy to define, and may probably be chosen differently for the diverse statistics considered
in this chapter. If a value were to be given – it is believed it is the role of this document –,
we would recommend to estimate if the ratio Γ/D exceeds 10−2. Below this threshold, it seems
that 100 pairs of resonances enable tractable calculations with a minor loss of information. In
particular, the mean cross sections thus sampled are close to 0.1% of the reference 500-pairs
result. On the other hand, if Γ/D exceeds this threshold value, the number of resonances to
consider should be increased to maintain an acceptable precision.

A close exercise was carried out for the number of Monte-Carlo iterations to be performed,
or in other words, for the number of resonance ladders to sample. There, large ladders were
considered, and cross sections distributions computed for each elementary spingroup with 10000,
20000, 100000, and 200000 Monte-Carlo iterations. The same statistics than previously were
used to compare the distributions. There again, the ratio Γ/D of each elementary spingroup
looked like a relevant quantity to consider. Unlike for the number of resonances, cases with low
Γ/D ratio required more Monte-Carlo iterations to get accurate results. This latter fact was
easily explained by a "stabilization effect" for large ladders. When many resonances contribute
to the cross sections, which corresponds to cases with high Γ/D ratio, the effect of the sampling
randomness is attenuated as more resonances intervene in the cross sections computations for
each Monte-Carlo iteration. Thus, elementary spingroups with low Γ/D values necessitate to
sample more ladders to converge statistically. In order to give an idea of the number of Monte-
Carlo iterations to perform, it seems that 100000 iterations is a relevant order of magnitude,
even if low Γ/D values (below 10−4) should be probably handled with more iterations. In
particular, the mean values derived from the ladder method appear in fairly good agreement
with the the average cross sections computed from the resonance parameters directly, using the
Hauser-Feschbach formulas presented in Chapter 2 with the Moldauer approximation for the
width fluctuation correction factor.

In a nutshell, the work carried out in this chapter fixed a methodology for the resonance
sampling in the framework of the ladder method. The use of elementary spingroups highlighted
the competition between the average total resonance width and the average spacing. Cases
with small ratios Γ/D require only a few resonances but many Monte-Carlo iterations, whereas
more resonances and less Monte-Carlo iterations are required for elementary spingroups with
high Γ/D values. Subsequently, this will be useful to tackle a more tricky issue, that is the
replacement of the Wigner law for the resonance spacing by the more general use of random
matrix theory. This theory reflects more accurately the observed physics of the nuclear energy
levels, which appear to be all correlated in the same manner than eigenvalues of random matrix
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of high dimension. Such developments are the core of the upcoming chapter, dedicated to the
use of the random matrix theory in the unresolved resonance range.
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Chapter 4

Resonances correlations and random
matrix theory

In the previous chapter, some settings of the ladder method algorithm have been investigated,
such as the required number of Monte-Carlo iterations or resonances to sample in the ladders.
These analyses rely on the assumption that the resonance spacings and widths distributions
are well-known, and follow the Wigner and Porter-Thomas distributions respectively. In this
approach, resonances are almost independent; actually, each one is only related to its immediate
neighbors only, which enables to sample them one by one.

However, considering resonances with such a level of independence is an over-simplification
of the physical reality. Energy levels of nuclei – and thus resonances – are highly correlated as
they are all related to the same – unknown – Hamiltonian. It turns out that both Wigner and
Porter-Thomas distributions can be recovered as limit cases of a more elaborated framework,
known as the random matrix theory. This powerful mathematics tool is particularly adapted to
estimate the spectral fluctuations properties of the nuclear systems dealt with in this work. In
this chapter, the objective is to take into account the existing correlations between resonances
during the ladders construction1, and to investigate the impact on the cross section calculations
in the unresolved resonance range.

4.1 Random matrix theory and its application in the unresolved
resonance range

This section aims at presenting some basics of the random matrix theory workable in nuclear
physics. After a brief digression about the origin of the Wigner law for the resonances spacing,
the introduction of an useful ensemble of matrices, the so called Gaussian Orthogonal Ensemble,
will be performed. The consequences for the resonance ladders shape will be then addressed.
Notably, the so-called spectral statistics of the ladders are impacted by the use of the random
matrix theory.

4.1.1 Origin of the Wigner law

The Wigner surmise for the resonance spacings used until now was originally obtained by
E.P. Wigner in 1957. Wigner actually derived the expression Equation (2.1) from a Poisson

1In this work, only the correlations between the resonance spacings will be dealt with. That means the Wigner
law of the spacings will no longer be used as such, but the Porter-Thomas law will be kept as a default for the
resonance widths sampling.
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distribution, and proved it to agree quite well with experimental observations. It is of interest
to provide an insight of the intuition that led to such a result.

The problem is well described in [42], and can be set as follows: nucleus energy levels {En}
belonging to a single spingroup are randomly distributed over an energy interval ∆E of the
real line, with a mean spacing D = 〈Sn〉 = 〈En+1 − En〉. We are looking for the probability
distribution of normalized resonance spacings s = S/D.

Figure 4.1

A resonance is located at an energy E. For the next resonance E′ to be distant of s from
E, this means that no level is found in I = [E,E + s], meanwhile one is present in dI =
[E + s, E + s + ds]. This situation is depicted over Figure 4.1. Thus, the problematic is about
finding the probability of these events to occur concomitantly. This can be formulated as the
next probabilistic equation:

p(s)ds = p(level in dI | no level in I).p(no level in I) (4.1)

The probability that no resonance lies in I is the complementary of the probability that a
resonance is found in I. A resonance is in I if the sampled spacing between E and E′ is lower
than s. As a consequence2,

p(no level in I) = 1−
∫ s

0
p(s′)ds′ =

∫ ∞
s

p(s′)ds′ (4.2)

Introducing the variable µ(s)ds = p(level in dI | no level in I), Equation (4.1) may be rewritten
p(s)ds = µ(s)

∫∞
s p(s′)ds′, which is an integral equation whose solution may be expressed in

terms of µ and a constant C:

p(s) = Cµ(s)e−
∫∞
s

µ(s′)ds′ (4.3)

If the energy levels are uncorrelated and randomly distributed over the interval (which means
according to a Poisson process), the probability for a level to fall between E and E + dE is
independent from E, and is simply 1

D
dE. In terms of normalized spacings, it simplifies to dE.

In that case, the function µ(s) is simply a constant, µ(s) = µ, and the expression of the spacing
between resonances can be expressed in the case of a Poisson process as p(s) = Cµe−µs. Setting
the double condition that p must be a distribution, and that the average of the spacings must
be3 1: ∫ ∞

0
p(s)ds =

∫ ∞
0

sp(s)ds = 1 (4.4)

This leads to µ = 1, C = 1/µ, and p(s) = e−s. As a conclusion, in the case of a random dis-
tribution of uncorrelated energy levels, the probability distribution of the normalized resonance
spacings p(s) is an exponential law of parameter λ = 1. This is a classical result.

2Sampled spacings cannot be negative.
3As the dimensionless variable s = S/D is considered.
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It turned out a Poisson process did not match the experimental observations of nuclear levels.
In particular, Wigner noticed that the probability to find two levels from the same spingroup
very close to each other seemed very small, a phenomenon called level repulsion, which is in huge
disagreement with the exponential distribution of spacings obtained from the Poisson process,
which gives a maximal probability at 0.

In fact, such demonstration performed for a Poisson process can be easily adapted to mimic
the level repulsion. This was achieved by Wigner in 1957. Assuming that the probability of
finding a level in dI should be proportional to s instead of being energy-independent, µ(s) = a.s
(a being a constant) so that the probability that two levels are very close tends to zero. One
obtains p(s) = Casea.s

2/2. The same conditions as before for p(s) to be a distribution, and for
the normalized average spacing to equal 1, result in a = −π/2 and C = −1, so that the final
expression of the spacing distribution is the Wigner surmise, p(s) = π

2 se
−π4 s

2 .
As a consequence, the Wigner surmise simply emerges from the supposition that the proba-

bility to find a level at s is proportional to s. This idea originally came out to simulate a level
repulsion for small s, and was assumed to hold for larger values. Almost surprisingly, this result
matched very well the experimental data.

4.1.2 Introducing the Gaussian ensembles of random matrices

After these almost empirical arguments were put forward and successful, Wigner looked for-
ward a better description of nucleus energy levels along with F. Dyson. Bohr had proposed
the compound nucleus model, motivated by the idea that the observed narrow resonances were
mainly due to strong nucleon-nucleon interactions. Such considerations inspired Wigner and
Dyson to renounce obtaining a description of the nuclear interactions at high energies where
resonances were numerous. Instead, they worked to develop a statistical theory of levels. Their
goal was no more to work out the properties of a particular system, but to investigate the prop-
erties of very complex systems in order to describe their general appearance. The mathematical
framework they introduced to support this idea is the random matrix theory.

A quantum system is described with the eigenvalues problem

Hψn = Enψn (4.5)

that has already been set in Section 1.3.2 to derive the R-Matrix theory of neutron-nucleus
interactions. In this equation, H is the Hamiltonian, a linear operator that describes the system.
ψn are eigenfunctions associated to the eigenvalues En, which are the energy levels of the system.
The simple idea of Wigner was to replace this unknown Hamiltonian with a random operator,
simply expressed by a matrix H whose entries (hij)1≤i,j≤N are random variables. Studying
the statistics of the eigenfunctions and eigenvalues of such systems corresponds to studying the
statistics of nucleus levels. In order to compensate for the fact that a matrix has a finite size
N while the operator H evolves in an infinite-dimensional space, statistical properties of the
system spectrum are studied in their asymptotic form, when N →∞.

This simple approach defines the random matrix theory, which has then be applied in many
contexts in physics, economics, biology, mathematics, etc. For instance, it found applications
in the study of quantum and classical chaos. An emblematic example is found when a particle
evolves freely in a billiard [43]. Its motion is chaotic for certain forms of the billiard (stadium
for instance) and integrable for others (rectangular). It turns out that the statistics of diverse
operators for chaotic billiards are related to random matrix theory expressions. In mathematics,
random matrices have been used in number theory. For instance, the zeroes of the Riemann
ζ function4 seem to have the same statistical distributions than the eigenvalues of a particular
subset of random matrices, the GUE [44]. Random matrices are also widely used in graph

4The interest comes from the fact a well-known conjecture links the zeroes of the Riemann function to prime
numbers.
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theory and telecommunications where adjacency matrices are very common, or in finance where
correlation matrices of portfolios often intervene [45].

In the context of quantum physics, the choice of the random matrix H to replace the nuclear
Hamiltonian is restricted by the symmetries of the system. In most cases, the Hamiltonian must
be Hermitian as all eigenvalues must be real and diagonalizable in an orthonormal basis. As a
consequence, the random matrices used to replace it must be Hermitian too. Actually, a crucial
component of the success of the random matrix theory is its universality: some key statistics,
such as the eigenvalues correlation functions for example, depend solely on these symmetry
properties5. This implies that the choice of the random variables hij is not a key-point in most
situations6. Universality for random matrices has been first pioneered for Gaussian variables,
and then propagated to many classes of matrices [46]7.

Let us focus for now on the case of square matrices with real eigenvalues, keeping in mind
they may have symmetries. Two subgroups of these matrices are quite useful [48]:

• Matrices with independent variables hij . Such matrices are called Wigner matrices. In
this case, the joint probability of the matrix entries is

ρ[H] = ρ(H11, H12, ...,HNN ) =
N∏
i=1

ρ(Hii)
∏

1≤i<j≤N
ρ(Hij)ρ(Hji) (4.6)

• Matrices with rotational invariance. This property states that for two random matrices
which are related with a change of baseH ′ = UHU−1, entries have the same joint probabil-
ity density function, ρ[H] = ρ(H11, H12, ...HNN ) = ρ[UHU−1]8. This imposes a constraint
on the entries of the matrix, which must be a function of the trace of the first N powers
of H:

ρ[H] = f(Tr(H), ...,Tr(HN )) (4.7)

These conditions were imposed by Wigner to replace the quantum mechanics Hamiltonian.
The second one is essential; all orthogonal bases must be equivalent in quantum mechanics. The
first one was introduced in order to obtain tractable calculations. It is thus more contestable,
as the underlying physics of the two-body interaction does not imply any kind of independence.
However, some arguments from information theory proved that this condition was equivalent to
a maximum entropy principle, whose application is relevant in the case of minimal information
on the Hamiltonian [30].

Gaussian matrices

If both conditions Equations (4.6)–(4.7) are fulfilled at the same time, the joint probability
distribution of the entries takes the form ρ[H] = C exp(−aTr(H2) + bTr(H) + cN) [49], and the
only matrices which fulfill such conditions are the so-called Gaussian matrices, whose entries are
Gaussian independent variables. Taking into account the symmetry properties of the Hamilto-
nian so that eigenvalues are real, three ensembles of the Gaussian matrices were introduced by
Wigner and Dyson, indexed by the so-called Dyson index β = 1, 2, 4.9:

5A simple example of "universality" in statistics is the Central Limit Theorem, which ensures that for a random
sequence of n independent identically distributed variables (X1, ..., Xn) that follow a distribution T with expected
value µ and finite variance σ2, the rescaled variable (Xn−µ)

σ/
√

(n)
converges in distribution to N (0, 1). Universality

holds as this result is true whatever the distribution T is.
6Even if like in the case of the Central Limit Theorem, some characteristics of the random variables such as

mean or variance must be taken into account as rescaling parameters.
7Reference [47] provides a progressive approach to the conditions under which universality holds for the so-

called random Wigner matrices for instance.
8In fact, the rotational invariance property even requires that ρ[H]dH11dH12...dHNN =

ρ[UHU−1]dH ′11dH
′
12...dH

′
NN , but the Lebesgue’s measure is invariant by conjugation with U .

9This index corresponds to the number of real parameters needed to define a matrix entry: 1 (real), 2 (complex),
4 (quaternions).
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• The Gaussian Orthogonal Ensemble (GOE), β = 1:
This ensemble is composed of real and symmetric matrices, which are thus diagonalizable
with orthogonal matrices, hence the name. This ensemble corresponds to systems invariant
under time reversal10

In the following, the most widely applied choice in literature for the matrix entries is
taken11:

- Diagonal elements hii are independent Gaussian variables with mean 0 and variance 1.
- Off-diagonal elements hij are independent Gaussian variables with mean 0 and variance
1/2.

These conditions are met if one generates a matrix M composed of N2 Gaussian variables
with mean 0 and variance 1, and symmetrize it from H = (M +MT )/2.

• The Gaussian Unitary Ensemble (GUE), β = 2:
This ensemble is composed of complex and Hermitian matrices, which are thus diagonal-
izable with unitary matrices. This ensemble corresponds to systems which do not present
time reversal independence.

• The Gaussian Symplectic Ensemble (GSE), β = 4:
This ensemble is composed of quaternion matrices, which are 2N × 2N matrices built
from two complex matrices X and Y of size N , such that H = (M + MT )/2 with M =(
X Y
−Y ∗ X∗

)
. These matrices are used to represent systems which are time-invariant but

not invariant under rotations, and have a half-odd integer total angular momentum.

Eigenvalues

The eigenvalues of these matrices are of main interest since they correspond to the nucleus
energy levels. Just like the matrices entries, the eigenvalues are random variables. For the
Gaussian ensembles the joint probability distribution of the eigenvalues is known theoretically,
and for N ×N matrices (β = 1, 2, 4) it takes the form:

ρ(x1, ..., xn) = 1
ZN,β

e−
1
2
∑N

i=1 x
2
i

∏
1≤j<k≤N

|xj − xk|β (4.8)

There, ZN,β = (2π)N/2
∏N
j=1

Γ(1 + jβ/2)
Γ(1 + β/2) is a normalization constant. This joint probability

distribution cannot be factorized and all eigenvalues remain strongly correlated. In this expres-
sion there is a competition between the factor e−

1
2
∑

x2
i which tends to attract the eigenvalues

around the origin, and a repulsive term
∏
|xj − xk|β which forces the eigenvalues not to be too

close from each other. Let us underline that the repulsion intensity depends on the choice of
the Gaussian ensemble (β = 1, 2, 4). The linear repulsion used in Section 4.1.1 to retrieve the
Wigner surmise can be found considering the GOE ensemble (β = 1)12.

In fact, the Wigner surmise can be deduced from Equation (4.8) in the case of a GOE matrix
of size 2. Indeed, the distribution of the resonance spacings in that case can be obtained (modulo
the average spacing normalization condition) from:

10The time-reversal operator T is an anti-unitary operator: T = UK where U is unitary and K is complex
conjugation. Without loss of generality one can set U = Id, and if the system has time-reversal symmetry,
KHψ = HKψ, so that H∗ψ∗ = Hψ∗, which means that time-reversal symmetry implies the Hamiltonian is real
symmetric.

11Universality here applies, as the choice of the entries could be different, but lead to same results.
12Assuming a quadratic repulsion µ(s) = a.s2 would have yield a spacing distribution related to the GUE. More

precisely, it would have yield the distribution followed by the spacing between the eigenvalues of a 2 × 2 GUE
matrix: p(s) = 32

π2 s
2e−

4
π
s2
.
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p(s) =
∫ ∞
−∞

∫ ∞
−∞

dx1dx2ρ(x1, x2)δ(s− |x1− x2|) (4.9)

Thus, the Wigner surmise used until now for the spacing between resonances corresponds to
the case of a 2× 2 GOE matrix. This underlines its weakness, as it is clear from Equation (4.8)
that actually all eigenvalues are correlated and have a strong influence on each other.

In practical applications the joint probability distribution of eigenvalues is less useful than the
marginal distribution ρ(x) =

∫ ∫
...
∫
dx2...dxNρ(x2, ..., xN ), called the spectral density, which is

the probability density function of each eigenvalue13. For finite N , this function is quite complex.
Its expression for the Gaussian ensembles has been established theoretically though [50] [48], and
makes use of Hermite polynomials. It is is presented later in this document in Equation (4.28),
where it will be used to unfold the eigenvalues.

On the other hand, the expression of the level density in the asymptotic limit N →∞ is very
simple and quite famous. The spectral density for rescaled eigenvalues xi ← xi/

√
βN , converges

toward the so-called Wigner semi-circle law14 ρSC :

ρSC(x) =
{ 1
π

√
2− x2 if |x| ≤

√
2

0 otherwise
(4.10)

This expression is the asymptotic expression of the probability density for the eigenvalues of
Gaussian matrices when N →∞. In this expression, the eigenvalues have been rescaled so that
they span the interval [−

√
2,
√

2] and their density looks like a semi-circle. Without considering
this rescaling, the radius of the semi-circle grows as

√
N . Let us also mention that the expression

Equation (4.10) is valid when the off-diagonal entries of the random Gaussian matrices have been
sampled with a variance σ2 = 1/2. A more general expression for the Wigner semi-circle law in
case the off-diagonal elements variance is a free parameter σ2 can be established too [51]. It can
be proven that the semi-circle radius aN,σ,β is:

aN,σ,β = 2σ
√
βN (4.11)

and the corresponding semi-circle law is in the most general case:

ρβ,σ,NSC (x) = 2
πa2

N,σ,β

√
a2
N,σ,β − x2 (4.12)

Note that in this equation, the rescaling of eigenvalues over [−
√

2,
√

2] has not been performed,
contrary to Equation (4.10). Instead, the radius of the semi-circle extends as

√
N , and so does

the expression of the semi-circle law15. In the following, the off-diagonal elements variance is
always set to σ2 = 1/2 so that aN,β =

√
2βN , and the rescaling of eigenvalues is not performed.

In a nutshell, the probability density of the random matrices eigenvalues is known theo-
retically for the Gaussian ensembles, but its complex expression is often approximated by its
asymptotic limit, the so-called Wigner semi-circle law. In order to give a better overview of the
situation, Figure 4.2 displays some histograms of the eigenvalues of random matrices from the
GOE and GUE at finite N , along with the exact level density expression16, and the asymptotic
Wigner semi-circle law. When N increases, the exact density gets closer to the asymptotic den-
sity. It is explicit from these figures that the semi-circle radius only marks a "loose border" at
finite N , as it is always possible to obtain some eigenvalues out of the limits of the semi-circle.
This issue will be of importance in the following when dealing with the so-called unfolding of
eigenvalues.

13This can be proved from the fact that ρ(x1, ..., xN ) does not change when xi → xj , cf [48].
14This law defines in fact an ellipse. It must not be mistaken with the Wigner law for the resonance spacing.

Here, the semi-circle is the probability distribution of the random matrix eigenvalues, that are the resonance
energies (levels).

15Choosing σ2 = 1/2 and rescaling eigenvalues retrieve the expression Equation (4.10).
16For the GOE, the exact density is presented in Equation (4.28).
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Figure 4.2: Spectral density for the GOE (β = 1) ensemble on top and GUE (β = 2) ensemble
on bottom. Histograms of eigenvalues of matrices of size N = 8 (left) and N = 100 (right)
are presented, along with the exact spectral density ρ (pink) and Wigner’s semi-circle law ρβ,NSC
(black), for the corresponding N values. When N →∞, the exact density converges toward the
Wigner semi-circle law. In both cases, eigenvalues are found out of the semi-circle, which grows
in
√
βN .

Eigenvectors

Eigenvalues of the Gaussian random matrices spectrum have been presented, but eigenvectors
play an important role too. In the R-Matrix theory, they are related to the reduced reaction
widths, as presented in Section 1.3.2. Relating random matrices eigenvectors to resonance widths
in the R-Matrix theory has not been carried out in this work though. Let us only mention that
theoretically, the eigenvectors of Gaussian matrices are asymptotically Gaussian [50], which
justifies the use of χ2 (Porter-Thomas) distributions for the resonance widths.

As a final remark, using the Gaussian ensembles as a reference framework may seem quite
arbitrary at first sight. However, the study of quantum systems whose classical counterpart is
chaotic proved that their spectral fluctuations matched with the ones from the Gaussian ensem-
bles. This is the so-called Bohigas-Giannoni-Schmit conjecture formulated in 1984 [52], which
describes the statistical property of chaotic spectra, and established a strong link between the
random matrix theory and chaos. This conjecture has been largely accepted since then. In the
broadest sense, it implies that Gaussian ensembles statistics would apply to all quantum systems
whose classical analog is chaotic, making spectral fluctuations of such systems a signature of
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chaos. Note that only spectral fluctuations are concerned by such properties of universality17.
In particular, random matrix theory cannot capture the average properties of the system. Thus,
the correspondence between the nuclear spectral statistics and the Gaussian ensembles would
be a further evidence of the universal features of chaotic microscopic quantum systems. Once
more, it is the universality of the fluctuations properties of the random matrices spectra which
makes the Gaussian Ensembles so valuable compared to other matrix ensembles. They present
the same spectral distributions, and they enable tractable calculations.

It turns out that among the Gaussian ensembles, the GOE, which corresponds to systems
invariant under time reversal, agreed best with the theory of nuclear reactions. It is the one
which will be used in the rest of this thesis. This was supported with experimental evidences
over the aforementioned spectral statistics of the nuclear energy levels, which will be described
more in detail in the next subsection.

4.1.3 Spectral statistics of interest

In this part, some important statistics used to characterize the energy shape of the ladders
are addressed. Resonances ladders obtained with eigenvalues of GOE random matrices will be
compared with ladders obtained with the one by one resonance sampling already used. The
detail of the implementation of the random matrix theory in the ladder method is presented
later in Section 4.2.1, even if a very important point should be underlined now: before comparing
these spectra18, random matrices eigenvalues must be unfolded. Unfolding may be understood as
removing the average part of the spectrum, in order to compare the actual fluctuations properties
independently from the eigenvalues density. More pragmatically, this operation is carried out
by normalizing the spectra over the cumulative number of levels. Several methods of unfolding
will be selected in Section 4.2.1, where their impact is studied over the same set of statistics
that are about to be presented. Let us for now just keep in mind that unfolded eigenvalues are
used in next presentation.

Finally, let us underline once more that all statistics presented here only concern the reso-
nance energies. No work about the resonance widths based on the random matrix theory has
been carried out in this thesis.

Next nearest spacing distribution (NNDS)

One of the most important statistics to describe resonance ladders is the resonance spacings
distribution. In the context of random matrices, this distribution is called the next nearest
spacing distribution, and corresponds to the distribution of the spacings between sorted eigen-
values. This is the main tool used until now to build resonance ladders. In the case of 2 × 2
matrices from the GOE, this spacing corresponds exactly to the Wigner surmise. In the case
of many correlated resonances from the GOE, an expression has been obtained by Gaudin in
the asymptotic case N → ∞ [53]. Surprisingly, it looks very close to the Wigner surmise (up
to 2%), which may explain the fairly good agreement between experimental results and the
early attempts from Wigner. This expression involves a fast-converging infinite product, whose
tabulated expression is provided in the reference.

In order to estimate the speed of convergence towards this distribution, numerical simula-
tions have been conducted with several values of N . For each case (N = 8, 100), ladders of
corresponding sizes have been sampled using the Wigner-like approach and the GOE method19.
For both of them normalized spacings have been stored. The operation has been repeated over

17Spectral fluctuations must be understood as the dynamic of the eigenvalues (and eigenvectors). For eigenval-
ues, this implies their statistical distributions and related properties, such as spacings correlations.

18"Spectrum" designates the set of resonance energies, as they are the eigenvalues of the system Hamiltonian.
19In the Wigner one by one resonance sampling, the pair-sampling approach is used. As a consequence, the

number of sampled pairs is N/2.
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many ladders to obtain acceptable statistics. Figure 4.3 displays the obtained patterns, super-
posed to both Wigner surmise and Gaudin’s asymptotic law, using the tabulated expression
provided in [53] for the resonance spacings. The difference between both laws has also been
represented.

Figure 4.3: On top, next-nearest spacing distribution for resonances obtained from matrices of
the GOE of size N = 8 (left), and N = 100 (right). Both Wigner distribution pW and the
asymptotic distribution derived by Gaudin pG are also displayed. On the bottom, the difference
compared to the Wigner distribution is shown.

From the figure, it appears clear that the Wigner surmise is a good approximation of the
Gaudin asymptotic law. The maximal difference between both curves is obtained just after the
mode, where the Wigner law slightly dominates the asymptotic expression, and remains below
2%. After that the trend reverses, and the asymptotic expression dominates the Wigner law
in the tail. The asymptotic result seems to be reached quickly for GOE-like resonances, as a
matrix of size N = 100 suffices to retrieve the asymptotic trend.

Spacing autocorrelation

When relying on random matrices, the most emblematic change in the shape of the ladder
is achieved when one calculates the resonance spacings autocorrelation. Calling the λth spacing
Dλ, this statistics is defined as:

R1 = Cov(Dλ, Dλ+1)
Var(D) = 1

N − 1

N−2∑
λ=1

(Dλ+1 −D)(Dλ −D)
Var(D) (4.13)

R1 captures the correlation between consecutive level spacings20. In the previous chapter,
all spacings were sampled independently from each other, and thus were not correlated: R1 = 0.

20Equivalently, Rk could be defined as the correlation between each spacing of the set and the kth next one.
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In the case of eigenvalues from the GOE this is not true anymore. The spacing autocorrelation
value is known theoretically, and equals -0.27 [50]. As foreseen, the several spacings are not
independent anymore. This has a huge consequence: a negative autocorrelation value indicates
that a large spacing will be more likely followed by a small one, and vice-versa. As a result,
resonance ladders issued from random matrices are expected to be more stable than ladders
obtained from previous one by one sampling method. In particular, such series of resonances
will be more susceptible to bracket the true spacing mean, which is good news in practice.

As previously, some numerical simulations have been performed. Figure 4.4 presents his-
tograms of calculated autocorrelation based on Equation (4.13) over many ladders (of size N = 8
and N = 100), from Wigner or GOE samplings. Such histograms display a quasi-normal distri-
bution. The mean in both case has been represented by a dotted line, and both values 0 and
-0.27 with a dashed gray line.

Figure 4.4: Histograms of the spacing autocorrelation for n = 10000 Wigner-like and GOE-like
resonance ladders of size N = 8 (left) and N = 100 (right). The counts in the histograms are
normalized to approach a probability density.

Negative autocorrelations directly arise even for small sizes of the random matrices, which
underlines the interconnection between all the eigenvalues. However, the bigger the matrix the
better the estimation of the autocorrelation, and the closer it brackets the -0.27 value for GOE-
like ladders, and 0 for Wigner-like ladders. In particular, the variance in the autocorrelation
estimation is very reduced in the case N = 100 compared to N = 8. This is justified, as the
autocorrelation actually depends on all the ladder’s spacings. Moreover, the spacings mean D
and variance Var(D) in Equation (4.13) have been replaced with their estimators on the set; the
longer the set, the more these estimators are precise.

∆3 statistics

The measure of the spacing autocorrelation proves that the GOE-based and Wigner-based
methods do not create ladders of same shape. This is even more obvious considering some
long-range statistics, as the ∆3-statistics. Such quantity has been first introduced by F. Dyson
and M. Mehta in [54] as a least-square statistics. In a nutshell, the cumulative number of levels
over an energy interval N(E) can be plotted as a staircase function (exactly like a kind of non-
normalized empirical distribution function). It is possible to fit such a staircase with a straight
line, and to compute a least square statistics to estimate the deviation from the straight line, as
shown in Figure 4.5. This is the purpose of the ∆3, whose expression is:

∆3(L) = min
a,b

1
L

∫
∆L

[N(E)− (aE + b)]2 dE (4.14)
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In this relation, the least square calculation is performed over an energy interval ∆L of length
L; a and b are the slope and interception of the best linear fit over this interval.

Figure 4.5: Cumulative number of levels for ladders with N = 80 resonances and an average
level spacings D = 1 eV. On the left, a ladder built from one by one resonance sampling. On
the right, a ladder built from a matrix from the GOE. The cumulative number of resonances in
that case sticks to the straight line.

As seen in Figure 4.5, the cumulative number of levels in the case of GOE-sampled ladders
is well-fitted with a straight line, at least much better than the Wigner-sampled ladders. In the
case of GOE, the spectrum is very regular, even rigid. This is in agreement with the negative
autocorrelation of GOE-like ladders, stating that small spacings are more likely to be followed
with a big one and so on. The ∆3 statistics provides a measure of an integral correlation result
over the whole ladder, and consists of a long-range measurement of the correlation between
resonance energies.

Unlike the autocorrelation, this statistics is a functional quantity whose value can be calcu-
lated for each energy interval of length L. It is also possible to get advantage of the bijection
between N(E) and E to reinterpret this statistics as an integration over a number of resonances
instead than over a strict energy window. In that case, least square calculations are actually
performed over a certain number of resonances L considered in the spectrum. Basically, this has
no impact on the statistics’s behavior, but simplifies the calculations.

The ∆3 statistics is highly ergodic. For a given L, the average statistics performed over
many ladders is the same than the average over all the sequences of size L of a single – infinitely
long – set21: ∆3(L) =

〈
∆i

3(L)
〉
i, where the least square calculation is performed between Ei

and Ei+L. This interesting feature can be used in practice to obtain a better accuracy of the
calculation of the ∆3(L) statistics, which can be computed for each non-overlapping sequences
of size L of a ladder, before averaging them.

Finally, next considerations which are well presented in [55] and [56], are taken into account
to avoid an actual numerical fit. Between levels Ej and Ej+1, N (E) = j, so that for arbitrary
a and b:

21This is of course valid because the average spacing does not change.
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∆i
3(L) = 1

L

∫ Ei+L

Ei

[N(E)− (aE + b)]2 dE

= 1
L

i+L−1∑
j=i

∫ Ej+1

Ej

[j − (aE + b)]2 dE (4.15)

= 1
L

[
C + V a2 +Wa+Xab+ Y b+ Zb2

]
C, V , W , X, Y , Z are constants given as:

C =
i+L−1∑
j=i

j2(Ej+1 − Ej)

V = 1
3(E3

i+L − E3
i )

W = −
i+L−1∑
j=i

j(E2
j+1 − E2

j ) (4.16)

X = (E2
i+L − E2

i )

Y = −2
i+L−1∑
j=i

j(Ej+1 − Ej)

Z = Ei+L − Ei

This provides a simple algebraic expression of the least square between the cumulative num-

ber of levels and a linear fit. The coefficients a and b must minimize ∆i
3(L), thus ∂∆i

3(L)
∂a

= 0

and ∂∆i
3(L)
∂b

= 0. Next expression for a and b follows:

a = XY − 2WZ

4V Z −X2 b = WX − 2V Y
4V Z −X2 (4.17)

Substituting all these variables in Equation (4.15) provides an efficient way to compute the
long-range ∆3 statistics.

In the case of GOE random matrices, the ∆3 statistics is known theoretically [50], and can
be computed using the next expression, where γ ≈ 0, 5772 is the Euler constant:

∆3(L) = 1
π2

[
ln(2πL) + γ − π2

8 −
5
4

]
= 1
π2 [ln(L)− 0.0687] (4.18)

This expression can be compared to the one obtained if the successive spacings are Poissonian:
∆3(L) = L/15, or even to the case of evenly-spaced resonances (picket fence): ∆3(L) = 0.
The GOE case lies between both, but its logarithmic form makes it differ from the Wigner-like
case where the statistics quickly adopt a linear trend, as displayed on the simulations results
in Figure 4.6. Once again, it appears clear that GOE ladders are much more rigid than the
Wigner-like ones.

The random matrix theory takes into account the correlations between all resonances of a
ladder, interpreting resonance energies as correlated eigenvalues of N × N random matrices.
This has a deeper physical meaning than considering successive eigenvalues of 2 × 2 matrices
as achieved in the ladder method implemented in previous chapter. Ladders obtained from the
GOE ensemble of random matrix theory are somehow different than in the previous chapter;
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Figure 4.6: ∆3(L) statistics computed for 10 000 ladders of size N = 100, obtained from GOE
ensembles or using Wigner spacings. The computations of the ∆3(L) statistics has been made
for all non-overlapping possible sequences of L resonances in the ladders.

the difference can be appreciated from the use of various statistics performed over the reso-
nance energies. In the next section, the impact of the correlation of resonance spacings will be
investigated in the context of the ladder method22.

4.2 Correlated resonance spacings in the ladder method

4.2.1 Implementation in GAIA-2

In GAIA-2, a methodology to sample resonance ladders based on the random matrix theory
has been implemented. The used method aims at producing ladders with correlated resonance
energies. Such resonance energies correspond to the energy levels of the compound nucleus, that
are supposed to be the eigenvalues of the Hamiltonian, now replaced by GOE random matrices
of sufficient size.

The spectral statistics of such matrices have been presented in previous chapter. The behav-
ior of the statistics of interest seemed to be significantly different from the Wigner sampling for
N = 100 resonances and above. Consequently, ladders of greater or equal sizes are considered.
A straightforward implementation of the random matrix theory in the framework of the ladder
method could consist in sampling matrices whose size equals the number of resonances required
to fill the ladders. To be consistent with all the work carried out until now, cross sections
are again only computed at the reference energy of interest, and each ladder yields a single
cross section value. As a consequence, the method still requires to perform a huge number of
Monte-Carlo iterations23.

Generating a GOE-compliant ladder composed of N resonances from the same spingroup is
22Both terminologies "correlated spacings" and "correlated energies" denominate ladders whose resonance ener-

gies were yielded from the GOE.
23As a reminder, a single Monte-Carlo iteration equates to a resonance ladder sampling.
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simply achieved following the next steps. First, a GOE-like random matrix of size N is sampled,
and diagonalized. Note that the probability of obtaining degenerated eigenvalues is null, so that
all eigenvalues are clearly distinct. There, eigenvalues need to be unfolded. Several unfolding
methods are possible and are described a little further. Once unfolded, these eigenvalues are
sorted24 and their spacings are kept; they form a set of N − 1 correlated resonance spacings.
They only need to be rescaled over the average spacing D found in the ENDF evaluation, and
dispatched around the reference energy of calculation Eref . This latter step calls for a little
attention. A mistake would be to set as many resonances on both sides of the reference energy.
However, this would bring back the waiting time paradox of Section 3.1.3, leading to erroneous
results. The best way of proceeding is to mimic the energy-based sampling of Section 3.1.1
instead. The left edge of the ladder is chosen as E1 = Eref −

(
N

2 + ξ

)
D, with ξ a random

shift. Then, the rescaled spacings are used successively to obtain the resonance energies. If
enough resonances are sampled, it has been proven in Section 3.1.3 that this method seemed to
provide a correct central resonance spacing after a dozen resonances only. In the context of the
GOE-like sampling, if matrices of size N = 100 at least are sampled, this is not a problem.

Two key-points of the method remain. First of all the method is very time-consuming. Each
iteration requires to solve a large matrix eigenproblem. Secondly, an efficient unfolding method
has to be adopted.

Tridiagonal matrices substitution

In order to speed up the sampling of GOE-like random matrices, a method presented in [57]
has been implemented. This method is based on a substitution of the square symmetric GOE
matrices with well-chosen tridiagonal matrices.

In the journey toward the computation of a symmetric matrix’s eigenvalues, an usual method
consists in performing successive Householder transformations in order to tridiagonalize the
matrix. Such an operation results in a matrix whose only diagonal and immediate upper an
lower diagonals are non-empty, from which eigenvalues are much easier to compute. The so-
called Householder transformation is defined as a reflection about a hyperplane of the Rn space.
Defining a vector v orthogonal to the hyperplane the reflection is simply the linear application
fv so that for u ∈ Rn,

fv(u) = u− 2 〈u, v〉
‖v‖2

v (4.19)

where 〈., .〉 defines the Cartesian scalar product. Its associated matrix – the Housholder matrix

– is simply defined as Hv = In −
2vvT

‖v‖2
. The main idea is to perform successive Householder

reflections to tridiagonalize a GOE symmetric matrix. If this N × N matrix A is chosen as
defined in Section 4.1.2, it can be written as

A =


aN x2 . . . xN
x2
... B
xN

 (4.20)

where aN follows a standard Gaussian, x = [x2, . . . , xN ]T is a vector of N − 1 independent
variables that follow N (0, 1/2), and B is a (N − 1) × (N − 1) GOE matrix, independent from
aN and x. It is of interest to introduce the Householder matrix H of size N − 1 associated to
the vector v = x− ‖x‖2 e2, where e2 is the base vector corresponding to the coordinate x2, and

24This is simply equivalent to reindexing the base vectors.
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‖.‖2 is the Euclidean norm25. As a consequence, applying H over x makes all its coordinates
but one disappear: Hx = [‖x‖2 , 0, . . . , 0]T = ‖x‖2 e2, so that:

[
1 0
0 H

]
A

[
1 0
0 H

]T
=


aN ‖x‖2 0 . . . 0
‖x‖2

0
... HBHT

0

 (4.21)

The procedure can be repeated for the (N − 1) × (N − 1) GOE-like matrix HBHT . This
implements an iterative procedure to tridiagonalize the matrix. The main consideration here is
the fact that H is orthogonal, so that all performed transformations do not change the matrix
spectrum. Here, the diagonal elements remain unchanged, and still follow a normal law with
mean 0 and variance 1. On the other hand, the upper and lower diagonal elements distribution
change. Here, ‖x‖2 is the square root of the sum of the square of N−1 independent normal laws
with variance 1/2. As a consequence, the distribution it follows is 1√

2χN−1, where χN−1 is a χ
distribution with N − 1 degrees of freedom. Finally, the tridiagonal matrix whose eigenvalues
statistics is equivalent to the GOE is:

T =


N (0, 1) χN−1/

√
2

χN−1/
√

2 N (0, 1) χN−2/
√

2
χN−2/

√
2 N (0, 1)

. . . . . . χ1/
√

2
χ1/
√

2 N (0, 1)

 (4.22)

In the previous expression, all diagonal elements must be obtained from independent Gaus-
sian laws with mean 0 and variance 1, whereas the upper and lower diagonal elements are
obtained from rescaled independent χ laws with i degrees of freedom26.

The advantages of using the matrix T in place of symmetric matrices from the GOE is
mainly numerical27. From a computer memory management point of view first, this replacement
provides a net gain. Instead of filling the entire N ×N symmetric matrices, only 2N − 1 entries
are required which correspond to the diagonal and the upper diagonal. The spatial complexity
in this case is reduced to O(N), rather than O(N2). This is very useful when large matrices
(N = 104, 105) are to be sampled using a double precision. From a time-complexity point
of view, the advantages are even more worth the trouble. The classical algorithms used to
obtain the eigenvalues in the case of tridiagonal symmetric matrices require a computing time
proportional28 to N2 while the ones for symmetric real matrices are usually proportional to N3.
Considering large matrices, this makes the computations feasible. As an example, the several
processing times for a single spingroup have been displayed in Table 4.129.

25For y = [y1, . . . , yn]T ∈ Rn, ‖y‖ =
√∑n

i=1 y
2
i .

26The upper and lower diagonal elements must be the same, as the resulting matrix remains symmetric.
27This method also has been used to define a wide class of matrices from the β ensembles in [58]. This

theoretically enlarges the definition of the Gaussian ensembles, providing intermediate matrices between the cases
β = 1, 2, 4.

28In fact, an algorithm with a O(N logN) complexity has even been designed to compute eigenvalues of tridi-
agonal symmetric matrices [59]. Its implementation, based on a complex divide-and-conquer algorithm, has never
been implemented in the classical linear algebra’s packages – such as LAPACK – though, mainly because its field
of applicability is quite narrow. Indeed, starting from a given matrix, the Householder transformation required
to obtain the tridiagonal symmetric form is a O(N3) procedure. In the present case however, starting directly
from the tridiagonal symmetric form is relevant because the considered matrices are random.

29The times indicated correspond to the sampling of both resonance spacings and widths. The spingroup used in
the table had three resonance widths, with a single degree of freedom for the neutron and fission width. Note that
the time required to sample the resonance widths become negligible compared to the time required for correlated
spacings.
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N Wigner-like sampling GOE-like sampling
(symmetric)

GOE-like sampling
(tridiagonal)

10 0.007 s. 0.020 s. 0.016 s.

100 0.05 s. 1.05 s. 0.44 s.

200 0.10 s. 5.45 s. 1.54 s.

500 0.25 s. 64.2 s. 8.44 s.

1000 0.98 s. 462.3 s. 31.75 s.

Table 4.1: Required time to sample 1000 ladders of different sizes, with or without correlated
spacings (from symmetric or tridiagonal matrices).

As a comparison, the time required to compute a single cross section value using the SLBW
formalism at Eref is of the same order as the time required for the Wigner-like sampling30. As
such, it appears clear that the time required by the sampling of correlated spacings becomes the
key factor for the method’s speed, and that it is definitely reduced by the tridiagonal matrix
substitution.

Eigenvalues of those tridiagonal matrices are exactly the same as GOE-like matrices. The
sampling of the entries is just performed a step ahead in the process of the matrix diagonaliza-
tion. Accordingly, the distributions and correlations of the eigenvalues are the same as that for
the GOE ensemble. However, the same cannot be said for eigenvectors in this method. In the
diagonalization process, eigenvectors are computed from the Hermitian matrices in an iterative
process. Here, the idea is to start with tridiagonal matrices directly, making use of the statis-
tical distribution of the entries obtained from the successive Householder transformations. The
statistics of the original eigenvectors is not conserved when the tridiagonal form is considered in
lieu of the GOE matrices. In other words, eigenvectors corresponding to the tridiagonal matrices
do not have a physical meaning, and cannot be used to work with resonance widths. In this
thesis, only the influence of eigenvalues has been considered, which means only the resonance
spacings have been correlated. Keeping this in mind, the presented tridiagonal substitution is
the fastest route to sample GOE-like resonances energies.

Unfolding the eigenvalues

Once N eigenvalues have been computed from a GOE-like N ×N matrix or from its tridiag-
onal counterpart, they can be sorted which is just equivalent to reindexing the base vectors. The
spacings between sorted eigenvalues follow the statistical properties described in Section 4.1.3,
such as the Gaudin distribution, negative autocorrelation, and ∆3 rigidity, which makes the lad-
ders structure more physical than traditional resonance ladders. As mentioned previously, a very
important step must be performed once eigenvalues have been computed and before retrieving
the spacings, that is known as the eigenvalues unfolding.

The distribution followed by the eigenvalues has been tackled in Section 4.1.2; the level
density approaches the Wigner semi-circle law when N → ∞. The cases N = 8 and N = 100
have been displayed on Figure 4.2. It must be realized that the level density is not uniform. As
a consequence the spacings between eigenvalues depend on the part of the spectrum considered.
Working with spacings directly is thus impossible, because the average "macroscopic" energy
density dependency mixes with the local fluctuations. As such, one has to remove the average

30From a time complexity point of view, it is a O(N) computation, as each added resonance only contributes
once in the formula. Note that this time would be much greater using the MLBW formalism for instance, as each
resonance would also contribute in an extra cross-term, making it a O(N2) calculation.
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level density first in order to keep the fluctuations only. This is the aim of the unfolding, which
consists in rescaling the eigenvalues so that the mean level density is unity over the spectrum.

In practice, this is simply carried out using the spectral cumulative density function I(E).
Given a spectrum, this quantity can be separated into two components, an average Iav(E) and
a local fluctuating part Ifl(E). In order to remove from the given set of eigenvalues {λi}1≤i≤N
the average part, it is enough to simply apply the next rescaling:

εi = Iav(λi) (4.23)
and define the spacings from the dimensionless {εi}1≤i≤N .

In most of the situations encountered in literature, two cases prevail. First of all is the
situation in which the local fluctuations of a set of levels are investigated, without any assumption
about the underlying level density. This happens when real-life spectra are looked for, like in [43].
In this case, the average part of the levels cumulative has to be estimated from the spectrum
itself to perform the unfolding. Two methods are mainly used, whose efficiency in the framework
of the random matrix theory has been tested in [51] and [60]:

• Polynomial unfolding: in that case, the empirical cumulative of levels is simply fitted with
a polynomial of degree three or five.

• Gaussian unfolding: in that case, the mean level density ρG is defined using a Gaussian
convolution:

ρG(E) = 1
σ
√

2π

N∑
i=1

exp
[
−(E − λi)2

2σ2

]
(4.24)

There, the free parameter σ is to be chosen in order to choose a window over the spectrum
large enough to capture enough information over the spectrum, and small enough to keep
the local fluctuations. The average cumulative density is simply defined as the primitive
of this function: Iav(E) =

∫ E
−∞ ρG(E′)dE′.

The second situation occurs when the underlying distribution from which a spectrum has
been yielded is known. In this case, the spectral density ρ(E) is known. There, Iav is simply
the cumulative distribution corresponding to the level density:

∫ E
−∞ ρ(E′)dE′. In the ladder

method, the random matrix theory is used to generate resonance energies. The level density is
thus well-known and so is the cumulative distribution. Several details must be precised though.
Usually, the Wigner semi-circle law 4.12 is used as the level density. In the most general case
of a free choice of the GOE matrices off-diagonal elements variance like in Equation (4.12), the
corresponding cumulative levels distribution ISCav usually found in literature is [51]:

ISCav (E) =


1
2 + E

πa2
N

√
a2
N − E2 + 1

π arctan
(

E√
a2
N−E2

)
if |E| ≤ a

0 if E ≤ −aN
1 if E ≥ aN

(4.25)

where aN is the Wigner semi-circle radius, previously defined in Equation (4.11). This expression
is obtained by directly integrating Equation (4.12). An elegant rescaling may provide another
expression, which makes the unfolded eigenvalues close to the Wigner semi-circle law. Such an
expression of the cumulative level density ĨSCav is only used for drawing purposes, and does not
improve the unfolding. The transformation only consists in a translation and a homothety, and
is simply:

ĨSCav (E) = π
√
N
[
ISCav (E)− 0.5

]
=
√
N

[
E

a2
N

√
a2
N − E2 + arcsin

(
E

aN

)]
(4.26)

This transformation is for instance used in CALENDF, and is very useful to compare the
different unfolding methods on the same scale. Note that finally, the mathematical relation
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arctan( y√
1−y2

) = arcsin(y) has bee used to simplify the previous equation even more. This
formula is easily tractable and is an easy-to-go unfolding expression.

A main issue appears at finite N though, when eigenvalues are sampled out of the semi-
circle boundaries. For instance, if two eigenvalues λ1 and λ2 are smaller than the lower bound
of the radius (which may happen when N < ∞), their unfolded counterparts ε1 and ε2 both
equal 0. As a consequence, the spacing between these resonances is null, which has no physical
meaning. This is due to the use of the Wigner semi-circle law, which only matches the exact
density asymptotically, when N → ∞. Thus, the only way to stick on Equation (4.26) for
the unfolding is to discard the eigenvalues that fall outside the semi-circle bounds. However,
doing so, the number of resonances in the sampled ladders after the unfolding step is smaller
than N . In order to correct this issue, an empirical method based on experience can be used,
in which random matrices of the GOE to be sampled are chosen bigger than N . For instance,
choosing matrices of sizeM 5% bigger than N might be enough to obtain more than N unfolded
eigenvalues. Once this is done, the extra unfolded eigenvalues can be discarded on the edges.
This method provides N unfolded eigenvalues from the GOE, and is referred in the following as
the asymptotic unfolding. Let us underline that the use of the cumulative of the Wigner semi-
circle to unfold the levels is the typical method employed in the literature for which random
matrices are used [51] [61].

The exact tabulated unfolding method

At small N however, the asymptotic unfolding is more than likely to produce some bias.
In this work we introduce another method, which has turned out to be quite efficient for the
intermediate matrix sizes considered in the ladder method (N ≈ 102 − 103), which are not so
much used in the framework of the random matrix studies31. The idea is simply to use the
exact GOE level density at finite N instead of the Wigner semi-circle law, whose expression can
for instance be found in [48] or [50]. Difficulties arise from the non-algebraic form of the level
density, which implies numerical computations of an integral over Hermite polynomials. These
polynomials are defined as32

Hk(x) = (−1)kex2 dk

dxk
e−x

2 (4.27)

The exact form of the level density for the GOE ensemble at finite N is:

ρ(x) = 1
2N

N/2−1∑
k=0

e−
x2
2 [R2k(x)Φ2k+1(x)−R2k+1(x)Φ2k(x)] (4.28)

where the next intermediate functions have been defined:

Φk(x) =
∫ ∞
−∞

e−
y2
2 Rk(y)sign(x− y)dy (4.29)

R2k(x) =
√

2
π1/42k(2k)!!

H2k(x)

R2k+1(x) =
√

2
π1/42k+2(2k − 1)!!

[4kH2k−1(x)−H2k+1(x)]
(4.30)

This expression corresponds to the pink curve in Figure 4.2. It cannot be algebraically
integrated in a single point, unlike the Wigner semi-circle density of Equation (4.12) used in

31The field of study of random matrices usually focuses on the behavior of random matrices of very large size,
before focusing on the bulk or on the edges of the spectrum.

32The definition of the Hermite polynomials in use corresponds to the classical "physicists" Hermite polynomials,
in opposition to the "probabilist’s" form.
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the asymptotic method. However, a numerical integration over an energy interval is possible,
defining a thin grid around the energy of calculations. In the present situation, the size of the
matrix N is chosen by the user and is defined all along the algorithm, as it corresponds to the
size of the resonance ladders to be sampled. It makes sense to actually tabulate several level
densities for manyN values prior to their use in the ladder method. This has been performed and
incorporated into the GAIA-2 program. For values of N ranking from 8 to 100033, energy meshes
have been generated between the values −1.2aN and 1.2aN (because the level densities extends
slightly further than the semi-circle radius), using a step of 0.01. The exact level densities and
their corresponding cumulatives Iexav have been computed over this grid. The N GOE-yielded
eigenvalues can be unfolded using a linear interpolation of Iexav . This method is referred in the
following as the exact tabulated unfolding. The only difference with the asymptotic method
is the use of the cumulative of the exact level density for the GOE eigenvalues in lieu of the
corresponding Wigner semi-circle law at N .

In order to estimate the impact of the several unfolding methods presented until now, a small
simulation has been run for matrices of sizes N = 8, N = 100, and N = 500. Obtained spectra
have been unfolded with the asymptotic method, the exact tabulated one, and a polynomial
fitting in order to compare the result of a method which does not assume the form of the levels
distribution. For all cases, the shift from Equation (4.26) has been performed to improve read-
ability34. Results are presented on Figure 4.7, which displays folded and unfolded histogrammed
eigenvalues, along with the theoretical semi-circle law Equation (4.12) and the exact level den-
sity Equation (4.28), for the corresponding size of the ladders N . The number of runs used to
obtain such histogrammed eigenvalues has been adapted to provide sets of same sizes according
to the matrices sizes; this number has been set to 500 000 eigenvalues, distributed into 30 bins.

An efficient unfolding is supposed to average the level density to make the consideration of
the local fluctuations possible. As a result, the mean level density is supposed to be constant
all along the spectrum. On Figure 4.7, histogrammed eigenvalues should approach an uniform
distribution. This is quite the case for the "exact tabulated" method, for all sizes of random
matrices. The polynomial unfolding on the other hand completely fails at low N , especially
when N = 8 on Figure 4.7. This is logical, as it becomes very hard to obtain a meaningful fit of
the empirical levels cumulative when N is small. When N increases, the polynomial unfolding
works better.

Finally, some words may be said about the use of the Wigner semi-circle law for the un-
folding, in the asymptotic method. It turns out that the density of the corresponding unfolded
eigenvalues decreases at the edges. This phenomenon is less marked when N increases, which
makes sense as the real underlying level density Equation (4.28) approaches the Wigner semi-
circle when N increases. In the implemented asymptotic method, one should recall that the
eigenvalues are actually sampled from matrices 5% larger than the required N . Then, extra
eigenvalues are dropped at the edges. As the middle of the spectrum looks to be pretty well
unfolded, it looks practicable to sample even bigger matrices before dropping the edge eigenval-
ues. However, the proper size is difficult to estimate, and necessarily depends on N . It seems
than even for large matrices of size 1000, choosing matrices 5% larger does not ensure a perfect
unfolding. At low N , this phenomenon is even worse; for instance for N = 8, not only the edges
are less dense than the middle of the spectrum, but their vicinity is higher than the middle.
This complex behavior is due to the poor approximation of the real density (pink curve) by the
Wigner semi-circle (black curve). For N = 100, the situation looks better except for the edges.
In any case, the exact tabulated unfolding provides a more regular level density.

As a consequence, the exact tabulated looks a more efficient method for the unfolding. From
a numerical point of view, the computing time is very comparable to the asymptotic unfolding,
due to the use of the tabulated expression of the density. This method is thus the default used

33Which corresponds to ladders of 500 pairs of resonances.
34Despite Equation (4.26) has been presented for the cumulative of the semi-circle law ISCav , the shift and

homothety are still applicable for ISCex
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Figure 4.7: Effect of several unfolding methods for GOE histogrammed eigenvalues for matrices
of several sizes N = 8 (top left), 100 (top right), 500 (bottom left) and 1000 (bottom right).
Folded eigenvalues of the GOE have been represented too, along with the exact level density at
finite N and the corresponding asymptotic Wigner semi-circle.

in GAIA-2. All statistics presented in Section 4.1.3 have been obtained with this unfolding
method.

4.2.2 Impact of the correlated spacings on the cross sections statistics

A simple question arises: what is the impact of correlating resonance spacings in the context
of the ladder method ? In order to answer this question, several points have been dealt with.
First of all, the same analyses as those in previous chapter about the required number of pairs
have been performed. Ladders of 1000 resonances have been generated with correlated spacings
for all 41486 elementary spingroups of JEFF-3.2, and truncated to compute cross sections values
for various ladder sizes. As a reminder, each elementary spingroup is defined as the set of scalar
parameters corresponding to the data related to a single isotope in the unresolved resonance
range, for a single pair of quantum numbers (l, J), at a single reference energy. These sets of
input parameters correspond to the actual sub-calculations made in the unresolved resonance
range during the processing of the whole library. Such sets have been widely used in the previous
chapter, to tune the implementation of the ladder method.

In a second time, statistics and statistical two-sample tests have been computed to compare
cross sections sets derived from ladders with correlated or uncorrelated spacings. These tests
constitute the most straightforward way to explore a potential impact of the change in the
Monte-Carlo sampling over the results. The interpretation of the outcomes of such tests must
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be tempered though, as it will be detailed later.
One of the main issue of correlating the resonance spacings is numerical. The time required by

the sampling is way more important for the GOE-like sampling, even when relying on tridiagonal
matrices, as pointed out in Table 4.1. Finally, had all cross sections for all elementary spingroups
of JEFF-3.2 be kept for the sake of comparisons, this would be an issue from the storage point of
view. As a consequence, only 20 000 Monte-Carlo iterations were run with correlated spacings,
for all elementary spingroups of JEFF-3.2, and two temperatures (T=0K and T= 293.6K).
Considering all cross section values for various numbers of resonances, two temperatures, three
reactions and all elementary spingroups already require a storage capacity up to 5To.

Convergence graphs equivalent to Figures 3.6–3.8 have been drawn in Figures 4.8–4.10. These
graphs display the convergence of the various statistics already used in previous chapter as a
function of the number of "pairs" of resonances considered in the sets. Note that contrary to
the classical Wigner sampling, resonances are not drawn as pairs in the correlated spacings
approach, in order to avoid the inspection paradox. In that case, the choice is made to select
the closest resonances around the reference energy, except for the case of 500 pairs, where all
resonances are selected.

The results look a lot like the Wigner case. The dynamic for all statistics is more or less the
same, and the same nuclides are found to be the ones with the more resonances needed. The more
wobbly aspect of the curves is mainly due to the smaller number of iterations performed. As
such, we believe that all considerations made in previous chapter about the number of required
resonances to fill the ladder still hold.

The scalar statistics used in previous chapter have been computed for the GOE-like full
1000-resonances ladders, and compared to the Wigner-like ladders. Because of the relatively
small amount of Monte-Carlo iterations, differences due to the method implementation are hard
to separate from the random sampling fluctuations. Such statistics are still displayed in the
Appendix C.

In order to investigate more in detail the possible differences, two integral statistics have
been computed between the sets directly. The first is the two-sample Kolmogorov-Smirnov
statistics (KS), which has already been presented. The second is the so-called two-sample
Anderson-Darling statistics (AD), which is also based on the distance between both empirical
distributions of the sets. The main difference lies in the choice of the distance in question. The
Kolmogorov-Smirnov distance between the empirical distributions is chosen to be the infinite
norm. In the case of the Anderson-Darling statistics, a quadratic distance is introduced. In
the case of two samples of same size n with associated empirical distributions Fn and Gn, the
two-sample Anderson-Darling statistics is defined as

A2
n = n

2

∫ ∞
−∞

[Fn(x)−Gn(x)]2

Hn(x)[1−Hn(x)]dHn(x) (4.31)

where Hn = Fn(x) +Gn(x)
2 . Compared to the two-sample Kolmogorov-Smirnov statistics, the

Anderson-Darling captures the change in the tails more accurately, and offers an interesting
alternative to estimate the change brought by the correlating of spacings in the ladder method.

The computed distances for all spingroups between the cross sections sets of 20 000 elements
are displayed in Figure 4.11 for the Kolmogorov-Smirnov statistics, and in Figure 4.12 for the
Anderson-Darling. They are displayed for each reaction and elementary spingroup of JEFF-3.2,
for cross sections computed at T=0K or T=293.6K, and for ladders composed of 100 or 500
pairs of resonances.

Let us describe these figures more in detail. First of all, the results between the ladders
with only 100 pairs of resonances, and the ones with 500 pairs are surprisingly similar. This
underlines the importance of the closest resonances in general. Beyond this observation, both
Kolmogorov-Smirnov and Anderson-Darling statistics seem to behave accordingly. At high Γ/D
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Figure 4.8: Convergence of various statistics of the sampled elastic cross sections toward the
reference (1000 resonances) according to various number of central resonances considered. Cal-
culations are performed with correlated spacings at T=0K. (a) mean, (b) variance, (c) skewness,
(d) kurtosis, (e) first quartile, (f) fourth quartile, (g) 95th percentile, (h) Kolmogorov-Smirnov
distance
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Figure 4.9: Convergence of various statistics of the sampled capture cross sections toward the
reference (1000 resonances) according to various number of central resonances considered. Cal-
culations are performed with correlated spacings at T=0K. (a) mean, (b) variance, (c) skewness,
(d) kurtosis, (e) first quartile, (f) fourth quartile, (g) 95th percentile, (h) Kolmogorov-Smirnov
distance
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Figure 4.10: Convergence of various statistics of the sampled fission cross sections toward the
reference (1000 resonances) according to various number of central resonances considered. Cal-
culations are performed with correlated spacings at T=0K. (a) mean, (b) variance, (c) skewness,
(d) kurtosis, (e) first quartile, (f) fourth quartile, (g) 95th percentile, (h) Kolmogorov-Smirnov
distance
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Figure 4.11: Two-sample Kolmogorov-Smirnov statistics between cross sections sets for all ele-
mentary spingroups of JEFF-3.2 (sorted in increasing Γ/D) obtained with correlated or uncor-
related spacings. On the left, the sets derived from ladders with 100 pairs of resonances have
been considered. On the right, 500 pairs. On top are the results for T=0K. On bottom, results
for T=293.6K. Both critical values for significance levels α = 0.05 and α = 0.001 have been
plotted.

values, the statistics seem to increase, in particular for fission and capture. This means that the
differences in the global shape of the empirical distributions – as measured by both distances –
is greater in this region of the input phase space. As a reminder, this region requires resonances
in the ladders to obtain correct results. This has a physical meaning. The more resonances
contribute to the cross sections in a ladder, the more the spacing correlations introduced by the
random matrix theory may have an impact.

The question of the magnitude of this impact is more difficult to tackle. A first attempt
can be made casting the AD- and KS-statistics into corresponding well-defined hypothesis tests.
Indeed, the Kolmogorov-Smirnov and Anderson-Darling statistics serve as a base distance for
classic adequation tests. In both cases, the null hypothesis claims that "both sets are drawn
from the same underlying distribution". If the statistics values exceed a critical value with
significance levels α, the null hypothesis is rejected. The significance levels correspond to the
threshold probability to reject the null hypothesis while it is true, only because of the sampling
randomness. Critical values for both tests can be computed from theoretical formulas35, and
have been plotted as horizontal lines on Figures 4.11–4.12 for significance levels α = 0.1% and
α = 5%. If the KS or AD statistics exceed the critical values, the null hypothesis is rejected,

35Critical values for the two-sample Anderson-Darling statistics have been explored by A. Pettitt in [62] for
instance.
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Figure 4.12: Two-sample Anderson-Darling statistics between cross sections sets for all elemen-
tary spingroups of JEFF-3.2 (sorted in increasing Γ/D) obtained with correlated or uncorrelated
spacings. On the left, the sets derived from ladders with 100 pairs of resonances have been con-
sidered. On the right, 500 pairs. On top are the results for T=0K. On bottom, results for
T=293.6K. Both critical values for significance levels α = 0.05 and α = 0.001 have been plotted.

which means that cross sections distributions are found to differ significantly. As output cross
section distributions are obtained with two versions of the ladder method, with or without
correlated spacings, rejecting the null hypothesis would mean that correlating the spacings has a
significant impact. Often, p-values are calculated as an alternative to using statistics and critical
values, with the exact same results. P-values are thus directly compared to the significance levels
α to accept or reject the null hypothesis.

A blunt affirmation would be to claim that all cases whose critical values are exceeded by the
statistics is a manifestation of a "significant" difference. This cannot be said however, as there are
many chances of "false positive": cases in which the critical value is exceeded due to sampling’s
randomness only. Moreover, the choice of the significance levels is arbitrary and depends on the
expectations of the user. There, a smarter approach may take advantage of the fact that many
tests are performed, comparing the percentage of tests whose KS- or AD-statistics exceed the
critical values to the significance levels. These percentages are summarized in Table 4.2 for each
reaction and temperature.

For now, this crude approach does treat all the input test cases on an equal footing. The
idea is to compare the percentage of significant outcomes for both tests to the α level. For
instance, in the case of elastic cross sections at T=0K, the distributions between correlated and
uncorrelated spacings cases are found to be significant at the α = 5% level in 8% of the 41486
input cases. If the null hypothesis were true, this statistics would be expected to lie around 5%.
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T=0K Kolmogorov-Smirnov Anderson-Darling

α = 0.05
elastic 8.05% 12.47 %

capture 47.42 % 85.56 %

fission 53.95% 83.80 %

α = 0.001
elastic 0.27% 0.67%

capture 2.56% 12.42%

fission 5.50% 17.71%

T=293.6K Kolmogorov-Smirnov Anderson-Darling

α = 0.05
elastic 14.04% 20.37%

capture 40.56% 70.06%

fission 57.87% 76.61%

α = 0.001
elastic 1.34% 3.37%

capture 8.74% 16.37%

fission 22.33% 36.94%

Table 4.2: Percentage of input cases of JEFF-3.2 whose statistics exceeds the critical value, or
equivalently, for which the calculated p-value is smaller than the chosen significance level α.

The same goes with the α = 0.1% level. The results at T=293.6K are even more marked; the
same goes for fission and capture. In that latter case, the percentage of cases for which the null
hypothesis can be rejected is much higher than the α level.

As a consequence, the most conservative choice in most cases (without considering the detail
of the input parameters) would be to reject the null hypothesis that correlated and uncorrelated
spacings produce the same distributions. This affirmation however needs to be tempered, as it
does not constitute a strong result.

Actually in this kind of analysis, the more iterations are run, the stronger the tests get.
This means that they are able to detect even tiny variations between the distributions, which
convert to small p-values. Here, each set contains 20 000 iterations, which is actually a lot. As
a consequence, both Anderson-Darling and Kolmogorov-Smirnov tests are powerful to detect
variations between the distributions obtained with correlated and uncorrelated spacings. How-
ever, such hypothesis testing does not quantitatively determine the level of discrepancy between
the distributions, but only a level of confidence to reject the null hypothesis. Here, it is almost
a starting point to claim that obtained distributions with or without correlated spacings are
not the same, as they are issued from different ladder methods. This is thus only confirmed by
the tests outcome, but without any additional information about the impact of the difference
in distributions. In support of this statement, the most discriminant case found for fission at
T=0K can be investigated. For both Kolmogorov-Smirnov and Anderson-Darling tests, it is the
spingroup of 242Am with quantum numbers l = 2 and J = 3.5 at Eref = 25 keV which pro-
vides the smallest p-value, around 10−7. This case also provides the 11th smaller p-value found
among all elementary spingroups for the capture. Such low p-values indicate that it is extremely
unlikely that the compared sets have been obtained from the same distribution. However, the
maximum difference – in the sense of the Kolmogorov-Smirnov distance between the empirical
distributions – is at max of 3% only, as may be noticed on Figure 4.11. To be more precise the
probability density functions of capture and fission are displayed in Figure 4.13. On this figure,

139



the distributions seem to slightly differ, but not so much. Moreover, their global shape remains
the same. All that supports the idea that the performed tests are mainly strong enough36 to
detect small differences between the distributions, considering the high number of Monte-Carlo
iterations performed.

Figure 4.13: Empirical cumulative distributions (left) and probability densities (right) for cap-
ture (top) and fission (bottom) cross sections sets of 242Am (T=0K, Eref = 25 keV, l = 2,
J = 3.5), obtained from the ladder method in its classical or GOE-like implementation. The
figures have been zoomed to exhibit the most disagreeing part of the cumulative for both dis-
tributions.

In fact, the most remarkable fact of Table 4.2 is no longer the rejection of the null hypothesis,
as it turns out it is the case even for small deviations between the sets, but the difference between
the reactions. In particular, the elastic scattering reaction appears to be less impacted than the
capture and the fission by the correlating of resonance spacings. This is clearly visible on
Figures 4.11–4.12 and Table 4.2, but can be even put forward with a histogram of the p-values
for the Kolmogorov-Smirnov test for example. In such a histogram, presented in Figure 4.14, the
distribution of p-values for the elastic reaction almost draws an uniform distribution on [0, 1].
Such a distribution would be obtained if the null hypothesis were true, ie. if the underlying
cross sections distributions yielded by both methods were the same. It is not exactly the case,
as the extreme left bin seems slightly higher, but it is clear that the impact of correlating the
spacings on the elastic cross section is very weak – at least weaker than for fission and capture.

To conclude, the comparison between cross sections sets obtained from GOE-like ladders
and ladders with uncorrelated spacings has been carried out using some statistics such as the
Kolmogorov-Smirnov and the Anderson-Darling distances. A classic hypothesis testing based
on these two statistics is feasible, although the result is of poor relevance. Indeed, such tests
provides a binary answer about a potential significant difference between the distributions, which
is very likely to be always positive for large samples. On the other hand, information based on

36And so, maybe even too strong.
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Figure 4.14: Histogram of the p-values of the Kolmogorov-Smirnov tests performed between cross
sections obtained from ladders with or without correlated spacings at T=0K, for all elementary
spingroups of JEFF-3.2.

these statistics seemed to hold still: the higher the ratio Γ/D of the input parameters is, the more
the output distributions differs. The same applies for temperature. Accordingly, this seemed
to be explained as the ladders are composed of more contributing resonances in these cases, in
agreement with Chapter 3. Moreover, the elastic cross sections seem to be way less impacted
than the two other reactions. In all cases, the output cross section distributions obtained from
the two different implementations of the ladder method have been found to be quite similar in
their shape. Before closing the topic of the correlated spacings, it is of much interest to focus a
little more on the mean cross sections, which is the most important statistics in applications.

4.3 Average calculations

4.3.1 Some additions on the Hauser-Feschbach approach

Before anything else, let us recall some details discussed in the second chapter in which a
theory of average cross sections calculations has been presented. There, the Moldauer method
to compute the width fluctuation correction factor in the Hauser-Feschbach problem 2.37 was
addressed. The main hypotheses of this approach consider that the resonance widths follow a
χ2 law with certain degrees of freedom, and that resonance spacings do not fluctuate too much.
It has been also mentioned that the average over the product of elements UabU∗cd was pretty
difficult to carry out, but was needed for an exact expression of the average cross sections.

In 1985 however, Verbaarschot, Weidenmüller and Zirnbauer [63] were able to derive the exact
expression of the average product calculations within the framework of the Gaussian Orthogonal
Ensemble. The demonstration is very technical and is not displayed here. The authors were
able to perform an ensemble average over the resonance parameters distributions induced by
the GOE.

After the very complex analytical calculations detailed in [63], an expression of the width
fluctuation correction which exactly takes into account the GOE fluctuations was established as
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a function of the transmission ratios Tc as a triple integral:

Wcc′ =
∑
d Td
8

∫ ∞
0

dλ1

∫ ∞
0

dλ2

∫ 1

0
dλ

λ(1− λ)|λ1 − λ2|√
λ1(1 + λ1)

√
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×
∏
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√
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)
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)2
(4.32)

+ (1 + δcc′)
(

λ1(1 + λ1)
(1 + Tcλ1)(1 + Tc′λ1) + λ2(1 + λ2)

(1 + Tcλ1)(1 + Tc′λ2) + 2λ(1− λ)
(1− Tcλ)(1− Tc′λ)

)]
to be used together with the Hauser-Feschbach Equation 2.37. The details of the implementation
of such integrals have been explained in papers by Verbaarschot [64] and Hartney [65], and well
summarized in [38]. In order to remove the singularities in the integral expression, the change
of variable p = 2λ+ λ1 + λ2 is performed. Then, both cases p > 2 and p < 2 are distinguished,
and the integral is splitted in two parts: I = I02 + I2∞

37.

For p < 2, changes of variable s =
√

λ1 + λ2
2λ+ λ1 + λ2

and t =
√

λ1
λ1 + λ

are achieved. For p > 2,

the simpler s =
√
λ+ λ1 and t =

√
λ1

λ1 + λ
suffice. For both integrals, one has:
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λ2
1 + Tcλ2

2λ
1− Tcλ

)2
(4.34)

+ (1 + δcc′)
(

λ1(1 + λ1)
(1 + Tcλ1)(1 + Tc′λ1) + λ2(1 + λ2)

(1 + Tcλ1)(1 + Tc′λ2) + 2λ(1− λ)
(1− Tcλ)(1− Tc′λ)

)]

The function f is defined as f(s) = Θ(s − 1)
√

1− s−2, where Θ is the Heaviside function.
The limits for the p-variable integration in the second integral can be set to ]0, 1[ using a classic
change of variables. For instance, it suffices to introduce the variable change p = 2 + y

1−y to
ensure such a change.

Like in Section 2.2, radiative capture is a special case, as there are many open channels.
As a consequence the product over all the channels in the previous equations can be simplified.
Defining Tγ =

∑
d∈γ Td,∏

d∈γ

1− Td√
(1 + Tdλ1)(1 + Tdλ2)

≈ exp
[
−Tγ

(
λ+ λ1

2 + λ2
2

)]
(4.35)

and intgerals I02 and I2∞ become

37I is defined so that Wcc′ =
∑

d
Td

8 I.
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I02 =
∫ 2

0
dp

∫ √2/2

0
ds

∫ 1

0
dt

TcTγ(1− ps2 + ps2t2)(1− 2s2)(1− t2)
p(1− s2)2

√
(1 + s2t2 − 2s2)(1 + ps2t2)(1 + p+ ps2t2 − 2ps2)

×
∏
d/∈γ

( 1− Tdλ√
1 + Tdλ1

√
1 + Tdλ2

)
× exp

[
−Tγ

(
λ+ λ1

2 + λ2
2

)]
(4.36)

×
(
λ1(1 + λ1)
(1 + Tcλ1) + λ2(1 + λ2)

(1 + Tcλ1) + 2λ(1− λ)
(1− Tcλ)

)
and

I2∞ =
∫ ∞

2
dp

∫ √p/2
0

ds

∫ 1

f(s)
dt

TcTγ
[
1− s2(1− t2)

]
(p− 2s2)(1− t2)

(p− s2)2
√

(1 + s2t2 − 2s2)(1 + ps2t2)(1 + p+ ps2t2 − 2ps2)

×
∏
d/∈γ

( 1− Tdλ√
1 + Tdλ1

√
1 + Tdλ2

)
× exp

[
−Tγ

(
λ+ λ1

2 + λ2
2

)]
(4.37)

×
(
λ1(1 + λ1)
(1 + Tcλ1) + λ2(1 + λ2)

(1 + Tcλ1) + 2λ(1− λ)
(1− Tcλ)

)
All triple integrals can be evaluated numerically with an adaptive Gaussian-Legendre quadra-

ture without any difficulty. To be more precise, the used numerical integration starts by perform-
ing a Gauss-Legendre quadrature on 16 points over the integration interval, and a Gauss-Kronrod
quadrature over 33 points. The difference between these two calculations gives an estimation of
the numerical error. If an objective error threshold is provided, a dichotomous algorithm can
be implemented to reach the required level: the integration interval is divided in two, and the
quadratures are applied to both intervals. Until the numerical error is acceptable, the process
is repeated on the most erroneous interval. Such a procedure is developed in [66]. The required
numerical precision for each of the integral is 10−5.

An important question remains about the possibility to use these expressions with the average
resonance parameters provided in the format of the ENDF evaluations. The ENDF format is
compliant with the GOE computations of the width fluctuation correction factor (WFCF) in
the Hauser-Feschbach problem if the next two hypotheses are made:

• Transmission ratios are related to the average reaction widths using the same narrow

resonance approximation than in the Moldauer method: Tc = 2πΓc
D

;

• If the degree of freedom νc associated to a reaction width is greater than 1, the reaction
is assumed to happen through νc distinct channels, each one with a new reaction width
Γc/νc (the reaction width is equally splitted). Average cross sections are then computed
adding the contributions of all σcc′ for all combinations of entrance and exit channels c
and c′ which contribute to the reaction.

Using these hypotheses, the average Hauser-Feschbach cross sections using the GOE calcu-
lations of the WFCF may now be computed over the whole set of 41486 input parameters that
correspond to the decomposed library JEFF-3.2 as in Section 3.2.1. For each calculation, the
transmission ratio conservation (Equation (2.42)) has been used as a tool to verify the quality
of the performed numerical calculations.

The percentage difference between average Hauser-Feschbach calculations with Moldauer or
GOE WFCF are displayed on Figure 4.15. In this figure, the x-axis is an index along which
elementary spingroups have been ranged. As previously, they have been sorted in ascending
values of the Γ/D ratio, which proved to be a relevant quantity. From this figure, the differences
between the two methods of average calculation indeed depend on the average input resonance
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Figure 4.15: Comparison between average Hauser-Feschbach cross sections computed over all
elementary spingroups of JEFF-3.2, with Moldauer or GOE width fluctuations correction factor.

parameters. The higher the ratio Γ/D is, the more the disagreement between the calculations
seems to arise. The percentage difference is as high as more than 30% for a few spingroups
in this region of the input phase space, even if the vast majority of cases closely match. The
comparisons with numerical studies will enable to give more details about these differences.

4.3.2 Comparison with numerical studies

In the previous chapter, the average cross sections calculated from the average resonance
parameters with Moldauer method was compared to the mean cross sections from the usual
ladder method with uncorrelated resonances. The results seemed to match closely for all ele-
mentary spingroups of JEFF-3.2 if enough Monte-Carlo runs were performed. In particular, the
convergence seemed slower at low temperature and low Γ/D, due to a fewer number of contribut-
ing resonances. In this chapter, the random matrix theory has been used to produce ladders
with correlated resonance energies, whose statistics agrees with the GOE. It is thus of interest
to compare the mean cross sections values obtained from the ladder method with correlated
spacings to the average calculations from resonance parameters, especially with the GOE-like
computations of the width fluctuations factor (method of Verbaarschot and al.). Figure 4.16
displays the results. The relative difference between the mean cross sections from the ladder
method with correlated spacings has been compared with the Hauser-Feschbach average cross
sections using Moldauer or GOE WFCF, for all elementary spingroups of JEFF-3.2 sorted in
ascending Γ/D. In order to reduce the impact of massive percentage difference yielded by very
low cross sections values, relative differences for cross sections smaller than 10−5 barn were not
calculated, and not presented.

Figure 4.16 can be explained having in mind the work carried out until now. The huge fluc-
tuations obtained on the left part of the figure can be attributed to the Monte-Carlo variations.
As seen, spingroups with low Γ/D ratios require less resonances to converge and are more sub-
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Figure 4.16: Percentage difference for all elementary spingroups of JEFF-3.2 between the mean
cross sections obtained from the ladder method with correlated spacings at T=0K (top) and
T=293.6K (bottom), with the Hauser-Feschbach average values using Moldauer (left) or GOE
(right) formulas for the WFCF.

ject to Monte-Carlo fluctuations. This affirmation is also supported by the symmetric shape of
the variations around 0, and the fact the same pattern is observed for both GOE and Moldauer
comparisons, while the average calculations closely match for these elementary spingroups on
Figure 4.15. The case of elementary spingroups with a large Γ/D is more interesting. Less
Monte-Carlo iterations are required for these ones and differences between the outcomes of the
Hauser-Feschbach methods are much more pronounced. There, it seems that the ladder method
with correlated spacings provides mean cross sections that agree best with the Moldauer method
of calculation. This result is not so unexpected when one reminds the hypotheses performed
in the Moldauer calculation of the Hauser-Feschbach problem, namely that resonance widths
followed χ2 law, and that resonance spacings did not fluctuate much. There, the absence of
impact of the spacings correlation on the cross sections mean values looks like an argument to
be pushed in favor of Moldauer’s latter assumptions.

The global disagreement between average Haueser-Feschbach with GOE WFCF still calls for
two open-problems that we judge worth being mentioned here.

First of all, the implemented ladder method only takes into account correlations between
resonance spacings, and not between resonances widths. In the usual ladder method, resonance
widths were sampled from χ2 distributions with a certain degree of freedom. In the global
framework of random matrix theory, both eigenvalues and eigenvectors are correlated, so that
one should generate the whole matrix ensemble to obtain a proper representation of the GOE-
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like fluctuations in the ladder method38. However, the relation between eigenvectors of GOE
matrices and resonance widths in the R-Matrix is not an easy task, and has not been achieved
yet to our knowledge. Currently, the definition of the resonance widths from reduced resonance
widths follows the experimental definition Γλ(E) = Pl(E)

√
EΓ0

λ which is still a hurdle to the
integration of the random matrix theory into the R-Matrix theory. Last but not least, the
presented substitution of GOE matrices with tridiagonal ones does not allow to keep suitable
eigenvectors from the GOE. As a consequence, solving the complete eigenproblem would become
much more time-consuming than what has been performed in this work.

Secondly, trying to conciliate the GOE WFCF calculations with the ENDF formalism, a

strong hypothesis has been made with the narrow resonance approximation Tc = 2Γc
D

to relate
transmission ratios to average resonance parameters. It seems that the disagreement between
the average Hauser-Feschbach cross sections is maximal when the average resonance widths
become large compared to the average spacing. As a consequence, it is possible that the huge
obtained differences are a consequence of the lack of physical meaning of this hypothesis. In that
case, performing the more precise average Hauser-Feschbach with GOE WFCF calculations at
the processing step would require providing accurate transmission ratios instead than average
parameters, or at least the relation between them.

Conclusion of the chapter

In this chapter, the randommatrix theory has been used to sample more physically acceptable
resonances in the framework of the ladder method. The core idea of this theory is due to
E. Wigner, who introduced in the late 50s the idea to replace the unknown Hamiltonian of
the system with a matrix with random entries, and observe the statistical distribution of the
eigenvalues when the matrix becomes infinitely large. These eigenvalues correspond to the
energy levels of the system, which are the resonance energies. The most impressive fact, and
the key-point of the success of the random matrix theory, is the invariance of the eigenvalues
fluctuations as long as some matrix symmetries are respected. The fluctuations correspond
here to the statistical property of the eigenvalues, such as the resonance spacings distribution
and autocorrelation, without taking into account average properties like the average spacing.
Confronting theoretical considerations with measurements performed in the resolved resonance
range, matrices from so-called Gaussian Orthogonal Ensemble (GOE) had been identified in the
80s as the relevant objects to mimic the Hamiltonian of nuclear system in the compound nucleus
model.

In this work, a method to sample eigenvalues from the GOE has been implemented, in order
to produce resonance energies during the sampling of the ladder method. There, all resonance
energies are obtained at once as eigenvalues of GOEmatrices, so that they are actually correlated.
This sampling replaces the Wigner surmise for the resonance spacings used in previous chapter,
which corresponds to the case of a GOE matrix of size 2× 2 only. As a consequence, the use of
N×N GOE random matrices better reflects the correlations between the resonances energies, so
that generated ladders are more physical. As a matter of fact, the resulting resonance energies
spectra proved to be slightly different from the ones obtained with uncorrelated spacings. The
next-nearest spacing law has been found to be different from the Wigner surmise up to 2%. More
emblematic, the resonance spacing autocorrelation for resonances from the GOE is negative,
which is typical of quite rigid resonance ladders. Such correlations can be precisely measured
in terms of the long-range ∆3 statistics, which measures the deviation from the straight line
of the cumulative number of levels. In this work, some simulations have been performed to
estimate a minimal size of the random matrices so that the eigenvalues fluctuations approach
the asymptotic behavior. On the basis of the three aforementioned statistics, it has been shown
that matrices of size 100 already yield very correct outcomes.

38As a reminder, eigenvectors elements of GOE-like matrices are asymptotically Gaussian.
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In practice, the proposed implementation of the GOE-based resonance sampling in GAIA-2
makes use of two important elements. First of all, the real GOE matrices have been replaced
by tridiagonal symmetric matrices with the same eigenvalues, following a result of the litera-
ture. These tridiagonal matrices correspond to the typical matrices obtained after successive
Householder reflections of the GOE matrices. This replacement speeds up the calculations sig-
nificantly, and makes possible the use of the random matrix theory in the Monte-Carlo sampling
of the ladder method. The second important point concerns the eigenvalues unfolding, a manda-
tory step to be performed once eigenvalues have been computed to retrieve their fluctuations.
The idea is to normalize the eigenvalues using the cumulative of the underlying level density, in
order to correct for the unequal distribution of eigenvalues. In this chapter, several methods of
eigenvalues unfolding have been studied to be carried on random matrices of intermediate size
(between 102 and 103). In particular, a new method has been proposed, which simply relies on
a tabulated version of the cumulative of the exact form of the level density of the GOE eigen-
values. This method is an alternative to the common use of the cumulative of the well-known
Wigner semi-circle law, which is only an asymptotic result. This new method has been proved
to be slightly more precise, and evacuates the need to discard eigenvalues on the edges of the
spectrum.

Cross section distributions derived from the ladder method with correlated or uncorrelated
spacings have been compared, for all the elementary spingroups of JEFF-3.2. First, the same
analysis than in Chapter 3 has been carried out to estimate the influence of the input parameters
of the elementary spingroups on the required number of resonances to fill the ladders. It turned
out the cases which required the more resonances were the same ones than in previous chapter,
with no major impact of the spacings correlation. In a second time, the differences between
the sampled cross section distributions have been measured with the Kolmogorov-Smirnov and
Anderson-Darling statistics. The influence of the correlation has been shown to be quite weak.
In order to fix ideas, the most differing case was found for a spingroup of 242Am for the fission
reaction, which exhibited a maximal difference of 3% for the Kolmogorov-Smirnov statistics. Two
important facts have been highlighted however. First, the influence of the spacings correlation
increases with the ratio Γ/D. In other words, if many resonances contribute to the cross sections,
the spacings correlations is more likely to play a role. Secondly, it seems the elastic cross sections
is only slightly affected by the correlation, and at least much less than the capture and fission
reaction.

Finally, in this chapter, the Hauser-Feschbach average cross sections have been recalculated,
using another method of calculation of the widths fluctuations correction factor (WFCF) than
the classical Moldauer method presented in Chapter 2. This implementation followed a reference
which derived the average cross sections directly from the hypothesis of GOE-like fluctuations
of the Hamiltonian. The resulting expression of the WFCF is a complex triple integral involv-
ing transmission ratios in lieu of the usual resonance parameters. Two hypotheses have been
made to make this expression compliant with the ENDF formalism. First, a narrow resonance
approximation has been used to relate the transmission ratios to the average resonance widths

Tc = 2Γc
D

. Secondly, the number of degrees of freedom given in the ENDF evaluations has
been used to define the number of open channels for the reactions. Then, each channel width
has been attributed the average width from the evaluation divided by the number of degrees of
freedom. Once these hypotheses were made, the Hauser-Feschbach average cross sections have
been computed for all the elementary spingroups of JEFF-3.2., using the Moldauer or GOE
approximations of the WFCF. The obtained values match well for elementary spingroups with
small Γ/D ratios. However, the observed disagreement keeps increasing with Γ/D, and finally
reaches around 30% difference at maximum. The reason is supposedly linked to the relation
between the transmission ratio and the resonance parameters. Further tests are required to en-
sure this fact though. Moreover, additional comparisons between the average values computed
from the Hauser-Feschbach formalisms and the mean cross sections derived from the ladder
methods exhibited a good agreement when WFCF was calculated with the Moldauer method,
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even if spacings were correlated in the ladder sampling. This supports the assumption that the
resonance spacings fluctuations play a minor role for the calculation of the average cross sec-
tions. However, it may be very interesting to take into account GOE-like correlations between
the resonance widths in the ladder method, in order to estimate the impact on the average
calculations.
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Part III

Integration of probability tables
calculations in a nuclear data

processing pipeline
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Chapter 5

Construction of probability tables

In the unresolved resonance range the common practice consists of providing average res-
onance parameters due to the lack of resolution of experimental measurements. The issues
are related to the fact that in this energy regime the experimental resolution is degraded and
only clusters of resonances are seen. There exist approaches to treat the cross sections in the
unresolved resonance range, among which the most valuable is the ladder method – highly in-
vestigated in the previous chapters – which captures the cross sections fluctuations at particular
reference energies. This Monte-Carlo-based method serves to obtain relatively large samplings
which approach the underlying probability distributions of the cross sections at the reference
energies. Those distributions are the most informative quantities reachable for describing the
energy-dependent cross sections. In particular, they are much more valuable than the sim-
pler average cross section values, which cannot serve to handle important features, such as the
self-shielding effect in the unresolved resonance range.

Quite obviously though, these cross section samplings cannot be used directly in Monte-
Carlo neutronics codes for criticality and nuclear safety applications. They need to undergo an
additional step to be converted into probability tables, which are in this context a quantization
of the probability distributions. The aim of this chapter is to describe the methods used to
turn the sampled cross section sets of the ladder method into suitable probability tables for
Monte-Carlo neutronics codes.

First, the requirements of the Monte-Carlo codes as well as some of the existing practical
methods in use will be presented. Then, two innovative ways of computing probability tables,
based on a k-clustering algorithm, will be described in detail.

5.1 General description and state of the art

Let us start with a slight digression about the nature of the probability tables. In this thesis,
the concept of probability tables was first introduced in Section 1.1.6, as a way to represent
the cross sections with a set of couples (pi, σi), with the condition

∑
i pi = 1, so that pi can

be interpreted as the probability for the cross section to equal σi. In fact, probability tables
can be simply reinterpreted as a discrete version of the probability density function (pdf) of the
cross sections, which is the probability mass function (pmf). The probability mass function is
the exact equivalent of the probability density in the framework of discrete probabilities.

Probability tables were seen earlier in this document as an alternative to describe cross
sections over an energy interval, less informative than the exact energy-functional quantity,
but more valuable than the rough average values used in deterministic multigroup neutronics
application codes. Let us insist that one may convert energy-functional cross sections defined
over an energy interval into a probability table, that is only a discrete version of the probability
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distributions of the cross sections over the interval. Several methods exist to perform this
operation, among which one of the most efficient is probably the moments method described
more in detail in Section 5.1.2. As an example, probability tables have been used in the CEA
deterministic neutronics codes APOLLO-2 [67] and APOLLO-3 [68] to efficiently handle self-
shielding. The usefulness of such probability tables actually comes from the Lebesgue theory of
integration. In particular, probability tables computed from the moments method can be used
as powerful quadrature formulas which enable the computation of any integral over the cross
section depending of the energy, such as reaction ratios.

Later in this thesis, the ladder method has been introduced to handle the average nature of
the resonance parameters in the unresolved resonance range. There, the probability distributions
of cross sections were approached by a Monte-Carlo sampling of cross section values at a reference
energy. A discrete version of these distributions also defines probability tables. These probability
tables capture the distribution of the cross section values at a single reference energy.

In practice this implies a subtle distinction. In a first case, probability tables are computed
from the exact energy-functional cross sections over an energy interval, using the moments
method described in Section 5.1.2 for instance. In the second case, probability tables are derived
from a sampling which directly approaches the cross section probability distribution at a single
energy. In practice thus, the methods used in both cases do not have the same constraints.
Moreover, the probability tables in the second case represent the cross sections distributions
at single reference energies, and are said to be punctual. Finally, due to statistical nature of
the sampling, the probability tables in the second case are not an exact equivalent of the real
energy-functional cross sections. In this work, the probability tables which are manipulated
belong to the second category. Let us recall that in the unresolved resonance range, the exact
cross sections are simply out of reach.

After making use of the ladder method in the unresolved resonance range, the issue here is
thus related to the derivation of probability tables from the sampled cross sections. Let us also
precise that the work carried out here is restrained to the use of probability tables in Monte-
Carlo neutronics codes. As a consequence, the requirements of these codes will be tackled first,
to get a proper insight of the path to be followed.

5.1.1 Probability tables in Monte-Carlo codes

Monte-Carlo codes such as MCNP or MORET use probability tables in the unresolved
resonance range, mainly to capture the self-shielding effects due to the resonant fluctuations of
the cross sections. A probability table at a reference energy is composed of k bins. Each bin is
composed of a probability value pi (1 ≤ i ≤ k), associated to several reaction cross section values
{σαi} (1 ≤ i ≤ k), one for each partial reaction α. In the unresolved range formalism developed
until now, only the scattering elastic, radiative capture and fission reactions are defined. The
probability values are referred as the weights of the table, and the cross section values as the
base-points. As already mentioned, the weights are defined so that

∑k
i=1 pi = 1 so that the cross

sections can take only k distinct values, each of them with a probability pi (1 ≤ i ≤ k). This
defines a probability mass function. The whole point of the present chapter actually consists of
turning a density function into a mass function. Let us underline that no general method exists
to solve that problem.

In practice, Monte-Carlo codes use cumulative probability tables. These tables have the
same base-points than regular probability tables, and weights ci simply defined as the sum of
all the previous bin weights: for 1 ≤ i ≤ k, ci =

∑
1≤j≤i pj . In neutronics calculations, when a

cross section value is needed in the unresolved range during a Monte-Carlo history, a random
number is sampled from an uniform distribution between 0 and 1. This number is compared
to the cumulative probability table bin weights ci. The bin with a cumulative probability value
directly upper the sampled value is selected [69]. Once a bin is selected, reaction cross section
values are all taken from the bin, and they are added to retrieve the total cross section value.
The contribution of other reactions to the total cross section may be considered at this stage,
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such as the inelastic scattering or various absorption reactions, which are usually provided as
average tabulated values in the processed nuclear data file. These cross section values are then
kept along the particle flight path, to be used from collision to collision. Note that once sampled,
cross section values must be kept for a nuclide in order to retain correlations1.

In that context, a little more attention shall be dedicated to the reaction cross sections.
According to the compound nucleus theory, the total cross section corresponds to the probability
for a reaction to occur. Accordingly, the sum of the partials must always equal the total, and all
reaction cross sections cannot be sampled independently. This explains why a single probability
is provided for all partial reactions in the table’s bins. Accordingly, the provided partial reaction
cross sections σαi must be provided as the conditional probabilities for the reaction α to occur,
knowing that the total cross section is σti. Thus, from a mathematical point of view, converting
the reaction cross sections probability densities into a probability table is equivalent to defining
k + 1 "bin limits"2 σ̃i, so that the weights and base-points are defined for 1 ≤ i ≤ k [70]:

pi =
∫ σ̃i+1

σ̃i

pt(σ′)dσ′ (5.1)

σti = 1
pi

∫ σ̃i+1

σ̃i

σpt(σ) dσ (5.2)

σαi = 1
pi

∫ σ̃i+1

σ̃i

dσp(σ)
∫ σ

0
dσασqα(σα|σ) (5.3)

where pt(σ) is the probability density of the total cross section, and qα(σα|σ) is the conditional
probability of the reaction α cross section knowing that the total cross section is σ. First two
equations mark the transformation of the probability density function into a probability mass
function, and the last one defines the conditional reaction cross section binned values. It must
be remarked that the choice of the bin limits σ̃i is not unique, which is in line with the absence
of general solutions to convert a density function to a mass function. Actually, most methods
of construction of the probability tables are related to the choice of these bin limits.

The previous discussion about correlations between the partial reactions can be extended
when more than one temperature intervenes in a Monte-Carlo calculation, as described in [70].
During a Monte-Carlo history, if the particle exit energy after a collision lies in the unresolved
range, a bin of the probability table is sampled as described before. Let us imagine that the
mean free path then moves the particle in a region composed of the same material at a different
temperature. There, the cross section to be used for the material must be correlated to the
one already sampled. However, the cross section probability density is different as it depends
on the temperature, and so does the table. In order to keep the correlations, the probability
tables for a single material at a particular energy but for different temperatures must have
the same weights. In order to ensure this fact, a master temperature T0 is used to define the
probability table weights. Usually, probability tables are computed at room temperature, and
it seems logical to choose this temperature as the reference. This feature has been integrated
into GAIA-2.

Several additional constraints are related to the use of probability tables in Monte-Carlo
codes. The number of bins to choose is an emblematic example, and of particular importance
in the journey to select a method to build the tables. If too many bins are taken, the Monte-
Carlo calculations are slowed down, because each sampling needs a binary search whose time
complexity is O(k). Monte-Carlo computations are already very expensive, and the goal of
processing is to facilitate the neutronics calculations. As a consequence, the number of bins
must not be taken too big. On the other hand, if not enough bins are considered the cross

1To be more precise, it is the sampled random number which is banked.
2The upper and lower limits may extend to infinity. Sometimes, the word "bands" is also used.
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section fluctuations may not be accounted for accurately enough. The most pathological case
is k = 1, which is a single (average) value. In that case, the self-shielding is not taken into
account. Finally a last practical constraint intervenes: for a single nuclide, probability tables
for all the reference energies in the unresolved resonance range must have the same number of
bins. This is a requirement of the ACE format, which is used as an input by both Monte-Carlo
codes MCNP and MORET. As a consequence, the number of bins is usually set up by the user
once for all, prior to the calculations. Often, the value k = 20 is put forward as a default value
to be used in practice.

Let us now present some of the existing methods of construction of the probability tables
found in the literature and current in-use software.

5.1.2 Existing methods of probability tables construction

In this subsection, several of the currently used methods of probability tables construction
will be exposed. In order to get a clear view of their advantages and drawbacks, two examples
will be used all along the presentation for each method, which are the uranium isotopes 235U
at 2.5 keV and 238U at 40 keV. Probability tables in both cases are derived from a sampling
performed in GAIA-2 with 100 000 iterations for all spingroups at T=293.6K, using 500 pairs of
uncorrelated resonances in each sampled ladder. These examples have been chosen because both
isotopes are used very often in nuclear applications, and because they are quite representative
of the average shape of the cross section probability distributions.

Quantization-based methods

Starting from a set of sampled cross sections, the most straightforward way to compute
the probability tables makes use of Equations (5.1)–(5.3) directly. The empirical probability
distribution is assimilated to the cumulative density

∫
p(σ) dσ, and limit bins σ̃i are chosen

from the sampling, as explained later. Then, all cross sections values (total and partials) are
attributed to a particular bin. Namely, for each sampled total cross section that falls between
σ̃i and σ̃i+1, the bin probability counter is increased by one, and the total and partial reaction
cross section values are stored. When all elements of the sampling have been attributed to
a bin, the weight in each bin is simply obtained dividing the counter by the total number of
Monte-Carlo iterations. Cross section values in each bin are obtained averaging all the values
in the bin. They are thus replaced by their centroid, which is the within-bin mean value. It
must be underlined again that the cross sections are attributed to a bin using the total cross
section only, so that partial cross sections in the tables are conditional to the total, and do not
serve directly to build the tables. Moreover, the mean cross sections from the probability tables
and from the original sampling are the same. Indeed, calling n the number of iterations in the
sampling, k the number of bins in the table, ni, the number of iterations attributed to bin i, σ̄i
the mean cross section in bin i and σj the sampled cross section value at iteration j:

〈σ〉 =
k∑
i=1

σ̄ipi =
k∑
i=1

1
ni

ni∑
j=1

σj
ni
n

= 1
n

n∑
j=1

σj (5.4)

Relying on bin limits is similar to what is done when drawing a histogram of the data.
The only difference is that the centroid is chosen rather than the middle of the bin as the bin
base-point3. This makes the situation completely different. That actually defines a quantization
problem, which can be reformulated as choosing the bin limits σ̃i to accurately separate the
elements of the sampling into bins.

Several methods to define the bin limits have been found in the literature to create probability
tables. In the following, these methods are presented, using the next notation: the sampling

3Let us note that a real histogram is a better approximation of the density though, as tackled in Section 5.1.3.
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is composed of n total cross section values, σ1 < σ2 · · · < σn. The upper limit of the table is
always set as the max value of the sample, σ̃k+1 = σn and the table lower limit is the minimum
sampled value, σ̃1 = σ1.

• Linear probability tables.
These tables are obtained by choosing bin intervals σ̃i+1 − σ̃i of same size. Taking k bins
between σ̃1 = σ1 and σ̃k+1 = σn, the bin limits are fixed with next formula:

σ̃i = σ1 + i
σn − σ1

k
(5.5)

A linear binning is the most basic method conceivable. Figure 5.1 displays the cumulative
linear tables for 235U at E = 2.25 keV and 238U at E = 40 keV, at room temperature.

Figure 5.1: Cumulative probability tables with a linear binning and empirical distribution of
the total cross section for 235U at E = 2.25 keV and T=293.6K (left) and 238U at E = 40 keV
and T=293.6K (right)

The main drawback of the linear binning appears on this simple example: it is very sensible
to the maximum and minimum values of the dataset. If the distribution is skewed, which
is often the case for cross section fluctuations, a thin mesh will be provided in the tails,
and the main part of the distribution may be missed. Even more, it is possible that some
bins are empty at the end of the cross sections banking, which is a loss of information.

• Logarithmic probability tables.
Usually, the cross sections probability distributions are skewed on the right, which is an
issue for linear binning. In order to circumvent that fact, a simple idea consists into using
a logarithmic binning, where bin intervals are chosen to be equally large on a logarithmic
scale. Bin limits are defined with the next formula:

σ̃i = σ1 exp
[
i

k
ln
(
σn
σ1

)]
(5.6)

Figure 5.2 displays the logarithmic tables for 235U at E = 2.25 keV and 238U at E = 40
keV, at room temperature.
It seems on these examples that the rescaling implied by the logarithmic transformation
is not that appropriate for the shape of the cross section distributions. It works very well
for 235U, it completely fails for 238U. Too many points are set in the lower and higher
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Figure 5.2: Cumulative probability tables with a logarithmic binning and empirical distribution
of the total cross section for 235U at E = 2.25 keV and T=293.6K (left) and 238U at E = 40 keV
and T=293.6K (right)

parts of the curve, and the central part is almost empty. A relevant method has to work
in most situations. In practice there are many nuclides and many reference energies, and
one cannot simply check all the tables manually. A robust method is thus required, and
the logarithmic binning does not seem to fit.

• Equiprobable tables.
In this method, the objective is to define bins with the exact same weight pi, so that they
have an equiprobable chance to be sampled in Monte-Carlo codes. Building such tables
from a sampling is straightforward, but the number of elements in the sampling must be
divisible by the number of required bins. If it is the case, the definition of the bin limits
is simply:

σ̃i = σ(i−1)n
k

+1 (5.7)
Equiprobable binning is an attractive way to turn the sampling into a probability table.
Its main interest comes from a potential implementation in Monte-Carlo codes. With
equiprobable bins indeed, there is no need anymore to implement a comparison routine
between the sampled random number over [0, 1] and the bin limits. The selected bin can be
immediately deduced from the value of the sampled random number, which might speed
up the calculations. On the other hand, an equiprobable binning presents some similar
drawbacks of the linear binning4. In particular, it requires a very thin mesh to capture
the tails of the distributions when the fluctuations are skewed. As an example, Figure 5.3
displays the equiprobable tables for 235U at E = 2.25 keV and 238U at E = 40 keV, at
room temperature.
The first and last points in particular poorly represent all the bins cross section values.
This is seen on Figure 5.3. There is a clear deviation from the empirical distribution in
the tails, which is a sign of a huge variance.

The NJOY method

The probability tables construction implementation in the PURR module of NJOY tries to
avoid the pitfalls of the previous methods. Its scheme is based on quantization as well, as bin

4Note that an equiprobable binning is simply a linear binning along the y-axis.
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Figure 5.3: Cumulative probability tables with an equiprobable binning and empirical distribu-
tion of the total cross section for 235U at E = 2.25 keV and T=293.6K (left) and 238U at E =
40 keV and T=293.6K (right)

limits are first defined, and cross sections are banked in the table before being averaged. The
choice of the bin limits however is highly empirical, and determined in the course of the sampling
itself. Presenting the algorithm requires to reexplain some of the aspects of the ladder method
implemented in NJOY. Once a ladder has been sampled in the vicinity of a reference energy in
the unresolved resonance range, NJOY not only computes cross sections at the reference energy,
but on a thin grid around it. To be more precise, the retained energy mesh is composed of
10 000 randomly selected points between two energy values, emin and emax. These values are
chosen to lie inside the resonance ladder’s limits defined in Section 3.1.1, called then E1 and
E2. NJOY introduces the quantity dbarin =

∑
l,J

1
D
lJ
, the sum of the inverses of all average

spacings values found in the evaluation for the different spin sequences (l, J). This parameter
serves as a scale factor to be applied to an approximate number of resonances to avoid, set to
300 in NJOY5. The next piece of pseudo-code sets the energy grid of calculations in NJOY:

navoid = 300 #approximate number o f re sonances to avoid
emin = E1 + navoid / dbarin #minimal p o s s i b l e energy o f c a l c u l a t i o n
emax = E2 − navoid / dbarin #maximal p o s s i b l e energy o f c a l c u l a t i o n
espan = emax − emin

nsamp = 10000 #number o f po in t s in the energy g r id
eg r i d = [ ] #f i n a l energy g r id
f o r i from 0 to nsamp :

eg r i d [ i ] = emin + espan ∗ random (0 , 1)

Listing 5.1: NJOY’s definition of an energy grid of calculations

Once a ladder has been sampled, NJOY performs the cross section reconstruction for all
energies in this mesh. In order to speed up the calculations, NJOY does not rely on the exact
SLBW formulas, but rather on some quadrature approximations of the SLBW shape. As a
result, each sampled ladder raises up to 10 000 cross section values which serve to constitute the
sampling. NJOY probability tables are thus representative of the region around the reference
energy. This approach seems at first as legitimate as the method retained in this thesis, which

5As a reminder from Section 3.1.1, NJOY defines the ladder energy limits from a (rescaled) number of reso-
nances to be sampled, fixed around 1000.
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only reconstructs cross sections at the reference energy. Let us mention that it brings additional
sources of uncertainty though, as the sampled cross section values greatly depend on the chosen
energy grid. This latter must be chosen very thin, and/or randomly, which seems to be achieved
by the hard-coded set-up of NJOY. The main advantage is a clear numerical gain, since less
resonance ladders are required to reach a statistical significance. Usually, only 64 ladders are
used in NJOY6.

Probability tables limits σ̃i are defined from the 10 000 cross sections computed from the
first ladder, using a method which is about to be presented. Once the bin limits are set up,
cross sections yielded by the other ladders are directly banked in the corresponding bins7. At
the end of the process, each bin’s probability and cross sections are averaged as usual to retrieve
the actual probability tables. The procedure relies on the principle that the cross sections
obtained from the first ladder will be already representative of the cross section fluctuations
in the region, so that they can be used as a start point to determine relevant bin limits that
match the distribution shape. The bin limits are defined using the sorted set of computed total
cross sections, cross_sections. The choice of σ̃i introduces a scale parameter nebin, and a
progressive width of the bins to match the distribution shape. The next piece of pseudo-code
details the method:

nebin = nsamp / ( nbin − 10 + 1 . 76 ) #s c a l e parameter
#nsamp = 10 000 , and usua l l y nbin = 20

i b i n = nebin / 200 #index o f the bin l im i t in c r o s s_s e c t i on s .
b in_l imi t s = [ ] #s t o r e bin l im i t s

#loop on the bin l im i t s
f o r i from 0 to nbin − 1 :

#the bin l im i t s are obta ined from the so r t ed c r o s s s e c t i o n va lue s
b in_l imi t s [ i ] = c ro s s_se c t i on [ i b i n ]

#a r t i f i c i a l r e s e t i f the bin l im i t s are too c l o s e
i f i > 0 and b in_l imi t s [ i ] <= bin_l imi t s [ i −1] :

b in_l imi t s [ i ] = b in_l imi t s [ i −1] ∗ ( 1 . 0 5 )
end i f

#s e t i b i n to a f a r t h e r po int in c r o s s_s e c t i on s
i f ( i == 0) : i b i n = ib i n + nebin /40
i f ( i == 1) : i b i n = ib i n + nebin /10
i f ( i == 2) : i b i n = ib i n + nebin /4
i f ( i == 3) : i b i n = ib i n + nebin /2
i f ( i > 3 && i < nbin − 6) : i b i n = ib i n + nebin
i f ( i == nbin − 6) : i b i n = ib i n + nebin /2
i f ( i == nbin − 5) : i b i n = ib i n + nebin /4
i f ( i == nbin − 4) : i b i n = ib i n + nebin /10
i f ( i == nbin − 3) : i b i n = ib i n + nebin /40
i f ( i == nbin − 2) : i b i n = ib i n + nebin /200

enddo

Listing 5.2: NJOY’s definition of bin limits

Then, the bin limits are extended to infinity. The NJOY method is a sort of on-the-fly
quantization-based method. One may note that the cross section shape is expected to be partially
symmetric with more values in the central part of the distribution. Indeed, the number of cross
section values to pass before selecting the bin limits increases, then remains constant8, and

6This number may be set up by the user in the NJOY input dataset. However, most examples available in the
literature make use of that amount, and NJOY input datasets are rarely modified by the users.

7The upper and lower limits of the table extend to infinity.
8Except for the three first and six last bins, the NJOY-like bins are equiprobable.
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then decreases. This assumption on the cross section shape is quite supported by numerical
computations.

The NJOY method has been adapted in GAIA-2 to provide NJOY-like probability tables.
In GAIA-2, ladders only yield cross section values at a single reference energy, and the first
ladder cannot be used alone to determine the bin limits. In order to fix them, the choice has
been made to use 10% of the cross sections from the complete sampling. In the case of 100 000
Monte-Carlo iterations thus, this represents 10 000 cross section values which are used to build
the probability table limits. Figure 5.4 displays the NJOY-like probability tables computed by
GAIA-2 for 235U at E = 2.25 keV and 238U at E = 40 keV, at room temperature.

Figure 5.4: Cumulative probability tables with a NJOY-like binning and empirical distribution
of the total cross section for 235U at E = 2.25 keV and T=293.6K (left) and 238U at E = 40 keV
and T=293.6K (right)

In principle, this method provides high quality probability tables. Both the tails and the
central parts seem to be well represented on the selected examples. The main critics which can
be made is related to the more inflected part of the empirical curve (around 12-15 barn for
235U), where the deviation of the tables from the empirical distribution seems more marked.
This method is however highly empirical, and nothing seems to guarantee it works in every case,
and especially for the more pathological.

The moments method used in GALILEE

The CEA code GALILEE relies on a method already developed in its predecessor CALENDF,
known as the moments method to build the probability tables. The idea was first introduced by
P. Ribon in [71], and aims at taking advantage of the relation between a probability distribution
and its moments Mi =

∫
xip(x) dx. Indeed, a probability distribution is uniquely determined by

the infinite collection of all its moments, from 0 to ∞. The goal of the moments method is to
compute a probability table which preserves moments Mi =

∑k
j=1 pjσ

i
j . These moments can be

computed from the sampling in the unresolved resonance range9. The principle differs deeply
from the other presented methods of probability tables construction, as the table weights and
base-points are not determined through the banking of sampled cross sections in bins10. Instead,
only the moments of the cross sections sampling are kept. Of course, not all moments can be

9When used in the resolved resonance range, this method computes the moments from direct integrals of the
cross section over the energy range, and using the equivalence between the Riemann and Lebesgue integral defined
in Equation (1.17).

10It is the only one of this nature which will be mentioned in this thesis.
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kept between the empirical distribution and the probability table. Actually, for a table of order
k, only 2k moments can be conserved. More precisely, as k base-points and k weights have to
be determined, a system of 2k equations arises when the base-points and weights are matched
to the moments. Even if the choice of the moments is partially free, it is advised to consider the
sequence of increasing moments from Lmin = 1− k to Lmax = k. The introduction of negative
moments enables to take into account the cross section depressions more accurately.

The algorithm used to compute the probability tables makes use of a Padé approximant
technique, and the resolution of successive linear systems to compute the weights and base-
points of the probability table. The algorithm is well presented in [71] and [72]. Long story
short, the so-called Stieltjes generating function of the moment F (z) can be developed in the
vicinity of 0:

F (z) =
∫
p(σ)(zσ)1−k

1− zσ dσ =
k∑

i=1−k
ziMi +O(zk+1) (5.8)

Using a Padé approximant to approach F (z) with a rational function,

zk−1F (z) =
∑k−1
i=0 aiz

i∑k−1
i=0 biz

i + zk
(5.9)

Combining Equation (5.8) and Equation (5.9) and forcing the condition that O(zk+1) is negli-
gible, (

k−1∑
i=0

biz
i + zk

)(2k−1∑
i=0

ziMi−k+1

)
=

k−1∑
i=0

aiz
i (5.10)

Identifying the coefficients of the polynomials between k and 2k − 1 to get rid of coefficients ai
for now, the previous equation yields the next linear system to be solved for (bi),

Mk Mk−1 . . . M1
Mk−1 Mk−2 . . . M0

...
...

...
M1 M0 . . . M2−k



b0
b1
...

bk−1

 = −


M0
M−1
...

M1−k

 (5.11)

The coefficients bi are directly related to the probability table base-points σi. The base-points are
simply the roots of the polynomial

∑k−1
i=0 biz

i + zk. Once the base-points have been determined,
the weights (pi) of the table can be found solving the linear system that arises from the moment
matching condition Mi =

∑k
j=1 pjσ

i
j directly.

Note that handling the partial cross sections is another issue not detailed here, which can
be solved computing additional moments of the conditional distributions, as in [71].

This method is extremely powerful when integrals of functions of the cross sections intervene,
such as reaction rates. In particular, such probability tables are used as quadrature formulas
in the CEA deterministic transport codes APOLLO-2 and APOLLO-3 in the resolved and
unresolved resonance ranges.

On the other hand, the main drawback of this method arises in the context of interest of
this PhD, where probability tables are not computed from a resolved cross section, but from a
statistical cross section sampling. Indeed, the moments method relies on the accuracy of the
computed moments. However, the higher moments of a sampling are inherently unstable. In
other words, a robust estimation of the higher moments requires a very large sampling. This
intrinsic instability of the sampling’s moments itself is even doubled with a numerical difficulty
to compute high-order moments. Considering for instance tables with 20 bins requires to retain
40 moments of the sampling, which is a lot. In fact, the number of moments that may be kept
in practice is usually less than that, and the number of bins in the tables is lower than 20.
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Figure 5.5 displays the moments probability tables computed by GALILEE11 for 235U at E =
2.25 keV and 238U at E = 40 keV, at room temperature. These tables have been computed with
only 10 bins.

Figure 5.5: Cumulative probability tables with a binning from the moments method and em-
pirical distribution of the total cross section for 235U at E = 2.25 keV and T=293.6K (left) and
238U at E = 40 keV auyfnd T=293.6K (right)

5.1.3 Alternatives to the probability tables method

The main drawback of the probability table method is related to the finite number of possible
cross section values that can be sampled by the neutronics Monte-Carlo codes. This has a poor
physical meaning, as a continuous quantity is treated as discrete. In order to avoid this flaw,
Monte-Carlo codes could be adapted to handle real probability distributions of the cross section
values, instead of relying on probability tables. For instance, one could use a direct parametric
or non-parametric estimation of the cross section probability density, using common methods.
The aim of this subsection is to detail some ideas that have been investigated, and explain why
they have not been implemented.

At first sight, two non-parametric methods would be practicable, namely a histogram or a
Kernel Density Estimation (KDE). These methods are useful as they do not make any assump-
tion about the shape of the cross section distributions. Starting from the cross sections sampling,
building a histogram requires to define bin limits σ̃i like in most probability table methods, but
instead of computing base-points as the centroids, the middles of the bins are used. Such a
histogram approaches the underlying density, and the error due to the discretization can be
easily estimated. This is achieved for example in [73], which provides an optimal estimation of
the density from regularly binned histograms. Alternatively, the kernel density estimation is a
generalization of the histogram, in which the density is smoothly approached in all points of the
support by a function f̂h so that

f̂h(x) = 1
nh

n∑
i=1

K

(
x− xi
h

)
(5.12)

where K is a kernel function – for instance a Gaussian function –, and h > 0 a scalar parameter
called bandwidth. Intuitively, the kernel density estimation works by placing a kernel on each

11The moments method has not been implemented in GAIA-2.
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of the sampled cross section value along the x-axis. Then, each point of the density is obtained
by averaging over the kernels.

These methods are powerful as they do not assume the form of the underlying density, and are
still able to provide a good approximation of its shape. One may imagine to perform a kernel
density estimation of the cross section density, and provide for instance a linearly tabulated
version of the obtained density function, or the corresponding cumulative function. Monte-
Carlo codes could handle such function easily. Once a random number is sampled between
]0, 1[, they would simply need to perform a linear interpolation to retrieve a cross section value.
Such a work would turn the current discrete spectrum of the possible cross section values into
a continuous one, although tabulated.

Relying on a tabulated version of the probability density may have some drawbacks though,
that make their use in Monte-Carlo codes probably less tractable than the simpler probability
tables approach. First, let us mention that the mean cross section value is likely not to be
conserved from the ladder method’s sampling to the density tabulated estimation. This would
not consist in a major flaw if the average cross section value did not have an immoderate
importance for neutronics codes, mainly because it relates to the reaction rates. As the sampling
mean value is the best estimator of the cross section expected value, keeping its value may
make sense. Secondly, the size of the sampling obtained from the ladder method may be quite
huge. It has been underlined in Section 3.3.2 that situations occur where 105 elements at least
should be sampled to obtain accurate results. With as many elements, a KDE-based density
is numerically unreachable in an acceptable time12. Finally, the main drawback is related to a
possible significant performance hit in the Monte-Carlo codes calculations. Instead of sampling
and selecting a single value in a table, Monte-Carlo codes would have to implement an additional
interpolation routine, that is likely to be time-consuming. In summary, a simple probability table
with many bins might become competitive enough confronted to a tabulated density, from both
points of view of calculation time and ability to account for the cross section fluctuations.

An other option would be to use a parametric estimation of the density. In this approach,
the shape of the cross section would be fitted with a well-known distribution, depending on
some parameters estimated from the outcome of the ladder method sampling. The Monte-Carlo
codes should just be provided with the information of the chosen distribution, and the value
of the parameters. Cross section fluctuations share common characteristics that support the
idea that a common base-distribution may be searched for. In particular, they are unimodal,
usually fat-tailed, and should be defined on a semi-finite interval as negative cross sections
are nonphysical. The main drawback of this approach is to find a distribution that could fit
the cross sections distributions accurately and automatically, as this fit would occur during
the cross sections processing, along with many other operations. Moreover, efficient fit can be
performed for distributions with a few parameters only, often 2 or 3, that might not be able to
represent the cross section fluctuations. More generalized distributions could serve though, like
the hypo-exponential distribution13 which matches the presented constraints of uni-modality
and semi-infinite support, and has an arbitrary number of parameters. This idea has not been
explored deeper in this work.

In any case, replacing the probability tables by a more continuous approach requires to
change the Monte-Carlo codes behavior, as well as the input ACE format used by MCNP and
MORET. This requires a huge amount of work, which could not be carried out during this thesis.
Instead, the probability tables method was kept as a default path. However, two methods based
on an "optimal" choice of the bins σ̃i have been investigated, which are based on k-clustering
algorithms.

12Histograms are still possible though.
13Sometimes referred to as the generalized Erlang law.

162



5.2 K-clustering probability tables

5.2.1 K-means probability tables and dynamic programming

The quantization-based methods which have been presented attempt to define the probability
tables bin limits σ̃i from the sampled total cross section values, before banking them all into
the bins. This way of proceeding produces coherent probability tables which conserve the mean
value, and whose construction is stable. Thus, all the difficulty resides in the choice of the bin
limits to obtain relevant probability tables. The objective is to condensate in a fixed number
of bins k the maximum of information contained in the continuous probability distribution. As
an example, linear or equiprobable tables do not always represent the underlying probability
distribution efficiently. In particular, the right tail has to be well represented, because it should
be possible for neutronics Monte-Carlo codes to sample large – even scarce – cross sections
values, especially for shielding problems.

The situation actually looks like a clustering problem. Clustering a dataset aims to sort and
classify the elements into relevant subgroups called clusters, which share common properties.
This situation often occurs in data analysis or machine learning for instance. A clustering
problem may be solved by various algorithms according to the constraints and the objectives:
clustering problems do not have a closed-form solution in general. A very common way of
clustering the dataset consists into minimizing in each group the distance between the group’s
elements and a representative value. A very natural choice is to choose the Euclidean distance
(the L2-norm) and the mean of the subgroup. Such a partitioning is named k-means clustering.
Applied to our situation, the objective is to find k+ 1 bins limits σ̃i so that the sum for all bins
of the Euclidean distance of the cross sections values to the within-bin mean is minimized. This
can be formulated into the next optimization problem, where σ̃ = (σ̃0, . . . , σ̃k) are the bin limits
that define the bin regions Si = [σ̃i−1, σ̃i] and µi is the total14 cross section mean in bin i:

arg min
σ̃

k∑
i=1

∑
σtj∈Si

|σtj − µi|2 (5.13)

Probability tables with such bin limits minimize the within-bin variance and maximize the
variance between bins, which sounds extremely appealing in our situation of interest, as the
mean bin values are to be used in neutronics Monte-Carlo codes.

The k-means algorithm is a NP-hard15 problem when the dimension exceeds 2. This means
the solution of Equation (5.13) always exists, but cannot be solved in polynomial time. When
the sampling is large (which is our case referring to Chapter 3, since at least 105 elements may
be required), solving the k-means problem becomes impossible using brute force. It is there
usually solved by efficient heuristic methods, that do not necessarily enforce the optimality of
Equation (5.13). In the present situation however, the sampled total cross sections form a one-
dimensional set. It turns out that a very efficient algorithm based on dynamic programming
exists to find the optimal bin limits for the k-means problem.

Before presenting the algorithm to compute k-means tables, two points may be mentioned.
First, the particular k-means method for one-dimensional data is also referred to in literature
as the Jenks natural breaks classification method, who first introduced this idea to produce
statistical maps for diverse problems [74]. Secondly, a crucial drawback of the k-means compared
to other clustering methods is the fact the number of clusters k is an input parameter fixed by
the user prior to the calculations. In traditional clustering problems, this is often a strong
assumption about the underlying data. In our case however, this number corresponds to the

14As a recall, all the reaction cross section values in the probability tables are contingent to the total reaction
cross section values.

15NP stands for non-deterministic polynomial-time. That means the solution cannot be solved in a polynomial
time from a deterministic manner. At best, a solution can be proposed by non-deterministic techniques, and
verified in polynomial time. In the worst case, the exact solution has to found using brute force.

163



order of the table which has to be set by the user anyhow, because Monte-Carlo codes require
all the probability tables for a particular nuclide to have the same number of bins. Setting
the parameter k does not constitute a real issue here, because it is a requirement of the codes
that use the probability tables. As a consequence, the k-means algorithm looks like the perfect
clustering method for our needs.

The algorithm which is about to be presented has been developed in the statistics-oriented
software R package Ckmeans.1d.dp by H. Wang and M. Song in 2011, and is presented in
reference [75]. The algorithm has then be improved by the same authors in [76]. It is based
on dynamic programming, which is a mathematical optimization method16 that can be used to
solve large problems by breaking them into equivalent subproblems when they can be solved
recursively. The main difference with usual "divide and conquer" algorithms is that the sub-
problems have to repeat themselves, and thus can be solved only once and their results stored,
which is called memoization. The whole point here is to solve Equation (5.13) with an increas-
ing number of bins and an increasing number of sampled cross section values from the sorted
set, as a recursive relation can be found between the solutions of Equation (5.13) with different
numbers of cross sections and different numbers of clusters.

Following the reference [75], let us call D[i,m] the sum of the within-bin distances to the
mean for the solution of Equation (5.13) with only m bins and a subsample of size i (σ1, . . . , σi)
of the original sorted sampling of total cross sections. As such, calling n the actual number of
Monte-Carlo iterations, D[n, k] is the sum of the within-bin distances of the optimal clustering,
ie. the minimal reachable value for this quantity. Let us call j the index of the smallest cross
section value in bin m in the optimal solution of D[i,m]. The fact is, considering m− 1 clusters
and the first j − 1 elements only, D[j − 1,m − 1] has to be the minimal within-bin distance
reachable for the problem with m− 1 clusters and j− 1 cross sections, else D[i,m] would not be
the solution for m clusters and i cross sections. This defines the next recurrence relationship,
where d(σj , . . . , σm) is the sum of Euclidean distance of all the elements (σj , . . . , σm) to the
mean of the cluster m:

D[i,m] = minm≤j≤i{D[j − 1,m− 1] + d(σj , . . . , σi)}
D[0,m] = 0
D[i, 0] = 0

(5.14)

Relying on this equation, the matrix D[i,m] can be computed recursively, until D[n, k] is ob-
tained, which is the minimal sum of within-bin distances reachable by the clustering. The first
column is filled first:

D[i, 1] =
i∑

j=1
(σj − σi)2 (5.15)

where σi is the mean cross section taking into account the i first cross sections. Then, each next
column is built based on Equation (5.14), which leads to the construction of a triangular matrix.
In the meantime, another matrix B[i,m] of same dimensions is constructed to keep track of the
indexes of the smallest cross section values in cluster m.

B[i,m] = arg minm≤j≤i{D[j − 1,m− 1] + d(σj , . . . , σi)}
B[0,m] = 0
B[i, 0] = 0

(5.16)

Once both matrices are built, the bin limits corresponding to the minimal sum of the within-
bin distances to the means D[n, k] have to be retrieved. Both matrices D and B are then
backtracked. Starting from the final result, the path that leads to the minimal D[n, k] is re-
trieved, and the corresponding indexes from B are obtained. These indexes correspond to the

16Despite the name, which was chosen in the 50s by the inventor of the method, R. Bellman, to sound appealing.
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bin limits that lead to the minimal sum of the within-bins distances to the means, and form the
optimal k-means clustering.

The global complexity of the algorithm presented is O(n3k), which is a great enhancement
compared to the initial NP-hard problem. However, this complexity makes computations im-
possible for the usual size of the sampled total cross section sets. It can be greatly improved
though. First of all, d(σj , . . . , σi) does not need to be recomputed everytime. Instead, it is
possible to take advantage of a recurrence relation:{

d(σ1, . . . σi) = d(σ1, . . . σi−1) + i−1
i (xi − µi−1)2

µi = σi+(i−1)µi−1
i

(5.17)

to greatly improve the algorithm complexity, which becomes O(n2k). This is much better, even
if still problematic for our needs. The complexity may actually be again improved using a divide
and conquer algorithm to compute the matrices columns, as described in [76]. This reduces the
algorithm complexity to O(n log(n)k). Such a complexity is way enough for our needs: a k-
means probability table from a sampling with 105 Monte-Carlo iterations is only computed in a
few seconds.

5.2.2 Descriptive of tables

Figure 5.6 displays the probability tables obtained with the k-means algorithm described
previously, for 235U at 2.5 keV and 238U at 40 keV and room temperature, like in previous
figures 5.1-5.4.

Figure 5.6: Cumulative probability tables with a k-means binning and empirical distribution of
the total cross section for 235U at E = 2.25 keV and T=293.6K (left) and 238U at E = 40 keV
and T=293.6K (right)

The tables seem to match quite well both the central part and the tails of the distributions.
Even more, it seems that the depressions and inflected parts of the cumulative probability
distribution are especially well represented. Many points are present in the inflections of the
curves, for instance in the interval between 12 barn and 15 barn for 235U. Compared with the
tables obtained with other methods, the points better match the real empirical curve in this
region, which is a direct consequence of the low variance in each bin. K-means tables indeed aim
at finding the partition of the probability distribution which minimizes the global within-bins
variance. As such, k-means tables mays behave very well in Monte-Carlo codes.

It is of interest to present some more examples though. An interesting one is to consider
235U at 2.5 keV and 238U at 40 keV again, but processed at T=0K. In practice, nuclear data are
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never processed at this temperature, which is of no use in practical applications. However, it
is a good test, as empirical distributions are more difficult to fit. At null temperature indeed,
resonances are not broadened nor flattened so that the ladder method may yield some very large
cross sections values, when a peaked resonance is sampled close to the reference energy. Cross
sections distributions are thus more skewed, which makes the probability tables construction
more challenging. Figure 5.7 displays the k-means tables built for 235U at 2.5 keV and 238U at
40 keV at null temperature along with the empirical distribution of the cross section values, to
be compared with the ones obtained with the NJOY method on Figure 5.8. At T=0k, the cross
section distributions appear less smooth than at room temperature, but there again, k-means
probability tables seem to describe the probability distributions well enough. In particular, the
tables enable the sampling of large cross sections values, and present a thinner mesh in the
inflected parts of the empirical distribution, which are the higher-variance zones.

Figure 5.7: Cumulative probability tables with a k-means binning for 235U at E = 2.25 keV and
T=0K (left) and 238U at E = 40 keV and T=0K (right)

Figure 5.8: Cumulative probability tables with a NJOY-like binning for 235U at E = 2.25 keV
and T=0K (left) and 238U at E = 40 keV and T=0K (right)

In order to test the strength of the k-means method more deeply, other nuclides than 235U and
238U can be considered. At this stage, a relevant approach is to find the "worst" possible case for
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the k-means tables, and verify the validity of the method. To do so, the elementary spingroups
of JEFF-3.2 defined in Section 3.2.1 have been used once more. As a reminder, each elementary
spingroup is defined by a set of 16 input parameters that correspond to the combination of
a single spingroup of a single nuclide of JEFF-3.2 at a particular reference energy found in
the evaluation. Considering all the JEFF-3.2 library yields 41 486 elementary spingroups. For
all of them, the ladder method has been used at room temperature with 20 000 Monte-Carlo
iterations in Chapter 4. From these cross sections samplings, 20-bins probability tables have
been computed from the total cross sections using the various reconstruction methods. Then,
the statistics of Equation (5.13) has been calculated for all tables, which is simply the sum
of the within-bin squared of distance to the mean. This statistics can be reinterpreted as a
sum of squared errors (SSE), which is notably often used in regression analysis to measure the
discrepancy between the data and a fitting model. From the probability tables modeling point
of view, it seemed at first interesting to reduce this quantity, in order to get bin base-points
close to the empirical distribution. A good candidate to test the probability tables is an isotope
for which this SSE-statistics is high17, since that means the table base-points are distant from
the actual probability distribution, which testifies of a pathological distribution shape. From
the k-means table results – which minimize this statistics – the most critical case is the first
spingroup (l = 0, J = 0.5) from 156Eu, at E = 1 eV. Before investigating the shape of the tables
for this nuclide, it is interesting to have a quick look at the results of the SSE-statistics for all
probability tables of JEFF-3.2. This is summarized on Figure 5.9 on which the statistics for
all spingroups has been displayed for all probability tables construction methods, except the
moments method. The spingroups have been indexed and first sorted by l-value, which yields
three very distinct groups. In fact, the l-value has a strong influence on the SSE-statistics, as
small l values raise more important cross sections, which produces greater within-bin distances to
the mean. As such, there is no point comparing this statistics between spingroups with different
l-values. Once sorted according to l, spingroups have been sorted by ascending reference energy
values, and then masses. It turns out that a relation slightly emerges between the reference
energy and the probability tables within-bin distances, which justifies this choice of sorting.
Note that this relation seems negative at l = 0 and positive for l = 2, while it remains unclear
for l = 118. When combining the different spingroups to retrieve real nuclides calculations,
(l = 0)-spingroups contribution to the cross section is bigger. As a consequence, Figure 5.9
implicitly suggests that probability tables are more difficult to build at small energies. This is
reinforced by the fact the SSE-statistics follows the same trend for all the methods of probability
tables construction, which implies the statistics closely depends on the cross section distributions
shapes.

Let us focus now on 156Eu at 1 eV, which is the leftmost case of Figure 5.919. To be
consistent with the previous examples performed with 235U and 238U, a complete sampling
has been performed, with 100 000 Monte-Carlo iterations at room temperature, making use of
ladders composed of 1000 uncorrelated resonances for all spingroups. The corresponding 20-bins
k-means and NJOY-like tables have been calculated, and displayed on Figure 5.10.

First of all, the empirical probability distribution for this isotope is extremely skewed. Some
very high cross section values have been sampled, up to several dozens of thousands of barns. In
the same time, such values are still very scarce, as 80% of the cross section values lie between 0
and 100 barn only. For the k-means method, the consequence is quite clear, as it mainly provides
bin limits in the higher part of the spectrum. In fact, it is much more useful to group the data
in the higher part of the spectrum to reduce the global variance. As a consequence, the smallest
weight in the table is around 0.95, which means a single cross section value will be sampled 19
times over 20 in average in neutronics Monte-Carlo codes that will use k-means tables. This is
a real issue, as fluctuations may not be taken into account enough. In the meantime, NJOY

17Note that this statistics directly increases with the number of iterations, but can be used to compare tables
derived from samplings of same size.

18The case l = 3, which only corresponds to four cases of 58Fe, has not been represented.
19The unresolved resonance range starts at 1 eV for this isotope, which is an exceptionally low energy.
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Figure 5.9: Sum of squared within-bin distances to the means for probability tables issued of
all elementary spingroups of JEFF-3.2, composed of samplings of size 20 000. The elementary
spingroups have been sorted in increasing l-values first, then in increasing reference energy
values, then masses. The statistics for five table types built from the same samplings have been
computed and displayed on the figure.

Figure 5.10: Cumulative probability tables for 156Eu at E=1eV and T=293.6K, built with the
NJOY-like method (left), and k-means method (right).

empirical method seems to provide a more regular binning at first sight. In order to get a better
insight of the situation, Figure 5.11 provides a zoom on the upper part of the spectrum, for
both tables. There, the disadvantage of the NJOY table is flagrant too. The distribution is so
skewed that some of the probability table base-points are supposed to cover ranges up to ten
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thousand barns. That means Monte-Carlo codes may sample a random number, and select a
cross section value distant of several thousands of barns from the value that would have been
sampled relying on continuous distributions instead of probability tables.

Figure 5.11: Cumulative probability tables for 156Eu at E=1eV and T=293.6K, built with the
NJOY-like method (left), and k-means method (right), zoomed over the maximum of variance
part of the distribution.

It seems to be pretty difficult to handle the case of 156Eu at 1eV. In fact, all methods have
difficulties to build probability tables for such an overly-skewed case, whether it be with the
k-means method or NJOY-like empirical technique. Such samplings have to be handled though,
and a compromise must be looked for.

5.2.3 K-medians tables

K-means tables seemed to work very well with 235U and 238U and fail with 156Eu, due to the
very skewed shape of the probability distribution. If the higher part of the spectrum was fairly
well represented, the smallest values were not at all considered by the method. The main issue
is the high dependence of the mean to the outliers. In order to get rid of that, a simple idea
is to switch from the mean to the median in the k-clustering algorithm. Indeed, the median is
more robust than the mean when dealing with skewed data. A well-known alternative to the
k-means method is thus the k-medians clustering method, which aims to minimize the sum of
the L1 distances20 of the elements to the bin medians. The use of the L1-norm instead of the
L2-norm21 is justified here, as the mean is a least squares estimator of location, whereas the
median is an absolute deviation estimator of location. The problem to be optimized can be
reformulated as:

arg min
σ̃

k∑
i=1

∑
σtj∈Si

|σtj −Mi| (5.18)

where σ̃ = (σ̃0, . . . , σ̃k) are the bin limits than define bin regions Si = [σ̃i−1, σ̃i] and Mi is the
total cross section median in bin i.

This problem is very close to Equation (5.13), and can be solved with the exact same dynamic
programming algorithm, making use of the median instead of the mean, and L1-norm instead
of L2-norm. The bin limits then obtained provide a clustering of the distribution which can

20Also known as the taxicab or Manhattan distance.
21Which is the Euclidean distance.
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serve to compute probability tables. Note that the k-medians algorithm only serves to find
relevant bin limits. In particular, the probability table base-points are still the mean total cross
section values in the bins, and not the median. Even if this is opposed to the philosophy of the
k-medians algorithm which proposes to take the median as the representative value of the bin,
the mean is logically the best value to be used by Monte-Carlo codes afterwards; that is even
required to conserve the sampling total cross section mean value. The k-medians clustering is
here only used as a tool to obtain relevant bin limits.

In next figures Figures 5.12–5.14, the k-medians tables have been represented for the exam-
ples used in previous subsection, 235U at E=2.5keV and 238U at E=40keV for T=293.6K and
T=0K, and 156Eu at 1eV and room temperature.

Figure 5.12: Cumulative probability tables with a k-medians binning and empirical distribution
of the total cross section for 235U at E = 2.25 keV and T=293.6K (left) and 238U at E = 40 keV
and T=293.6K (right)

Figure 5.13: Cumulative probability tables with a k-medians binning and empirical distribution
of the total cross section for 235U at E = 2.25 keV and T=0K (left) and 238U at E = 40 keV and
T=0K (right)

From these figures, the obtained k-medians tables approximately behave like the k-means
tables. They are able to mesh the tails of the distributions efficiently, as well as the inflections.
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Figure 5.14: Cumulative probability tables for 156Eu at E = 1eV and T=293.6K, built with
the k-medians method. The right part is zoomed over the maximum of variance part of the
distribution.

Like the k-means tables, a very interesting feature is their ability to adapt to the probability
distribution even if its shape is irregular, like for 238U at T=0K. On the other hand, faced
to very skewed distributions like 156Eu, they less intensively mesh the right tail. Looking at
Figure 5.14, the first bin value is around 0.7, to be compared with 0.95 for the k-means tables.
In the meantime, the inflected part seems to be well represented. This is a major improvement
compared to the k-means tables, which might be tempered though: 0.7 is still a very high value
for a first bin weight. However, in that situation, meshing the inflected part of the distribution
seems mandatory. Moreover, a last resort is still available to get around this complex situation:
increasing the number of bins.

5.2.4 About the number of bins

In the case of highly-skewed distributions, it may seem relevant to increase the number of
bins in the tables to provide a better representation of the probability distributions. This work
has been conducted for 156Eu at 1 eV, which is among the worst case scenario found in JEFF-3.2.
Figure 5.15 displays the probability tables with 100 bins for equiprobable, NJOY-like, k-means,
and k-medians methods. Accordingly, Figure 5.16 displays the same probability tables, zoomed
on the inflected part of the empirical distribution.

The number of bins does not seem to change the overall behavior of the tables. The diverse
methods seem to have the same advantages and drawbacks than with 20 bins. The equiprobable
and NJOY-like binning both have difficulties to mesh the tail and the inflected part of the
probability distribution. In the meantime, the k-means table’s first bin weight is around 0.75,
which is a still a very high value. The most significant improvement comes for the k-medians
tables, for which the first bin’s weight is around 0.2, which is definitely acceptable. In the same
time, the inflected part and tail are as well represented as in the k-means tables. This is a great
support for the use of k-medians tables in Monte-Carlo applications. In order to appreciate the
gain however, one should perform criticality benchmarks calculations with Monte-Carlo codes,
which will be shown in the next chapter.

Before concluding this chapter, it is of interest to detail a little more the question of the
number of bins. As mentioned, too many bins are likely to reduce the speed of the Monte-
Carlo codes. On the other hand, not enough bins do not provide a good representation of the
probability distributions. In practice, 20 bins are used as a reference number.
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Figure 5.15: Probability tables for 156Eu at E=1eV and T=293.6K, built with an equiprobable
binning (top left), the NJOY-like method (top-right), the k-means method (bottom left), and
the k-medians binning (bottom right), making use of 100 bins.

In order to get an insight about the choice of this value as an usual reference, the statistics
Equation (5.13) has been used, defined in the k-means problem as the sum of the squared dis-
tances of the elements to the bin mean values. As mentioned, this statistics can be reinterpreted
as a sum of squared errors (SSE) statistics. High SSE values are a marker of bin values very
far from the empirical distribution. The k-means method aimed at optimally reducing that
quantity, although it has been shown its use might lead to underestimate the lower part of the
probability distribution in case it is very skewed. It is still interesting to observe the evolution
of the SSE-statistics according to the number of bins in the tables. This is for instance used in
cluster analysis to determine relevant number of clusters, where it is called the elbow method,
or distortion analysis [77]. The idea is that adding bins in the table is likely to reduce the
SSE-statistics22, providing a decreasing curve. At some points however, the decrease might slow
down, which means that adding extra bins does not greatly improve the fitting. This cut-off is
graphically located in the "elbow" of the curve, hence the name.

This method has been applied to all probability tables of all elementary spingroups of JEFF-
3.2 computed with 20 000 iterations. In particular, the first spingroup (l = 0)23 of 235U at E
= 2.5 keV, 238U at E = 40 keV, 156Eu at E = 1 eV, and 21Ne at E = 306.59 keV24 have been
investigated at room temperature. All the SSE-statistics have been computed for tables with
increasing numbers of bins from 2 to 100, and represented on Figure 5.17.

22This is exactly the case for k-means tables.
23Which is the main contributor to the cross sections for any isotope.
24In order to provide an extra example.
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Figure 5.16: Probability tables for 156Eu at E=1eV and T=293.6K, built with an equiprobable
binning (top left), the NJOY-like method (top-right), the k-means method (bottom left), and
the k-medians binning (bottom right), making use of 100 bins. The figure is zoomed on the
higher-variance part of the distribution.

For the four cases considered, the "elbow" is located between 10 and 20 bins for all tables.
Hence, this simple approach justifies the use of 20-bins tables. Furthermore, probability tables
have a similar behavior, at least for the three typical cases 235U, 238U, 21Ne. The k-means tables
have the smallest sum of within-bin squared distances, but it must be noted that the k-medians
method provides very close results. Certainly, it has been mentioned that the SSE-statistics is
not the only statistics to consider, because our interest is not only to cluster data: the retained
bin mean values must be sampled by Monte-Carlo codes afterwards. In that prospect, it has
been seen that k-means tables seem to perform less well than k-medians when the distributions
are skewed, because the first bin weight might be too high. And even in that case, k-medians
tables may also require more bins than just 20 to obtain a good representation of the low cross
section values. On the other hand, this analysis highly suggests that using tables with less than
15 bins may lead to an significant loss of information25.

Lastly, the case of NJOY-like tables must be discussed especially for 156Eu: while all the
other methods exhibit a clear and regular decrease of the SSE according to the number of bins,
high-order NJOY-like tables do not show this behavior. In fact, looking at the pseudo-code 5.2,
NJOY-like tables are in fact equiprobable tables except for the first three and last six bins, that
are designed to handle the inflected parts of the distributions. Actually, increasing the number
of bins disrupts the NJOY calibration; the last six bins do not necessarily fall around the curve
inflection, which may explain the sudden raise in SSE-statistics for the NJOY-like tables. As

25Besides, let us mention that 15 bins is the minimal table order which can be required by the users in NJOY.
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Figure 5.17: SSE-statistics for the first spingroups of 235U at E = 2.5 keV, 238U at E = 40 keV,
156Eu at E = 1 eV, and 21Ne at E = 306.59 keV, for several probability tables built with different
methods at room temperature, according to the number of bins considered in the table.

such, Figure 5.17 underlines a particularly important point in practice: NJOY-like tables are
tuned to be used with 20 bins exactly. No doubt this reinforces the current generalized use of
20-bins probability tables in nuclear applications.

Conclusion of the chapter

In the present chapter, the construction of the probability tables as the final step of the
ladder method has been presented. The objective was to turn a set of sampled cross section
values – which define a continuous probability distribution – into a discrete set, which constitutes
a probability table. These probability tables are then used in Monte-Carlo neutronics codes for
applications. A probability table is defined with several bins. Each bin is attributed a probability
value (or weight), associated to a total cross section value (base-point), and several partial
reaction cross section values. The partial reaction cross sections are conditional to the total cross
section value, which means their sum equals the bin total cross section value. The sum of the bin
probabilities equals one. In other words, a probability table is just a probability mass function
(pmf) of the cross section values, the discrete counterpart of the probability density function
(pdf) used for continuous random variables. Relying on a discrete set of probabilities to describe
a continuous probability is here an approximation, introduced by the Monte-Carlo codes. In

174



this chapter, several alternatives to the probability tables method have been considered. Among
them, the use of a parametric estimation of the cumulative density seems the most promising
path. However, the implementation of this method in practice requires to change the Monte-
Carlo codes, which was beyond the scope of this work.

There is not a single way to turn a probability density into a probability mass function, and
as a consequence, there is not a single way to define the probability tables from the cross sections
sampling. The best way of doing actually depends on their use in Monte-Carlo codes. Here, the
accurate description of the cumulative seems to be the most important fact to guarantee. In
particular, the tail of the cumulative distribution has to be well represented in order to enable the
Monte-Carlo codes to sample high cross section values. This is especially important as the cross
section distributions are usually right-skewed. Another important point relates to the number
of bins in the tables, which must not be too high, not to slow down the Monte-Carlo codes. In
practice, this number is set by the user to be the same for all probability tables because of the
limitations of the ENDF and ACE formats; 20 bins are used typically.

Except for the so-called moments method, all the techniques tackled in this document start
by defining bin limits over the sorted total cross sections set. Then, total and partial cross
sections are banked in the corresponding defined bins, and their mean values are provided as
the bin cross section values. Each bin probability is then simply obtained as the number of
cross section values in the bins divided by the total number of elements sampled. In fact, the
proposed procedure is equivalent to a histogram construction, except that the mean bin value
is taken as representative of the bin, rather than its midpoint. This simple method provides
partial cross sections given as conditional values to the total cross section value. Moreover,
the probability table mean cross sections remain the same than the sampling ones, which is
important in applications since mean cross sections are related to the reaction rates.

The main question thus relates to an efficient definition of the bin limits to obtain high-
quality probability tables. Some existing binning techniques have been exposed in this chapter,
among which linear, logarithmic and equiprobable binning. It has been shown that these binning
methods do not seem to provide acceptable probability tables in various situations. Alternatively,
the NJOY method of binning has been slightly adapted to be compliant with the GAIA-2
sampling, and seemed to perform much better. This method relies on empirical considerations
though, and is not based on a strong theoretical basis.

One of the main points of interest of the work carried out in this chapter is the introduction of
two innovative binning methods in the context of the probability tables generation, based on an
existing k-clustering algorithm. Both methods aim at minimizing the global within-bin distances
of each bin elements to a representative value of the bin. The first method is based on a k-means
clustering algorithm, which defines the bin limits to minimize the global Euclidean distances of
the elements to the mean of each bin. The second one is a k-medians algorithm, which minimizes
the L1 distances between each bin elements and the bin median. Such k-clustering techniques
can be solved in polynomial time for one-dimensional data, following a literature reference based
on dynamic programming, which reaches a O(n logn) time complexity. In practice, a probability
table is built in less than a second. The k-means method seemed to be the most promising at
first, as it minimizes the global within-bin variances. K-means probability tables looked very
efficient when tested on two essential nuclides of the nuclear industry, namely 235U and 238U.
It provided a binning that well took into account the tails of the distribution, and accurately
meshed the inflections of the cumulative distribution, which are among the highest variance
zones. The k-medians results looked very similar to the k-means ones.

Searching for more extreme scenarios to test the tables, the elementary spingroups from
JEFF-3.2 defined in previous chapters have been used once more. K-means probability tables
have been built for all cases relying on the cross sections samplings derived in Chapter 3, and
their corresponding global within-bins distance computed. Then, the elementary spingroups
have been sorted in order to exhibit a relation between the global within-bin distances and
the input resonance parameters. For elementary spingroups defined with l = 0 (which have
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the biggest contribution to the cross sections), the smallest reference energies seemed to yield
the biggest within-bin distances. We believe this constitutes an important result, even if the
physical reason to justify this fact remains unclear. Most critical cases seem to be very skewed
distributions, and the most pathological case found in JEFF-3.2 is 156Eu at 1 eV.

It turned out constructing a relevant probability table of order 20 is rather difficult for 156Eu
at 1 eV. The k-means tables meshed the high cross section values of the distribution with a too
thin grid, whereas the NJOY binning did provide a poor representation of the tails. On the other
hand, the k-medians clustering seemed to keep most of the advantages of the k-means method,
without being too sensitive to the highest cross section values. It is thus considered in this work
as a reference method. The idea is to drop the nice physical interpretation of minimizing the
within-bin variance which characterizes the k-means method, in order to gain a more robust
technique able to mesh the lower parts of the distribution in any case. The k-medians seemed
to fulfill both requirements: it was not only able to avoid an over-fitting of the tail over the
small cross sections values, but the sum of within-bin distances to the mean – that may be
reinterpreted as a sum of squared errors (SSE) statistics – remained very close to the k-means
results. For the critical case of 156Eu, it seemed that the number of bins still required to be
slightly increased to obtain an accurate representation of the lower parts of the spectrum; there
again, the k-medians tables seemed to provide the more balanced representation of the cross
section distributions .

In order to investigate the impact of the probability tables construction in practical appli-
cations, the tables have to be tested in integral benchmarks calculations. This is the topic of
the upcoming chapter, in which all the work carried in this thesis will be tested in benchmarks
calculations.
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Chapter 6

Validation of developed methods in
integral calculations

Once the probability tables have been computed in the unresolved resonance range, they need
to be passed to the neutronics Monte-Carlo codes. In this work, the well-known Los Alamos
code MCNP-6.2 [78], and the IRSN code MORET-5.D [79] have been considered. Both codes
use identical format of processed nuclear data which is based on the ACE (A Compact ENDF)
file format [80]. The unresolved resonance range processing methods presented until now are
based on the calculation of cross sections probability tables. As a consequence, these tables must
be part of the ACE files used by the Monte-Carlo codes, and in this chapter, the last processing
steps toward their integration in the ACE format will be presented.

Once ACE files containing the probability tables have been obtained, they can be used in
benchmark calculations to estimate the quality of the processed data. Benchmarks are simple
integral criticality experiments which can be easily modeled in Monte-Carlo codes and for which
several quantities of interest can be computed. Among them, the most expressive is the effective
neutron multiplication factor keff which measures the dynamic of the chain reaction. Another
important quantity is the neutron flux, which is directly related to the power, and which can be
computed in the various materials during a Monte-Carlo simulation. Integral experiment results
are valuable assets that serve to test evaluated data and computer code algorithms. The process
provides a way to draw conclusions about the quality of the nuclear data.

In this chapter, the results of several benchmark calculations on the basis of nuclear data
files processed differently will be presented. First, the GAIA-2 processing using the most basic
methods will be compared to NJOY, in order to get a reference starting point. Then, the impact
of questions developed in this thesis such as the probability tables construction or the resonance
correlations will be estimated taking into account the reference results in order to conclude about
their relevance.

6.1 Processing probability tables over the whole energy range

6.1.1 Generating the ACE file

Once probability tables have been produced in the unresolved resonance range, they must
be given to the Monte-Carlo codes. For MCNP and MORET, they need to be integrated in the
ACE-formatted files. The ACE format contains all the relevant information found in processed
nuclear data files for Monte-Carlo codes to run. In particular, they must contain the linearized
broadened cross sections in the resolved resonance range, and the probability tables in the
unresolved resonance range.

177



As a recall, linearized cross sections are simply tables of reaction cross section values versus
energy, so that the cross sections can be computed at any energy using a linear interpolation.
Such a linearized grid can be obtained when one relies on the calculation of the exact cross
section values1. Starting from a given grid2, a simple linearization recursive algorithm checks
at intermediate energy points whether the absolute difference between the linearly interpolated
value and the exact calculated value is below a certain threshold (usually, 0.1%). If not, the
algorithm adds the energy until the convergence criteria indicated by the user are met. At
the end of the procedure, unnecessary points are removed. In the resolved resonance range,
the reconstruction of reaction cross sections, their Doppler-broadening, and the calculation of a
linearized grid are performed by the GAIA-2 module DOP. The DOPmodule – which abbreviates
Doppler – performs equivalent tasks as the NJOY modules RECONR and BROADR.

Regarding the probability tables, all the developments achieved in the unresolved resonance
range and presented in this thesis have been integrated in GAIA-2 in a module named TOP,
which abbreviates Tables Of Probabilities. The TOP module takes as an input the initial ENDF
file which contains the unresolved resonance parameters, and computes probability tables for
all reference energies and required temperatures. Note that in order to keep the temperature
correlations, TOP computes the temperature-dependent probability tables from the same sets of
sampled resonance ladders. The calculation of the probability tables is not reliant on the resolved
resonance range computations, and DOP and TOP modules can be used independently. Only
their outputs have to be merged in the ACE files.

The ACE files are not easily human-readable, and no parser has been developed during
this PhD to handle that specific format. In order to produce ACE files, the choice has been
made to rely on the ACER module of NJOY which is able to cast the produced PENDF files
– usually used by NJOY to transmit the processed data between its modules – into ACE files.
The PENDF format is a simple extension of the ENDF format already handled by GAIA-2
to read the evaluations content. GAIA-2 thus produces NJOY-like PENDF files rather than
ACE files directly. In the present work, the PENDF files have been used like in NJOY to store
the processed data between the modules. More precisely, the DOP module first produces a
PENDF file which contains the linearized cross sections. The TOP module then completes this
file with the computed probability tables in the unresolved resonance range. Then, the ACER
module is called to turn the PENDF file in an ACE-formatted one to be used in applications.
Probability tables are stored in the section MF2 MT153 of the PENDF files, which is not an
ENDF-6 standard but can be handled by ACER. The MF2 MT153 section is simply defined
with the next ENDF-like formatting [10]:

[MAT,2 ,153/ ZA, AWR, 0 , 0 , 0 , NBIN/ ]
[MAT,2 ,153/ TEMP, 0 , LSSF , ICOMP, NW, NUNR/

ER(1) ,
PROB(1 , 1 ) , . . . , PROB(1 ,NBIN) ,
TOT(1 , 1 ) , . . . , TOT(1 ,NBIN) ,
ELAS(1 , 1 ) , . . . , ELAS(1 ,NBIN) ,
FISS (1 , 1 ) , . . . , FISS (1 ,NBIN) ,
CAPT(1 , 1 ) , . . . , CAPT(1 ,NBIN) ,
HEAT(1 , 1 ) , . . . , HEAT(1 ,NBIN) ,
ER(2) , . . .
<cont inue f o r a l l r e f e r e n c e en e r g i e s ER>]

Listing 6.1: Definition of the section MF2 MT153 in the PENDF files, used to store the
probability tables in the unresolved resonance range [10]

1In the resolved resonance range, exact cross section values at any energy can be computed using the R-Matrix
formalism and evaluated resolved resonance parameters.

2The grid must be carefully chosen, and actually already thin enough. For more details, check [1].
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On the previous listing, the adopted notations are typical from then ENDF format: ZA is
the ZAMID number of the processed nuclide, AWR its mass (in neutron mass unit), NBIN the
number of bins in the probability tables, TEMP the temperature of the processed probability
tables, NW the number of entries in the section, and NUNR the number of reference energies
at which the probability tables are computed. Then, for each energy ER, the weights and base-
points of the probability tables are given. In other words, the probability of each bin PROB
is provided, along with the corresponding total cross section value TOT and the conditional
partial cross sections for the elastic (ELAS), fission (FISS), and capture (CAPT) reactions. If
the HEATR module of NJOY has been used before, the probability tables are also given for the
heating (HEAT) cross sections which are used to compute the displacement per atom (DPA)
cross sections, used in fluence calculations notably. These sections have not been considered in
this work and the HEAT entry always equals 0. Finally, the LSSF flag indicates the use of the
probability tables in Monte-Carlo codes3, and the ICOMP flag indicates the reactions which
have been considered as the competitive4 in the processing.

The chaining of the modules is automatized in GAIA-2, which is able to handle the whole
generation of ACE files for many nuclides and required temperatures. The code also handles
the generation of auxiliary files required by the Monte-Carlo codes, called the ".xsdir" file for
MCNP, and ".xml" for MORET. These auxiliary files are dictionaries summarizing the content
of the ACE files5. GAIA-2 relies on a simple input file in YAML format6 [81]. When used
autonomously, both DOP and TOP modules make use of YAML-formatted files too.

Relying on such a modular structure based on the transmission of PENDF files not only
enables the coupling with ACER, but with any NJOY module. In particular, this is extremely
useful to cross-check the produced probability tables in the unresolved resonance range with
the NJOY’s ones, without taking into account the influence of the resolved resonance range
processing. The idea is simply to issue the GAIA-2 probability tables computed by TOP in
the PENDF file produced by the modules RECONR and BROADR of NJOY. The resulting
PENDF file will contain the linearized Doppler-broadened cross sections from NJOY (RECONR
+ BROADR) and the probability tables from GAIA-2 (TOP). The different processing paths
are presented on Figure 6.1. These paths correspond to different ways of arranging the modules
of NJOY and GAIA-2.

On Figure 6.1, the module UNRESR of NJOY is mentioned. This module serves to compute
the average Bondarenko self-shielded cross sections (sometimes referred as diluted cross sections)
used in deterministic neutronics codes. For the objectives of this work, such a module is thus
not important. In particular, its results are not transported to the ACE files. However, the
calculations of UNRESR are very easily performed when ones rely on probability tables as
described in Equations (1.22)–(1.24) of Section 1.1.6. The calculation of the Bondarenko self-
shielded average cross sections has thus been implemented in the TOP module. The calculations
can be performed for any dilution value σ0 provided by the user. This approach is in line with
the UNRESR module input card. Self-shielded average cross sections are issued in the specially
dedicated PENDF section MF2 MT152. The average self-shielded cross sections provided in
section MF2 MT152 are thus coherent with the probability tables furnished in section MF2
MT153.

As already mentioned in Section 1.2.3, the use of PENDF files introduces some weaknesses
due to the ENDF format restrictions. For instance in the listing 6.1, only three partial reactions

3The use of this flag has been precised in Section 2.1.2. It indicates if the furnished tables represent the actual
cross sections or factors to be applied to the average cross sections given in the PENDF file MF3 to handle the
self-shielding.

4In fact MT=51 in this work, even if there may be other reactions which combine with MT51, for instance a
second inelastic level.

5They essentially store the nature of the processed nuclide, the temperature, the length of the file, and the
presence of probability tables.

6The YAML format is a human-readable data serialization language commonly used to write input or config-
uration files. It plays the same role as the more famous XML or JSON format, but is more user-friendly.
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Figure 6.1: Several possible couplings between the modules from NJOY and GAIA-2 responsible
for the linearization and Doppler-broadening of cross sections in the resolved resonance range
(RECONR+BROADR / DOP), and for the computation of probability tables and diluted cross
sections in the unresolved resonance range (UNRESR + PURR / TOP). These couplings cor-
respond to the successive chainings of the modules used in this work to cross-check the quality
of the probability tables generation in GAIA-2 and NJOY.

can be considered. In order to get rid of these limitations the transmission of the processed
nuclear data between the modules of GAIA-2 is currently under work at IRSN to replace the
PENDF files with a Nuclear Data Handler. This latter is a set of serialized C++ classes able
to store the processed nuclear data between the execution of the successive modules in a format
developed to be more in phase with the underlying physics. The development of this object
echoes the current rise of the General Nuclear Data Structure (GNDS) format meant to replace
the ENDF files in the future [19]. In this thesis the PENDF have been kept as only the coupling
with NJOY has been considered, and only ENDF-formatted evaluations have been used.

6.1.2 Choice of the reference energy mesh

Until now the discussed problematic aimed at obtaining a probability table at a single refer-
ence energy. In the processed files to be passed to the Monte-Carlo codes however, probability
tables must be provided at several reference energies that span the unresolved resonance range.
In practice when a cross section value is required at a certain energy in the unresolved resonance
range, Monte-Carlo codes use the two adjacent tables defined at the surrounding reference en-
ergies, and interpolate the tables. The considered codes MORET and MCNP adopt a slightly
different procedure for the interpolation though. In MCNP the same sampled random number7 is
used in the two tables to retrieve the three partial cross sections from the chosen bins [69]. Then,

7It is the random number obtained from an uniform distribution between ]0, 1[ that is compared to the cumu-
lative probabilities of the table to select the bin.

180



an interpolation is performed to get the cross section value. In MORET, the same bin index is
used in the two tables, and the interpolation is performed between the retrieved cross section
values [82]. It must be remarked that both methods are strictly equivalent if the probability
tables have the same bin weights. In particular, this is the case if the tables are equiprobable.

Let us underline that both these interpolation strategies have flaws, if the tables do not have
the same bin weights. In the MCNP approach the bin indexes might not be the same, which
might create a bias: if the selected bin in the second table has a high variance8 for instance,
partial cross section values quite distant from the actual sampled value may be retrieved, which
provides a false interpolation. In MORET, keeping the same bin also creates a flaw as the
chosen bin in the second table might not correspond to the sampled random number. In fact
both methods rely on the same two assumptions. The first one is that probability tables have
been built according to the same method, which is usually the case. The second one is much
stronger. It supposes that the cross section distributions are smoothly-varying quantities of the
energy across the unresolved resonance range, so that bin weights and cross sections in all tables
are close, which legitimates an interpolation.

Under these conditions, the choice of the reference energy mesh seems actually quite im-
portant. The most natural solution at first sight would be to compute probability tables on
the reference energy mesh provided in the ENDF evaluation9. In practice however, probability
tables can be computed at any energy in the unresolved resonance range using linearly interpo-
lated resonance parameters between two of these provided reference energies. Thus, it is possible
to expand the energy mesh on which probability tables are given to the Monte-Carlo codes. In
particular this is what the NJOY code does. How it does will be exposed in this subsection.

From that point of view the problematic looks like another one briefly tackled in Chapter 1,
in which it was mentioned that any interpolation should rather be performed on resonance
parameters than on cross sections. There, providing or not a thinner mesh for the probability
tables is exactly the same problem. As a consequence, it seems interesting to estimate the
impact of the choice of the reference energy mesh at which probability tables are computed.

In fact, three possibilities for the choice of the reference energy mesh seem practicable:

• Using the reference energies from the ENDF evaluation. This is the most straightforward
choice.

• The NJOY solution. NJOY actually starts with the reference energy grid from the eval-
uation, but adds some pre-defined energies if some criterion is met on the width between
the reference energies. This is described in the next algorithm:

#se t o f d e f au l t e n e r g i e s to be p o t e n t i a l l y added in the unreso lved range
d e f au l t = [ 1 . 0 e1 , 1 .25 e1 , 1 . 5 e1 , 1 . 7 e1 , 2 . 0 e1 , 2 . 5 e1 , 3 . 0 e1 , 3 . 5 e1 ,

4 . 0 e1 , 5 . 0 e1 , 6 . 0 e1 , 7 . 2 e1 , 8 . 5 e1 , 1 . 0 e2 , 1 .25 e2 , 1 . 5 e2 ,
1 . 7 e2 , 2 . 0 e2 , 2 . 5 e2 , 3 . 0 e2 , 3 . 5 e2 , 4 . 0 e2 , 5 . 0 e2 , 6 . 0 e2 ,
7 . 2 e2 , 8 . 5 e2 , 1 . 0 e3 , 1 .25 e3 , 1 . 5 e3 , 1 . 7 e3 , 2 . 0 e3 , 2 . 5 e3 ,
3 . 0 e3 , 3 . 5 e3 , 4 . 0 e3 , 5 . 0 e3 , 6 . 0 e3 , 7 . 2 e3 , 8 . 5 e3 , 1 . 0 e4 ,
1 .25 e4 , 1 . 5 e4 , 1 . 7 e4 , 2 . 0 e4 , 2 . 5 e4 , 3 . 0 e4 , 3 . 5 e4 , 4 . 0 e4 ,
5 . 0 e4 , 6 . 0 e4 , 7 . 2 e4 , 8 . 5 e4 , 1 . 0 e5 , 1 .25 e5 , 1 . 5 e5 , 1 . 7 e5 ,
2 . 0 e5 , 2 . 5 e5 , 3 . 0 e5 , 3 . 5 e5 , 4 . 0 e5 , 5 . 0 e5 , 6 . 0 e5 , 7 . 2 e5 ,
8 . 5 e5 , 1 . 0 e6 , 1 .25 e6 , 1 . 5 e6 , 1 . 7 e6 , 2 . 0 e6 , 2 . 5 e6 , 3 . 0 e6 ,
3 . 5 e6 , 4 . 0 e6 , 5 . 0 e6 , 6 . 0 e6 , 7 . 2 e6 , 8 . 5 e6 ]

#s t a r t with the r e f e r e n c e en e r g i e s from the eva lua t i on
r e f e r e n c e = re f e r ence_energ i e s_end f ( )

#s t a r t i n g po int

8Which occurs in the inflected part of the distribution cumulative, as seen in previous chapter.
9At which resonance parameters are defined.
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e_prev = r e f e r e n c e [ 0 ]
e_next = r e f e r e n c e [ 1 ]

#loop on the r e f e r e n c e en e r g i e s
whi l e e_next < min(5 e6 , max( r e f e r e n c e ) ) :

#cond i t i on on the spac ing between r e f e r e n c e en e r g i e s
i f ( e_next > 1.26 ∗ e_prev ) :

#i f po s s i b l e , i n s e r t an energy from the
#de f au l t l i s t between e_prev and e_next

#sk ip to the next r e f e r e n c e en e r g i e s

Listing 6.2: NJOY definition of the reference energy grid

This algorithm is designed to fill the unresolved resonance range with additional artificial
reference energies when they are too spaced. The average resonance parameters are in-
terpolated at the extra energies, and probability tables are computed making use of these
interpolated average parameters.

• Using an averaged-linearized reference energy grid in the unresolved resonance range. A
linearization procedure in the resolved resonance range is usually the first step of any
processing. Notably, it is achieved by the modules RECONR from NJOY and DOP in
GAIA-2. As explained before, a linearized grid is designed to be thin enough so that the
tabulated cross sections can be linearly interpolated, which means the percentage error
between the interpolated value and the exact calculation at any energy is below a certain
threshold, for instance 0.1%. This linearization procedure is typical of the resolved range,
in which cross sections are reconstructed from the resolved parameters and R-Matrix
formulas. However, the idea can be transposed to the unresolved resonance range using
the average resonance cross section values computed from the Hauser-Feschbach formalism
of Equation (2.37) which makes use of the resonance parameters directly. A linearized grid
in the unresolved resonance range is thus defined to enable a linear interpolation of the
average cross section values. The computations of such an averaged-linearized energy grid
is simple and very fast. The methods used in DOP and described in [1] have been adapted
to provide a thin mesh on which probability tables can be computed. Such a mesh is
actually more coherent with the usual representation of the tabulated cross sections in the
unresolved resonance range in the PENDF file MF3. The calculation of the probability
tables at the new energies makes use of interpolated average resonance parameters, like in
the NJOY approach10.

Let us precise that using a thinner mesh for the calculation of probability tables is actually
recommended by the ENDF manual [2], which encourages the processing codes to take care
of providing an accurate mesh. As such, a ten-per-decades spacings is recommended11. In
the meantime, the evaluators are urged to provide a mesh dense enough so that the difference
between cross sections and resonance parameters is less than 1%.

The NJOY method is once again highly empirical, but provides a reference energy mesh very
close from the ENDF one. On the other hand an averaged-linearized mesh in the unresolved
resonance range is likely to produce a mesh thinner than the ENDF and NJOY ones, especially
if the tolerance criterion is fixed equal to 0.1% like it is often the case in the resolved resonance

10The Hauser-Feschbach successive average cross sections calculations during the linearization procedure also
use interpolated average resonance parameters.

11This is mentioned in the section 2.4.2 of [2]. Note that in Appendix F.2 of the same manual the interpolation
on cross sections is recommended, which is self-contradictory. It is believed the indication of Appendix F.2 can
be discarded.
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range12. As an example, Figure 6.2 displays the three reference energy meshes for several
nuclides of JEFF-3.2 in the unresolved resonance range, namely 238U, 96Mo, 235U, and 239Pu,
along with the corresponding average total cross section values obtained from Hauser-Feschbach
calculations. On this figure the NJOY reference energy mesh looks a lot like the ENDF evaluation
mesh. It is exactly the same for 238U and 239Pu, and simply adds a few energies for 96Mo and
235U. The linearized mesh, computed here with a linearization threshold of 0.1%, introduces
many more points.

Figure 6.2: The three possible reference energy meshes in the unresolved resonance range for sev-
eral nuclides of JEFF-3.2: 238U (top left), 96Mo (top right), 235U (bottom left), and 239Pu (bot-
tom right). Total average cross section values have been computed using the Hauser-Feschbach
formalism of Equation (2.37). The averaged-linearized meshes (obtained with a linearization
threshold of 0.1%) exhibit many more reference energies than the NJOY and ENDF meshes
respectively. The NJOY code only adds some predefined values, for example E = 35 keV for
96Mo.

The impact of the choice of the reference energy mesh will be investigated in the benchmark
integral calculations in Section 6.3. For now, a reference cross-checking between NJOY and the
developments in GAIA-2 in the unresolved resonance range is about to be presented.

6.2 Elements of validation

The objective of this section is to present some elements of validation of the methodology
established in this work for the probability tables computation implemented in the TOP module

12This is for instance the default value of the tolerance threshold used by DOP.
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of GAIA-2. By "validation" one means the verification that the probability tables calculated with
the methods developed in this thesis are accurate, and can be used in the context of criticality
applications. In a first step this validation will be performed by comparing the GAIA-2 results
with the NJOY code. In this cross-checking operation the GAIA-2 methods will be chosen to
mimic as much as possible the NJOY behavior. In particular, all the "new" methods developed,
such as k-clustering tables or correlated spacings, will be left aside. The accuracy of these
developments will be tackled further in Section 6.3. For now, the presentation will thus stick
to a basic implementation of the ladder method. The sampled ladders are large (300 pairs of
resonances) and make use of uncorrelated resonances. The number of Monte-Carlo iterations is
high (100 000). The probability tables are computed with the NJOY method, and the reference
energy grid is the same as NJOY.

6.2.1 Presentation of several benchmarks

Probability tables must be tested on benchmarks sensitive in the unresolved resonance range.
Such benchmarks are not so common because the epithermal range – in which lies the unresolved
resonance range for most nuclides – is not the most influential for traditional reactor physics
applications13, and especially for PWR14. Moreover, it has been seen in the diverse parts of this
document that the most critical nuclides are composed of spingroups with large or low Γ/D
ratios15. However, the nuclides commonly used in the nuclear applications (235U, 238U, 239Pu...)
present Γ/D ratios "in the bulk". The most critical cases of previous chapters (21Ne, 156Eu,
etc.) are actually quite exotic for the nuclear industry and no available benchmarks exist to
validate them. Finally, many important nuclides simply do not have an unresolved resonance
range defined. This is for instance the case of all isotopes of aluminum and all isotopes of iron
except 58Fe in JEFF-3.2.

There are benchmarks for which the effects of the tables are visible though, and which are
thus relevant to test them. Three families of benchmarks have been used in this work to test
three particular nuclides, 238U, 239Pu, and 96Mo.

IEU-MET-FAST for 238U

Three benchmarks of the series IEU-MET-FAST (like Intermediate Enrichment Uranium
and Metal benchmarks, designed for fast spectra applications) have been found to be sensitive
to the probability tables of 238U. These benchmarks are described in the International Handbook
of Evaluated Criticality Safety Benchmark Experiments [83], and are thus very popular. The
project in charge of the emission of this handbook each year is better known as the ICSBEP16

and is the international reference for criticality benchmarks.
The first benchmark, referred to as IEU-MET-FAST-003 in the ICSBEP handbook, is a

Russian experiment composed of a bare spherical assembly of uranium, with a 235U enrichment
of 36%. The rest of the uranium sphere is composed of 238U.

The second one, IEU-MET-FAST-007 [84] is very famous as it is a simplified version of
the well-known Big Ten experiment. This criticality setup is composed of a large cylindrical
assembly composed of a core of uranium, with a 235U enrichment of 10%, and a large and thick
reflector of 238U mainly. Big Ten experiments have been designed in the early 1970s at Los
Alamos National Laboratory, and reproduced several times in the following years.

The last one, IEU-MET-FAST-016 [85], is also a cylindrical design composed of a fissile core
of uranium and a layer of depleted uranium mainly composed of 238U around it. In the late

13The epithermal range plays a very important role in criticality safety on the other hand.
14As an example, benchmarks in the intermediate spectrum represent around 2% of the cases in the well-known

ICSBEP benchmark database.
15As a recall, Γ is the average total reaction width and D is the average spacing (both quantities are usually

energy-dependent). These notations have been used all along the document.
16Like International Criticality Safety Benchmark Evaluation Project.
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50s, a Zero-Power-Reactor (ZPR-3) configuration had been initiated in the Argonne National
Laboratory to be used as a fast reactor benchmark. This design has been adapted afterwards
to serve as a criticality safety benchmark in the intermediate energy range, which is the present
IEU-MET-FAST-016 benchmark. These benchmarks from the ICSBEP are well-known standard
experiments, well described in the literature. They are very interesting to validate the processing
of 238U, a crucial isotope of the nuclear industry.

The TEX experiments for 239Pu

The TEX program [86], as Thermal/Epithermal eXperiments, is a recent series of experiments
issued from an on-going work at Lawrence Livermore National Laboratory in collaboration with
several institutes in the world, among which IRSN. The objective of this series is to provide
experiments sensitive in the intermediate spectrum range, under-represented until now in the
ICSBEP database. These benchmarks have been recently submitted to the ICSBEP, and should
be accepted for the 2020 edition of the handbook [83].

The TEX experiments of interest in this work are composed of superposed plutonium metal
plates, with plates composed of an aluminum-polyethylene alloy between them to serve as mod-
erator. A thin polyethylene reflector has been added to the ensemble to get close to criticality.
The benchmark reference name as submitted to the ICSBEP is PU-MET-MIXED-002 (like
Plutonium Metal Mixed n.2). As it is often the case in this sort of experiments, several con-
figurations have been used which correspond to various thicknesses of the polyethylene plates.
This enables to tune the neutron spectrum to be sensitive to various energy ranges. For the PU-
MET-MIXED-002 experiment five configurations have been developed. All five configurations
are presented in reference [87], and can be used as benchmarks. In this thesis, only the first and
the second ones have been found to be sensitive to the 239Pu probability tables and thus retained.
They are referred in the following as PU-MET-MIXED-002-1 and PU-MET-MIXED-002-2.

These two set-ups have been used in this PhD to test the probability tables of 239Pu which
presents the interest to be a fissile element, especially important in the nuclear industry.

Artificial assemblies Pu-Mo for 96Mo

In the journey to investigate the quality of the implementation of the probability tables treat-
ment in the IRSN Monte-Carlo code MORET-5.D in 2015, the need for dedicated benchmarks
very sensitive to the probability tables emerged. As mentioned, not so many benchmarks are
available and most of them are not sensitive enough to display very huge discrepancies in case
the probability tables are modified. In order to get rid of this issue, a set of artificial benchmarks
have been designed at IRSN [82]. These benchmarks are named Pu-Mo-type1, Pu-Mo-type2,
Pu-Mo-type3, and UPuMoZr-type1. Each of them comes in three variants, which makes up to a
total of 12 benchmarks. The fissile material is plutonium, and the probability tables of interest
are mainly the molybdenum ones. These benchmarks are representative of some process of the
French facilities at La Hague, which is the main center for fuel recycle operations in France.
The benchmarks remain theoretical though. In particular they model infinite medium. This is
non-physical but enables to highlight the effect of the probability tables. As will be presented,
the effect of the probability tables is of the order of several thousands of pcm.

The use of these benchmarks has been carried out in this work to test the probability tables
of 96Mo, an intermediate-sized nuclide quite present in the nuclear industry.

6.2.2 Direct sampling comparison with NJOY

In the following, the aforementioned benchmarks will be used to estimate the impact of the
processing methods. The nuclides will thus be processed by GAIA-2, NJOY, and a combination
of the two codes. Then the resulting ACE files will serve as input nuclear data files in the same
benchmark configurations. In the definition of the benchmark configurations many materials are
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involved in the fissile volumes, the moderators, the reflectors, etc. For instance, in the Pu-Mo
experiments, the main reflector is composed of natural molybdenum, which involves both 95Mo
and 96Mo. However, in order to get a clear view of the impact of the different processings,
only a single nuclide is reprocessed with different methods for each benchmark family: 238U
for IEU-MET-FAST benchmarks, 239Pu for PU-MET-MIXED-002 benchmarks, and 96Mo for
Pu-Mo ensembles. All the other nuclides defined in the benchmarks rely on the same processed
files17. Resulting differences between the benchmark outputs are then expected to be due to the
different processings of each nuclide only18.

Before dealing with the benchmarking results, it is of high interest to have a first glance at
these three nuclides. Indeed, a first cross-checking can be performed to compare the probability
tables produced by the module PURR from NJOY and the ones from the module TOP of
GAIA-2. One may even look at the sampled cross section distributions of both codes.

Figure 6.3: Cross section distributions of 238U at 40 keV and T=293.6K, sampled by NJOY
(PURR module), and GAIA-2 (TOP module), for total, elastic and capture reactions. The
cumulative probability tables produced by both modules have been represented too. For partial
reactions these tables are conditional probabilities to the total reaction.

Figure 6.3 displays the PURR and TOP sampled cross sections of 238U at 40 keV and
293.6K for total, elastic, and capture reactions, along with their respective probability tables.
Figure 6.4 displays the distributions for 239Pu at 29.5 keV and 293.6K, for elastic, capture and
fission reactions. The fission has been represented rather than the total because 239Pu is a fissile
nuclide. Finally, Figure 6.5 represents 96Mo at 20 keV and 300K. The temperature slightly differs
in this latter case, because the corresponding benchmark calculations have been performed at
this temperature.

The case of 96Mo is rather interesting, as the sampled distribution is rather skewed on the
right. According to the discussions in Chapter 5, a difference between the diverse probability
tables construction methods is more likely to be observed for such cases. This will be confirmed
in the benchmarks results in Section 6.3.

The probability tables in TOP have been built with the NJOY-like method. In all cases, the
sampled cross sections in TOP have been produced with 300 pairs of uncorrelated resonances,
and 100 000 Monte-Carlo iterations. Considering the ratios Γ/D for the spingroups of the diverse
isotopes, these numbers are coherent with the developments presented in Chapter 3. Table 6.1

17They come from the JEFF-3.2 library processed by NJOY-2012.
18Except for the Monte-Carlo statistical uncertainty.
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Figure 6.4: Cross section distributions of 239Pu at 29.5 keV and T=293.6K, sampled by NJOY
(PURR module), and GAIA-2 (TOP module), for elastic, capture and fission reactions. The
cumulative probability tables produced by both modules have been represented too. For partial
reactions these tables are conditional probabilities to the total reaction.

Figure 6.5: Cross section distributions of 96Mo at 20 keV and T=300K, sampled by NJOY
(PURR module), and GAIA-2 (TOP module), for total, elastic and capture reactions. The
cumulative probability tables produced by both modules have been represented too. For partial
reactions, these tables are conditional probabilities to the total reaction. The TOP sampling
has been superimposed to PURR’s for readability, because it yielded less extreme values in that
case.

shows these Γ/D values of the first spingroup19 (l = 0) for all nuclides at the selected reference
energy, along with the estimated required number of pairs of resonances for the Kolmogorov-
Smirnov distance to be close to at least 1% of the 500-pairs distribution.

The sampled cross sections seem to match very well between the two codes in all cases. This
19This spingroup has the main weight in the final computations
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Nuclide Γ/D Required number of pairs
of resonance in the ladders

238U 0.019521 242
239Pu 0.063240 231
96Mo 0.005386 11

Table 6.1: Γ/D ratios for the first spingroup (l = 0) of the three nuclides at the considered ref-
erence energy represented on Figures 6.3–6.5. The corresponding estimated number of required
pairs of resonances in the ladders computed in Chapter 3 has been indicated.

close agreement indicates that both methods of cross sections reconstruction – at a reference
energy, or over a whole range – provide similar results. Let us underline that this constitutes a
result in itself. The main difference between both codes seems to lie in the tails of the sampled
distributions. For 238U and 239Pu, the TOP sampling seems to provide more extreme values
than PURR. However, for 96Mo, the opposite situation is observed. A more complete study of
the impact of cross sections reconstruction procedures in the ladder method would have been
necessary to draw a conclusion about this slight discrepancy.

6.2.3 Reference benchmark calculations

The benchmarks described in Section 6.2.1 have been modeled with the IRSN Monte-Carlo
code MORET-5.D. For each set of benchmarks, the effective multiplication factor keff has been
calculated with a statistical uncertainty of 5 pcm. The nuclear data files have been processed
with GAIA-2, NJOY, and a combination of both codes, in order to highlight and validate
the probability tables implementation in GAIA-2 compared to NJOY. Only a single nuclide is
processed differently in each benchmark: 238U is processed for IEU-MET-FAST benchmarks,
239Pu for PU-MET-MIXED-002 benchmarks, and 96Mo for Pu-Mo benchmarks. The initial
evaluation files come from the JEFF-3.2 library, and when NJOY was required20, the version
used was NJOY-2016.35. For all the other nuclides present in the benchmarks, processed files
available at IRSN have been utilized. These files had been obtained from the JEFF-3.2 library
processed with NJOY-2012.

Actually, the aforementioned nuclides have been reprocessed from five different manners.
First, the processing has been carried out with NJOY and GAIA-2, relying on their respective
modules in the resolved and unresolved resonance ranges. The NJOY processing is thus done by
calling RECONR and BROADR modules, and then PURR. The GAIA-2 processing is done with
the successive use of modules DOP and TOP. The computed values are stored in Table 6.2 and
Table 6.3, along with the experimental measured keff when available. The absolute differences
in pcm from NJOY or the experimental values have also been indicated.

At first sight, the results between the GAIA-2 and NJOY codes seem to match. In order to
observe the discrepancies between the codes only due to the resolved resonance range processing,
the nuclides of interest have been processed again by each code, without probability tables in
the unresolved resonance range. This means PURR and TOP modules have not been included.
The keff results are stored in Table 6.4 and Table 6.5. The absolute differences between these
two cases have been displayed, as well as the absolute difference with the NJOY or GAIA-2
results.

Two important conclusions may be drawn from the results of Table 6.4 and Table 6.5. First,
the results yielded by the resolved resonance processing of GAIA-2 and NJOY are very similar as
the most disagreeing benchmark is PuMo-type2-c2, with only a 23 pcm difference. Secondly, the
considered benchmarks are indeed sensitive to the probability tables in the unresolved resonance

20Note that the ACER module is always required.
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Benchmark IMF-003 IMF-007 IMF-016 PMM-002-1 PMM-002-2

EXP 1.0000 1.00490 1.00130 1.00090 1.00082
Experimental
uncertainty ± 0.00170 ± 0.00010 ± 0.00080 ± 0.00120 ± 0.00010

NJOY 1.00227 1.00420 0.99658 1.00029 0.99621

pcm / EXP 227 -70 -472 -61 -461

GAIA-2 1.00225 1.00388 0.99638 1.00017 0.9963

pcm / EXP 225 -102 -492 -73 -452

pcm / NJOY -2 -32 -20 -12 9

Table 6.2: keff calculations performed with the IRSN Monte-Carlo code MORET-5.D for several
ICSBEP benchmarks at T=293.6K. IMF is an abbreviation for IEU-MET-FAST, and PMM for
PU-MET-MIXED, which are part of the TEX experiments. Here, 238U and 239Pu from JEFF-3.2
have been processed by NJOY-2016.35 (modules RECONR, BROADR, and PURR) and GAIA-2
(modules DOP and TOP). Other nuclides come from JEFF-3.2 processed by NJOY-2012.

Benchmark PuMo-1.1 PuMo-1.2 PuMo-1.3 PuMo-2.1 PuMo-2.2 PuMo-2.3

NJOY 1.26253 1.20384 1.18172 0.54499 0.56957 0.74542

GAIA-2 1.26266 1.20382 1.18171 0.54519 0.56972 0.74541

pcm / NJOY 13 -2 -1 20 15 -1

Benchmark PuMo-3.1 PuMo-3.2 PuMo-3.3 PuMoZr.1 PuMoZr.2 PuMoZr.3

NJOY 0.30536 0.32337 0.47588 0.14322 0.1647 0.33278

GAIA-2 0.30560 0.32339 0.47589 0.14335 0.16474 0.33271

pcm / NJOY 24 2 1 13 4 -7

Table 6.3: keff calculations performed with the IRSN Monte-Carlo code MORET-5.D for several
fictitious benchmarks representative of La Hague operations at T=300K. Here, 96Mo from JEFF-
3.2 has been processed by NJOY-2016.35 (modules RECONR, BROADR, and PURR) and
GAIA-2 (modules DOP and TOP). Other nuclides come from JEFF-3.2 processed by NJOY-
2012.

Benchmark IMF-003 IMF-007 IMF-016 PMM-002-1 PMM-002-2

NJOY_NOPT 1.00283 0.99999 0.99316 1.00079 0.99649

pcm / NJOY 56 -421 -342 50 28

GAIA-2_NOPT 1.00295 1.00008 0.99302 1.0008 0.99653

pcm / GAIA-2 70 -380 -336 63 23

pcm / NJOY_NOPT 12 9 -14 1 4

Table 6.4: keff calculations performed with the IRSN Monte-Carlo code MORET-5.D for several
ICSBEP benchmarks at T=293.6K. IMF is an abbreviation for IEU-MET-FAST, and PMM for
PU-MET-MIXED, which are part of the TEX experiments. Here, 238U and 239Pu from JEFF-
3.2 have been processed by NJOY-2016.35 without probability tables (modules RECONR and
BROADR) and GAIA-2 without probability tables (module DOP). Other nuclides come from
JEFF-3.2 processed by NJOY-2012.
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Benchmark PuMo-1.1 PuMo-1.2 PuMo-1.3 PuMo-2.1 PuMo-2.2 PuMo-2.3

NJOY_NOPT 1.23747 1.1998 1.18001 0.50571 0.53854 0.73330

pcm / NJOY -2506 -404 -171 -3928 -3103 -1212

GAIA-2_NOPT 1.2373 1.19977 1.17994 0.50564 0.53831 0.73331

pcm / GAIA-2 -2353 -380 -164 -3575 -2889 -1139

pcm / NJOY_NOPT -17 -3 -7 -7 -23 1

Benchmark PuMo-3.1 PuMo-3.2 PuMo-3.3 PuMoZr.1 PuMoZr.2 PuMoZr.3

NJOY_NOPT 0.27832 0.29899 0.46132 0.13198 0.15422 0.32635

pcm / NJOY -2704 -2438 -1456 -1124 -1048 -643

GAIA-2_NOPT 0.27831 0.29898 0.46139 0.13189 0.15425 0.32618

pcm / GAIA-2 -2466 -2244 -1376 -1034 -973 -638

pcm / NJOY_NOPT -1 -1 7 -9 3 -17

Table 6.5: keff calculations performed with the IRSN Monte-Carlo code MORET-5.D for sev-
eral fictitious benchmarks representative of La Hague operations at T=300K. Here, 96Mo from
JEFF-3.2 has been processed by NJOY-2016.35 without probability tables (modules RECONR,
BROADR) and GAIA-2 without probability tables (module DOP). Other nuclides come from
JEFF-3.2 processed by NJOY-2012.

range21, as the differences with the complete NJOY and GAIA-2 cases are very important,
especially for the Pu-Mo series. In order to get a better understanding of the effect of the
unresolved resonance range processing, the probability tables of GAIA-2 have been used in
replacement of the NJOY ones in the NJOY processing path, and benchmarks calculations
performed. Results are stored in Table 6.6 and Table 6.7.

Benchmark IMF-003 IMF-007 IMF-016 PMM-002-1 PMM-002-2
NJOY

+ PT_GAIA-2 1.00228 1.00408 0.99643 1.00034 0.99617

pcm / NJOY 1 -12 -15 5 -4

Table 6.6: keff calculations performed with the IRSN Monte-Carlo code MORET-5.D for several
ICSBEP benchmarks at T=293.6K. IMF is an abbreviation for IEU-MET-FAST, and PMM for
PU-MET-MIXED which are part of the TEX experiments. Here, 238U and 239Pu from JEFF-3.2
have been processed by a combination of NJOY-2016.35 with the probability tables of GAIA-2
(modules RECONR, BROADR and TOP). Other nuclides come from JEFF-3.2 processed by
NJOY-2012.

It appears that the keff values do not change significantly when the tables of GAIA-2 are
used in place of the NJOY tables in the NJOY flow. This is an important result, as it appears
that the tables produced by GAIA-2 are close to the NJOY ones, and constitutes a reference
validation for the calculation results that will be presented later.

The absolute differences with NJOY for all processings have been represented on Figure 6.6.
In these figures, the actual computed keff values have been represented on the bottom right.

It is thus considered that the calculation of the reference tables in TOP and their integration
in place of PURR’s in the workflow of NJOY is validated. This bring two conclusions. First, the

21Actually, they have been selected for this reason.
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Figure 6.6: Absolute difference for the keff computed with MORET-5 for several processing of
238U (IEU-MET-FAST benchmarks), 239Pu (PU-MET-MIXED benchmarks) or 96Mo (Pu-Mo
series), between a full NJOY processing (RECONR + BROADR + PURR) and other processing
paths. Figures on the bottom right display the raw keff values obtained for the benchmarks.
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Benchmark PuMo-1.1 PuMo-1.2 PuMo-1.3 PuMo-2.1 PuMo-2.2 PuMo-2.3
NJOY

+ PT_GAIA-2 1.2621 1.20341 1.18132 0.54479 0.56915 0.74515

pcm / NJOY -43 -43 -40 -20 -42 -27

Benchmark PuMo-3.1 PuMo-3.2 PuMo-3.3 PuMoZr.1 PuMoZr.2 PuMoZr.3
NJOY

+ PT_GAIA-2 0.30519 0.32305 0.47561 0.14308 0.16455 0.33265

pcm / NJOY -17 -32 -27 -14 -15 -13

Table 6.7: keff calculations performed with the IRSN Monte-Carlo code MORET-5.D for several
fictitious benchmarks representative of La Hague operations at T=300K. Here, 96Mo from JEFF-
3.2 has been processed by a combination of NJOY-2016.35 with the probability tables of GAIA-2
(modules RECONR, BROADR and TOP). Other nuclides come from JEFF-3.2 processed by
NJOY-2012.

coupling is successful and can be used as a basis to test the impact in integral calculations of the
several new procedures in the unresolved resonance range developed in this work. The second
conclusion is related to the impact of the cross sections reconstruction in the ladder method.
As a reminder, the only difference between NJOY and TOP implementations in this section lies
during the reconstruction of cross sections step, just after the resonance ladder sampling. TOP
only produces a single cross section value for each sampled ladder, whereas PURR computes each
time a whole punctual cross section function on a grid around the reference energy as described
in Listing 5.1, and stores all the calculated cross sections. As both cross section distributions
match and integral calculations too, this seems to indicate that both methods provide the same
results.

In the following, the probability tables will be computed with TOP, relying on several meth-
ods developed in this thesis which differ from the reference implementation. They will be
included in the NJOY processing in order to investigate a potential impact on the keff integral
calculations.

6.3 Modified procedures in the unresolved resonance range

6.3.1 Probability tables construction

The first investigated modified procedure in the unresolved resonance range is related to the
form of the produced probability tables. For the nuclides 238U, 239Pu, and 96Mo, the probability
tables of GAIA-2 have been computed according to the several methods presented in Chapter 5,
and integrated in the NJOY-processed files (obtained after the use of RECONR + BROADR
modules). The considered methods of probability tables construction are equiprobable, k-means,
k-medians, NJOY-like, and logarithmic. All the tables have been built with 20 bins. In order
to get a reference to compare the calculations results, equiprobable tables with 1000 bins have
been also produced. These latter tables fit the cross section distributions with more points, and
we believe they may constitute a more accurate result than all the other methods.

The same set of benchmarks as in the previous subsection has been used with MORET
to compute keff values with a statistical uncertainty of 5 pcm. The different computed values
have been stored in Table 6.8 and Table 6.9 along with the difference (in pcm) with the results
obtained with the use of 1000-bins equiprobable tables. The keff variations have also been
represented on Figure 6.7 for all benchmarks.

Several comments can be made about these results. One of the most important features is
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Benchmark IMF-003 IMF-007 IMF-016 PMM-002-1 PMM-002-2

Equip.-1000 1.00227 1.00415 0.99649 1.00032 0.99625

NJOY-like 1.00228 1.00408 0.99644 1.00034 0.99617

pcm / Equip-1000 1 -7 -5 2 -8

Equip. 1.00223 1.00412 0.99650 1.00024 0.99618

pcm / Equip-1000 -4 -3 1 -8 -7

K-means 1.00218 1.00455 0.99703 1.00016 0.99614

pcm / Equip-1000 -9 40 54 -16 -11

K-medians 1.00234 1.00446 0.99693 1.00033 0.99628

pcm / Equip-1000 7 31 44 1 3

Logarithmic 1.00229 1.00210 0.99457 1.00024 0.99616

pcm / Equip-1000 2 -205 -192 -8 -9

Table 6.8: keff for ICSBEP benchmarks with Monte-Carlo code MORET-5.D, for several methods
of probability tables construction.

that the k-means and k-medians methods provide higher keff values than all the other ones22,
except logarithmic which is known to be the less precise. On the other hand, the smallest keff are
obtained with NJOY-like probability tables. Equiprobable tables stand in-between. The 1000
bins and 20 bins outcomes remain close to each other, even if adding bins in the equiprobable
tables seems to slightly reduce the computed keff values. Taking the 1000-bins equiprobable
outcome as a reference yields the very symmetrical aspect of Figure 6.7. Let us mention that all
these remarks are true for all the considered benchmarks, except for the PU-MET-MIXED-002
series and IEU-MET-FAST-003. For these latter ones, the differences between the computed keff
remain in the statistical uncertainty of the Monte-Carlo calculations which is 5 pcm. Actually,
these benchmarks were already the less sensitive to probability tables as shown in previous
subsection. As a consequence, conclusions cannot be drawn for these benchmarks from the
probability tables construction aspect, and all comments made in this subsection do not apply
to them.

The diverse methods of probability tables construction yield increasing keff values in next
order: NJOY-like, equiprobable, k-medians, and k-means tables. This observation is only true
for the benchmarks considered, but it seems an important issue. In particular, it may seem
surprising that the NJOY and k-clustering tables display an opposite behavior compared to
the equiprobable table, according to the reasons detailed in the previous chapter. It has been
mentioned that both methods well describe the cumulative and in particular the right tail,
at least better than the equiprobable method does. The main difference is that more points
are provided to describe the left tail of the cumulative with the NJOY method. This latter
reason could maybe explain the difference between the methods. Indeed the k-means method
and the k-medians method – even if it is less marked – do not deal with the left tail of the
cross section distributions accurately, and dedicate more attention to the bins with the higher
variance. These methods do not treat mre consistently the left part of skewed distributions (like
156Eu in previous chapter, and 96Mo in the present case) than an equiprobable binning does.
This fact might explain the higher keff values found with the k-medians and k-means methods.

To support this idea, one may note that the introduction of additional bins in the equiproba-
ble tables systematically reduces the keff. Incidentally, more bins result in a better fit of the left
tail. Moreover, for IEU-MET-FAST-007 and IEU-MET-FAST-016, the 1000-bins equiprobable

22To be slightly more precise the k-means method provides even greater values.
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Benchmark PuMo-1.1 PuMo-1.2 PuMo-1.3 PuMo-2.1 PuMo-2.2 PuMo-2.3

Equip.-1000 1.26350 1.20405 1.18178 0.54622 0.57056 0.74577

NJOY-like 1.26210 1.20341 1.18132 0.54479 0.56915 0.74515

pcm / Equip-1000 -140 -64 -46 -143 -141 -62

Equip. 1.26352 1.20416 1.18184 0.54639 0.57075 0.74601

pcm / Equip-1000 2 11 6 17 19 24

K-means 1.2645 1.20426 1.18193 0.54787 0.57173 0.74628

pcm / Equip-1000 100 21 15 165 117 51

K-medians 1.26405 1.20412 1.18193 0.54702 0.57128 0.74615

pcm / Equip-1000 55 7 15 80 72 38

Logarithmic 1.26484 1.20446 1.18211 0.54827 0.57214 0.74654

pcm / Equip-1000 134 41 33 205 158 77

Benchmark PuMo-3.1 PuMo-3.2 PuMo-3.3 PuMoZr.1 PuMoZr.2 PuMoZr.3

Equip.-1000 0.30624 0.32422 0.47641 0.14367 0.16511 0.33305

NJOY-like 0.30519 0.32305 0.47561 0.14308 0.16455 0.33265

pcm / Equip-1000 -105 -117 -80 -59 -56 -40

Equip. 0.30627 0.32426 0.47661 0.14372 0.16521 0.3332

pcm / Equip-1000 3 4 20 5 10 15

K-means 0.30729 0.32496 0.47683 0.14404 0.16549 0.33336

pcm / Equip-1000 105 74 42 37 38 31

K-medians 0.30682 0.32449 0.4768 0.14389 0.1653 0.3332

pcm / Equip-1000 58 27 39 22 19 15

Logarithmic 0.30777 0.32535 0.47708 0.14425 0.16569 0.33343

pcm / Equip-1000 153 113 67 58 58 38

Table 6.9: keff for Pu-Mo benchmarks with Monte-Carlo code MORET-5.D, for several methods
of probability tables construction.

tables provide smaller keff values than the NJOY binning. Actually, for a non-skewed case such
as 238U, an equiprobable binning with many points may better explore the left tail than the
NJOY binning, which could explain this result.

It appears on these examples that more bins in the left tail of the cross section distributions
might provide smallest values of the keff. The NJOY-like tables provide a good exploration of
this zone. However, the comparison with the 1000-bins equiprobable tables, seen as a "reference"
calculation, seems to indicate that the keff values computed from NJOY-like tables are under-
estimated for the Pu-Mo series. This is an issue in particular from a criticality safety point of
view. In fact the k-medians method yields results closer to the reference 1000-bins equiprobable
outcome, and should maybe be preferred. Taking this approach, the equiprobable tables seem
even better.

The main issue with this whole analysis is probably that it is only performed on the keff
while other quantities could be relevant. In particular, considering the neutron flux would be
interesting, as it is directly related to the reaction rates. keff remains a crucial quantity in
criticality safety analysis though, and it seems natural to calibrate tables according to it. In
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Figure 6.7: Absolute difference for the keff computed with MORET-5 for the benchmarks of
interest when probability tables are computed with a 1000-bins equiprobable method, or other
methods with only 20 bins. The results are provided for the 3 IEU-MET-FAST benchmarks
(reprocessing of 238U), the 2 benchmarks of the PM-MET-MIXED series (reprocessing of 239Pu),
and the 12 benchmarks of the Pu-Mo series (reprocessing of 96Mo).

particular, all the previous considerations should force us to revise the conclusions of the previous
chapter about the best choices of the tables.

Indeed, devoting more or less attention to the diverse parts of the cross section distribution
seems to have a direct influence on the keff. In such conditions, the best option would probably
be to dedicate the same level of attention everywhere, and the simplest option to reach this
goal is to raise the number of bins in the probability tables. This constitutes a major change
compared to the prerequisites of the previous chapter, where the number of bins was fixed to 20
not to slow down the Monte-Carlo computations. The integral calculations performed, and the
manifest disagreements between the methods seem to prove that the number of bins has to be
increased.

If the number of bins is increased however, the default method could become the equiprob-
able binning. Indeed, with this method, the Monte-Carlo codes could avoid implementing a
comparison routine at the bin selection step, and thus get faster. As a consequence, the increase
in the number of bins would not result in a major loss in speed calculations.

All theses discussions about the form of the probability tables will be tackled once more in
the paragraph about the choice of the reference energy mesh, in Section 6.3.3. Let us now focus
on another point of interest, namely the influence of correlating the resonance spacings during
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the sampling of resonance ladders.

6.3.2 Correlated resonance spacings

Benchmark calculations have been used in this work to estimate the influence of the resonance
spacings correlations in the ladder method. GAIA-2 probability tables for each nuclide have been
produced using ladders composed of correlated resonance spacings from the GOE, before being
integrated in the NJOY processed files (issued from RECONR + BROADR). Several processings
have been performed. GOE eigenvalues have been unfolded using the exact tabulated method
introduced in this work in Section 4.2.1 and with the more conventional asymptotic method
that relies on the cumulative of the Wigner semi-circle law. Both methods have been used to
produce NJOY-like and 1000-bins equiprobable tables. K-medians probability tables relying on
correlated resonance spacings with an exact tabulated unfolding have been produced too. The
computed keff for the benchmarks used until now are shown in Table 6.10 and Table 6.11. The
difference (in pcm) with an equivalent processing but using uncorrelated resonance spacings is
presented in Figure 6.8.

Benchmark IMF-003 IMF-007 IMF-016 PMM-002-1 PMM-002-2
Tabulated exact

unfolded –
NJOY tables

1.00224 1.00392 0.99634 1.00028 0.99624

pcm / Uncorrelated -4 -16 -10 -6 7
Asymptotic
unfolded –

NJOY tables
1.00225 1.00391 0.99639 1.00031 0.99629

pcm / Uncorrelated -3 -17 -5 -3 12

pcm / Tab. ex. unfolded 1 -1 5 3 5
Tabulated exact

unfolded –
Equiprobable-1000 tables

1.00226 1.00416 0.99647 1.00026 0.99623

pcm / Uncorrelated -1 1 -2 -6 -2
Asymptotic
unfolded –

Equiprobable-1000 tables
1.00225 1.00400 0.99650 1.00028 0.99622

pcm / Uncorrelated -2 -15 1 -4 -3

pcm / Tab. ex. unfolded -1 -16 3 2 -1
Tabulated exact

unfolded –
k-medians tables

1.00235 1.00431 0.99663 1.00037 0.99620

pcm / Uncorrelated 1 -15 -30 4 -8

Table 6.10: keff for ICSBEP benchmarks with Monte-Carlo code MORET-5.D, in case the
resonance spacings are or not correlated. Three methods of probability tables construction
have been considered, and for NJOY-like and 1000-bins equiprobable tables, two methods of
eigenvalues unfolding (cf. Section 4.2.1).

Several comments can be made from these results. First of all, correlating the resonance
spacings seems to have a small impact for the computed keff for IEU-MET-FAST and PU-
MET-MIXED-002 benchmarks. In most cases, the keff seems to be reduced compared to the
uncorrelated case. On the other hand, the impact is much bigger for the Pu-Mo series23, and
correlated spacings tend to produce higher keff.

The most significant observed fact is the weaker variation from the uncorrelated case when
probability tables are built from the k-medians or 1000-bins method rather than the NJOY

23Again, this is mainly due to the fact that these benchmarks are more sensitive to the probability tables.
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Benchmark PuMo-1.1 PuMo-1.2 PuMo-1.3 PuMo-2.1 PuMo-2.2 PuMo-2.3
Tabulated exact

unfolded –
NJOY tables

1.26342 1.20408 1.18189 0.54621 0.57049 0.74582

pcm / Uncorrelated 132 67 57 142 134 67
Asymptotic
unfolded –

NJOY tables
1.26353 1.20411 1.18184 0.54639 0.57076 0.74593

pcm / Uncorrelated 143 70 52 160 161 78

pcm / Tab. ex. unfolded 11 3 -5 18 27 11
Tabulated exact

unfolded –
Equiprobable-1000 tables

1.26368 1.20412 1.18188 0.54647 0.57081 0.74594

pcm / Uncorrelated 18 7 10 25 25 17
Asymptotic
unfolded –

Equiprobable-1000 tables
1.26392 1.20412 1.18191 0.54684 0.57109 0.74610

pcm / Uncorrelated 42 7 13 62 53 33

pcm / Tab. ex. unfolded 24 0 3 37 28 16
Tabulated exact

unfolded –
k-medians tables

1.26448 1.20417 1.18194 0.54743 0.57153 0.74651

pcm / Uncorrelated 43 5 1 41 25 36

Benchmark PuMo-3.1 PuMo-3.2 PuMo-3.3 PuMoZr.1 PuMoZr.2 PuMoZr.3
Tabulated exact

unfolded –
NJOY tables

0.30626 0.32409 0.47646 0.14353 0.16509 0.33305

pcm / Uncorrelated 107 104 85 45 54 40
Asymptotic
unfolded –

NJOY tables
0.30633 0.32426 0.47643 0.14361 0.16513 0.33309

pcm / Uncorrelated 114 121 82 53 58 44

pcm / Tab. ex. unfolded 7 17 -3 8 4 4
Tabulated exact

unfolded –
Equiprobable-1000 tables

0.30662 0.32436 0.47656 0.14364 0.16506 0.33314

pcm / Uncorrelated 38 14 15 -3 -5 9
Asymptotic
unfolded –

Equiprobable-1000 tables
0.30683 0.32458 0.47678 0.14378 0.16531 0.33323

pcm / Uncorrelated 42 7 13 62 53 33

pcm / Tab. ex. unfolded 21 22 22 14 25 9
Tabulated exact

unfolded –
k-medians tables

0.30721 0.32497 0.47721 0.14397 0.16537 0.33338

pcm / Uncorrelated 59 36 37 11 20 18

Table 6.11: keff for Pu-Mo benchmarks with Monte-Carlo code MORET, in case the resonance
spacings are or not correlated. Three methods of probability tables construction have been
considered, and for NJOY-like and 1000-bins equiprobable tables, two methods of eigenvalues
unfolding (cf. Section 4.2.1).

method. According to what has been said in Chapter 4, the variance of the distribution is
slightly reduced by taking into account the resonance correlations. Tails are thus less extreme.
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Figure 6.8: Absolute difference for the keff computed with MORET-5.D for the benchmarks
of interest when resonance spacings are or not correlated. The results are displayed when
probability tables are built according to the NJOY, 1000-bins equiprobable or k-medians method.
In the former cases, the results for two methods of unfolding are shown. The results are provided
for the 3 IEU-MET-FAST benchmarks (reprocessing of 238U), the 2 benchmarks of the PM-MET-
MIXED series (reprocessing of 239Pu), and the 12 benchmarks of the Pu-Mo series (reprocessing
of 96Mo).

As k-medians tables less describe the tails of the distributions than the NJOY-like tables, they
are actually less sensitive to the changes induced in the cross sections distributions. This remark
seems true for all the benchmarks of the Pu-Mo series, and thus for the relatively skewed isotope
96Mo. In any case, correlating the resonance spacings seems to have an impact on the integral
calculations. As more physics is embedded in these latter ones, systematically correlating the
resonance spacings appears like the way to go.

The other most interesting feature of Figure 6.8 is the close agreement between the outcomes
obtained with the asymptotic or tabulated exact unfolding. The maximum of disagreement is
of 37 pcm only in case of 1000-bins equiprobable tables, for PuMo-type2-c1 benchmark, which
is the most sensitive to the probability tables. As a consequence it looks like the use of the
tabulated exact unfolding method developed in Section 4.2.1 is still preferable, but relying on
the cumulative of the Wigner semi-circle law appears reasonable.
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6.3.3 Choice of the reference energy grid

The last point tackled in this section concerns the choice of the reference energy mesh across
the unresolved resonance range. Three possible choices have been presented in Section 6.1.2:
keeping the initial ENDF energy mesh, adopting the NJOY approach by adding several pre-
tabulated energies, or computing the probability tables on an averaged-linearized grid. This
latter method relies on the Hauser-Feschbach formalism to create the reference energy grid.
The resulting meshes are usually thinner than the NJOY or ENDF ones, and more coherent
with the average cross section values provided in the MF3 part of the PENDF file. In order to
investigate the impact of the reference energy grid the processing of the nuclides of interest has
been performed with the NJOY code (use of RECONR + BROADR), and probability tables
from TOP have been added to the files, like in previous analyses about the probability tables
form and resonances correlations. These tables have been produced on the averaged-linearized
energy grid. Several probability tables construction methods have been used. Then, ACE files
have been produced with the ACER module from NJOY, and keff computed with MORET-5.D
with a statistical uncertainty of 5 pcm for all benchmarks presented in Section 6.2.1. These
keff values are shown in Table 6.12 and Table 6.13. The differences with the keff obtained on
the NJOY reference energy mesh (each time comparing probability tables built with the same
method) have been displayed on Figure 6.9.

Benchmark IMF-003 IMF-007 IMF-016 PMM-002-1 PMM-002-2
Linearized mesh
NJOY tables 1.00224 1.00408 0.99638 1.00038 0.99627

pcm / NJOY mesh -4 0 -6 4 10
Linearized mesh
Equip. tables 1.00227 1.00428 0.99661 1.00034 0.99623

pcm / NJOY mesh 4 16 11 10 5
Linearized mesh
Equip. tables
(1000 bins)

1.00221 1.00414 0.99657 1.00031 0.99627

pcm / NJOY mesh -6 -1 8 -1 2
Linearized mesh
K-medians tables 1.00222 1.00427 0.99680 1.00028 0.99634

pcm / NJOY mesh -12 -19 -13 -5 6

Table 6.12: keff for ICSBEP benchmarks computed with the Monte-Carlo code MORET-5.D
when the reference energy mesh in the URR is a linearized grid.

Let us note that an impact due to the choice of the reference energy mesh is quite visible
for the Pu-Mo series – and thus for the processing of 96Mo – and not much for the ICSBEP
benchmarks. Moreover, and as in the previous discussion about resonance spacings correlations,
the results seem to highly depend on the method employed to build the probability tables.
Indeed, they do not change much when equiprobable probability tables are used. On the other
hand, providing a thinner reference energy mesh yields a consequent variation for the computed
keff when k-medians or NJOY-like probability tables are used.

A very important feature is the fact that k-medians-yielded keff are lowered by using a thinner
mesh, while NJOY ones are increased, and equiprobable ones remain constant. Considering
Figure 6.9 the resulting keff produced by different probability tables methods seem to get closer
when the reference energy mesh gets thinner. These results are displayed on Figure 6.10, which
is exactly the same as24 Figure 6.725 except that the calculations have been performed on an
averaged-linearized reference energy mesh rather than on the usual NJOY-like mesh 26.

24Except for the k-means and logarithmic methods which are not displayed.
25Which compared to the 1000-bins equiprobable tables the outcomes of the other methods of construction.
26The same scale has even been kept on the y-axis for both figures.
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Benchmark PuMo-1.1 PuMo-1.2 PuMo-1.3 PuMo-2.1 PuMo-2.2 PuMo-2.3
Linearized mesh
NJOY tables 1.26333 1.20394 1.18190 0.54562 0.57019 0.74568

pcm / NJOY mesh 123 53 58 83 104 53
Linearized mesh
Equip. tables 1.26377 1.20404 1.18185 0.54618 0.57086 0.74606

pcm / NJOY mesh 25 -12 1 -21 11 5
Linearized mesh
Equip. tables
(1000 bins)

1.26337 1.20402 1.18180 0.54619 0.57056 0.74587

pcm / NJOY mesh -13 -3 2 -3 0 10
Linearized mesh
K-medians tables 1.26365 1.20413 1.18196 0.54638 0.57073 0.74593

pcm / NJOY mesh -40 1 3 -64 -55 -22

Benchmark PuMo-3.1 PuMo-3.2 PuMo-3.3 PuMoZr.1 PuMoZr.2 PuMoZr.3
Linearized mesh
NJOY tables 0.30599 0.32383 0.47620 0.14345 0.16509 0.33299

pcm / NJOY mesh 80 78 59 37 54 34
Linearized mesh
Equip. tables 0.30640 0.32437 0.47668 0.14371 0.16517 0.33322

pcm / NJOY mesh 13 11 7 -1 -4 2
Linearized mesh
Equip. tables
(1000 bins)

0.30636 0.32417 0.47652 0.14363 0.16515 0.33302

pcm / NJOY mesh 12 -5 11 -4 4 -3
Linearized mesh
K-medians tables 0.30635 0.32421 0.47647 0.14368 0.16518 0.33321

pcm / NJOY mesh -47 -28 -33 -21 -12 1

Table 6.13: keff for Pu-Mo benchmarks computed with the Monte-Carlo code MORET-5.D when
the reference energy mesh in the URR is a linearized grid.

It turns out that providing a thinner mesh effectively reduces the discrepancies between the
several methods of probability table computations. The overall behavior of the diverse methods
remains true, as NJOY-like tables still provide smaller keff than the other methods, and k-
medians tables still issue higher keff values than the 1000-bins equiprobable reference. However,
all results are closer to the equiprobable results, which remain close to the results obtained on
the NJOY-like reference energy mesh.

This substantial difference between the NJOY-like mesh and the averaged-linearized one is
only due to the addition of reference energies at which probability tables are computed to describe
the cross sections across the unresolved resonance range. Let us underline that these tables are
built on the basis of the provided evaluated average resonance parameters, interpolated at the
said energies. As a consequence, providing such additional probability tables in the unresolved
resonance range cannot deteriorate the quality of the results27. As a consequence, the present
results on the linearized grid should be considered more accurate than the ones using the NJOY
grid. This is corroborated by the fact all probability tables methods provide more equivalent
results.

From this analysis, a conclusion and a sketch of explanation can be drawn. First, it seems
useful to provide probability tables on an extended number of reference energies – relying on
the interpolation of average resonance parameters – to simply get better results. It even seems

27The question is rather related to performance, and usefulness of computing additional probability tables in
the unresolved resonance range.
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Figure 6.9: Absolute variation of the keff computed with MORET-5 for the benchmarks of
interest when the reference energy mesh is linearized rather than following the NJOY method.
The results are displayed when probability tables are built according to the several methods of
probability table construction. The results are provided for the 3 IEU-MET-FAST benchmarks
(reprocessing of 238U), the 2 benchmarks of the PU-MET-MIXED series (reprocessing of 239Pu),
and the 12 benchmarks of the Pu-Mo series (reprocessing of 96Mo).

that the few energies added by NJOY are not enough, and the linearization of the average cross
sections looks like a better approach. Secondly, the poorer results observed on the NJOY mesh
must be related to the interpolation of probability tables when a cross section value is required
between two provided tables. As said in Section 6.1.2, the interpolation of cross sections bins
relies on the assumption that the cross section distributions are slowly-varying function of the
energy, so that tables are actually close to each other. From the integral results performed, it
looks like this assumption does not hold especially for methods that dedicate much attention to
the tails of the distributions like the NJOY and k-medians methods.

Let us finally highlight that the equiprobable probability tables are the less impacted by the
choice of the reference mesh, mainly because all the central values are not high-variance zones.
This fact seems to be a determinant argument to drop the 20-bins NJOY-like and k-clustering
tables in favor of large (and even very large) equiprobable tables, that Monte-Carlo can use to
directly sample cross section values.
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Figure 6.10: Absolute difference for the keff computed with MORET-5.D for several benchmarks,
between 1000-bins equiprobable probability tables and the other methods of construction with
20 bins. The reference energy mesh is linearized across the URR, contrary to the results of
Figure 6.7 which used a NJOY-like energy mesh.

Conclusion of the chapter

This chapter aimed at describing the integration of the methods developed in the precedent
chapters to treat the unresolved resonance range into the workflow of the processing codes. Our
current practice is to embed the computed probability tables in a PENDF file which contains
the linearized broadened cross sections. Then, the NJOY module ACER is utilized to convert
this PENDF file into an ACE file usable by Monte-Carlo codes MORET-5.D and MCNP-6.2
for neutronics applications. All the developments have been integrated in an independent C++
module named TOP which is now part of the IRSN processing system GAIA-2. All methods
and parameters of the probability tables construction, among which the nature of the tables,
the number of Monte-Carlo iterations or resonances to consider in the ladders, the possibility to
correlate the resonances spacings during the ladders construction and the unfolding techniques
to apply, are controlled from a single YAML-formatted input text file. Moreover, the current
use of PENDF files between the modules enables an easy connection with NJOY, useful to cross
check the results of the several methods. All the methods are thus easily understandable and
usable by a third-party user that would wish to use the GAIA-2 probability tables produced
by the TOP module. It must be underlined that this development part remains an important
element of this PhD work. The integration of the TOP module in the GAIA-2 system has been
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tested by cross-checking the obtained results with NJOY on integral calculations. To do so, a set
of benchmarks was retained, among which three benchmarks of the IEU-MET-FAST series of
the international criticality benchmarks reference ICSBEP, two of the recent TEX experiments
which have been submitted to the ICSBEP under the denomination PU-MET-MIXED-002,
and twelve benchmarks from the "Pu-Mo series". These latter ones are artificial benchmarks
developed at IRSN some years ago to be sensitive to the probability tables, and are representative
of some facilities of the French La Hague recycling plant. These benchmarks have been modeled
with the IRSN Monte-Carlo code MORET-5.D to compute keff with a statistical uncertainty of
5 pcm. The input ACE files for each nuclide have been processed by NJOY, GAIA-2, and a
combination of both codes for cross-checking purposes. The considered nuclides are 238U, 239Pu,
and 96Mo, quite used in the nuclear industry.

In a first step of validation, the TOP probability tables have been constructed to mimic
the NJOY ones. The ladder method has been adjusted on the basis of the work carried in
Chapter 3 to produce ladders large enough to provide correct cross section distributions. The
resonances were uncorrelated, and the tables have been built according to the NJOY method.
At this stage, the only important difference between the two methods took place at the cross
section calculation step. TOP only computes a single cross section value for each resonance
ladder, whereas NJOY reconstructs a complete punctual cross section in the vicinity of the
reference energy on a relatively large energy grid, and stores all values. A direct comparison
between the TOP and NJOY cross section sampled distributions and probability tables showed
a good agreement between both implementations. One must underline that this constitutes an
important result actually. As all steps of the methods are the same except the cross sections
reconstruction, this indicates that computing a punctual cross section around the reference
energy like NJOY does is a legitimate way of proceeding.

The produced tables have been integrated in the NJOY processed files containing the lin-
earized broadened cross sections (use of modules RECONR + BROADR), and the corresponding
files processed by GAIA-2 (use of module DOP). Tables issued from a complete NJOY process-
ing have also been produced. This operation has been performed for all three selected nuclides.
The aforementioned benchmarks have been run with MORET-5.D, and corresponding keff values
retrieved. The results showed a good agreement, which constituted a first step of validation of
the probability table implementation in TOP.

Once the probability tables implementation in the processing codes was proved successful,
modified tables have been produced by TOP to estimate the impact of the new methods de-
veloped in this thesis on integral calculations. The choice has been made to integrate TOP
probability tables in the NJOY processing flow. The first comparison aimed at estimating the
impact of the method of probability tables construction. Thus, 20-bins tables have been built
according to the methods developed in Chapter 5, and compared to a reference calculation made
with 1000-bins equiprobable tables. These latter are supposed to be more precise because the
number of bins is increased and thus detail more accurately the distributions. On most bench-
marks, and especially the ones from the Pu-Mo series, the NJOY-like tables seem to provide
much smaller keff than the equiprobable reference. In the same time, k-means and k-medians
tables provide overestimated values for the keff. NJOY and k-clustering methods have thus
opposite behavior compared to the equiprobable reference. A potential explanation is that the
left tail of the distribution is poorly represented in the k-clustering methods. In the meantime,
the NJOY tables provide too small values. As a consequence, the same amount of detail should
probably be dedicated to all parts of the distribution, and it seems nor the k-clustering nor the
NJOY empirical methods provide sufficiently good results with only 20 bins. In that context,
the best option is probably to increase the number of bins in the tables. In order not to slow
down the Monte-Carlo computations – which was the main objective of keeping a number of bins
rather low – we highly suggest that the Monte-Carlo codes adapt their implementations to use
large sized equiprobable tables, and take advantage of the direct access to bin values provided
by the equiprobable binning. This idea is even supported by the fact memory storage is not a
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real issue anymore, and large tables can be efficiently stored in the cache of recent computers.
The second development tested in this chapter concerned the use of correlated resonance

spacings. The benchmark integral calculations seemed to provide two relevant conclusions. First
of all, the two unfolding methods presented in Chapter 4 provide roughly equivalent results. If
the exact tabulated method seems to be the way to go, the usual use of the cumulative of
the asymptotic Wigner semi-circle law for the unfolding may remain acceptable. Secondly, the
effect of the correlation seemed more marked for NJOY-like tables than k-medians and 1000-bins
equiprobable tables. As the former better describe the tails of the distribution, the impact of
the resonance spacings correlation is actually significant in these parts. This is in agreement
with the conclusions of Chapter 4. As the resonance ladders using correlated spacings are more
physical, it is believed correlating the resonances should be used systematically in the framework
of the ladder method.

Finally, a last question has been treated in the chapter, which appeared to be of particular
importance. This is the problem of the reference energy mesh on which probability tables have
to be computed, and provided to the Monte-Carlo codes. The considered codes actually rely
on the interpolation of cross section values from the probability tables around the energy for
which they need a cross section. This interpolation should be handled carefully, and necessarily
introduces an error. This error is supposed to be negligible if the tables only slightly differ across
the unresolved resonance range. In fact, as average resonance parameters can be interpolated
at any energy in the unresolved resonance range from the evaluated resonance parameters,
probability tables can be computed at any energy in the range. In any case, it seems more
physical to interpolate resonance parameters rather than cross sections, and the choice of the
output reference energy mesh can be discussed. Three possibilities have been dealt with in this
work: the initial ENDF reference energies, the NJOY mesh as the code actually adds some
pre-tabulated reference energies under some conditions, and an averaged-linearized grid in the
unresolved resonance range. For this latter, the idea is to provide a linearized grid for the cross
sections in the unresolved resonance range, like in the resolved resonance range. The grid is
computed there for the average cross sections, calculated with the Hauser-Feschbach formalism.
The technique to compute such a mesh is a simple linearization algorithm, which can be adapted
from the resolved range practices. These meshes are thinner than the ENDF and NJOY ones,
and more coherent with the usual produced average cross sections in the MF3 section of the
PENDF file.

keff computations with MORET-5.D have been performed for the several probability tables
construction methods. The results compared to the NJOY mesh indicates a change for the
NJOY and k-clustering tables, while equiprobable results remain roughly the same. A closer look
reveals however that using a thinner reference energy mesh shifted the results for all probability
tables construction method closer to the reference many-bins equiprobable calculations. In other
words, the results match much better between all probability tables construction methods when
the reference energy mesh is thinner. This constitutes a strong result, as it seems to indicate
that the discrepancies between the several probability tables methods are due to interpolation
errors. In other words, the assumption that cross section distributions and probability tables are
slowly varying quantities as a function of the energy does not hold. The use of a thin reference
energy mesh seems thus preferable. Moreover, as the equiprobable tables can be used smartly
in Monte-Carlo codes, this reinforces the idea that these tables are the more adapted, if enough
bins are considered.
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Conclusion

In this document, the numerical methods implemented in the IRSN processing code GAIA-2
to treat the nuclear data in the unresolved resonance range have been presented. The main
objective of this thesis was to establish a clear methodology to handle nuclear data in the
unresolved resonance range, develop improved methods for data processing, and cross-check the
processed data with the outcomes of the existing current in-use software. The nature of the
evaluated nuclear data in the ENDF evaluations only enables the computation of cross sections
as average values (potentially self-shielded), or probability tables. On the basis of the Hauser-
Feschbach theory, average cross sections values can be computed directly from the average
resonance parameters. Using the ladder method, probability distributions of the cross section
values at particular reference energies can be sampled, and probability tables derived. Finally,
self-shielded average cross sections can be retrieved from the probability tables. These issues
have been addressed, and a piece of software named TOP has been developed and included
in the nuclear data processing code GAIA-2. A great majority of the aspects of the average
cross sections and probability tables calculation in the unresolved resonance range has been
investigated in the present work, summarized in this document, and tested against the NJOY
code. The impact of the diverse methods has been estimated in integral benchmarks. As a result,
a complete methodology for the unresolved resonance range has been proposed, which was the
initial objective of this thesis. In the course towards the establishment of this methodology,
several interesting questions and conclusions arose which may have applications in other fields
than the sole unresolved resonance range processing. They will be summarized in this conclusion
as well.

After a detailed background presentation of the topic in the first part of this document,
the real starting point of this work was to list all the hypotheses usually made at each step
of the ladder method. These issues could be simple practical details of implementation, or
more complex physical assumptions. Subsequently, the resulting structure of the document
followed the steps of the ladder method. The second part of this thesis focused on the statistical
sampling of resonances, which constitutes the backbone of the ladder method. The third part
focused on the construction of probability tables from a practical point of view, and their use
in neutronics applications. In this thesis, we have chosen to leap over the questions related to
the reconstruction of cross sections in the context of the ladder method. Several questions could
have been tackled, such as the impact of using another formalism than SLBW in the unresolved
resonance range (although this issue has been addressed by A. Holcomb in a previous PhD
dissertation) or the differences induced by reconstructing a whole punctual cross sections in the
vicinity of the reference energies rather than on a single point. These questions have not been
dealt with in this PhD, although some insights could be provided. Relying on the simplest
and more conservative assumptions for the cross sections calculations (SLBW formalism and
computations of cross sections values at the reference energies only), a complete methodology
has been developed.
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The most critical step of the ladder method is the resonance sampling. From the work carried,
it is recommended to rely on random matrices of the GOE to sample the resonance energies.
The idea is to choose matrices from the GOE, or more judiciously from equivalent tridiagonal
matrices, with a size equivalent to the number of resonances to be sampled. Once obtained,
the eigenvalues should be unfolded with the suggested exact tabulated method described in this
document, and their fluctuations retrieved. Resonance energies can then be placed successively,
starting with the leftmost one to avoid the bus waiting time paradox. In this work, the resonance
widths are sampled from χ2 distributions with an appropriate number of degrees of freedom,
but it should be possible to correlate them in a similar manner as that used for the resonance
energies sampling. The method is not straightforward, and has not been explored in this work.
In order to know the appropriate size of the matrix to sample, we recommend to consider for
each particular spingroup the ratio Γ/D between the spingroup average total width and average
resonance spacing, evaluated at the considered energy. Cases with large ratios require larger
resonance ladders. Providing a quantitative estimation for both parameters requires to establish
a criterion for the convergence of the sampled cross sections probability distribution, which is
very delicate. This is however mandatory for practical applications, and we suggest to compare
the Γ/D value to 10−2. Below this value, 100 pairs of resonance around the reference energy
provide accurate results. Above, the number of resonances has to be increased. In the meantime,
100 000 Monte-Carlo iterations looks like a minimal number to perform, which should maybe be
raised if the Γ/D ratio is small. Once the resonance ladders have been sampled, this work only
considered the calculations of cross sections at the single reference energy, even if strong insights
seem to indicate that calculating a whole punctual cross section around the reference energy for
each ladder is legitimate. The details of such a construction have not been investigated in this
document. The final step of the ladder method consists to build probability tables from the
cross sections sampling. In this document several approaches have been mentioned and two new
methods have been proposed based on a k-clustering algorithm, called k-means and k-medians.
These tables aimed at minimizing the variance of the mean cross section values in all the bins.
Several considerations on particular nuclides have shown that these tables, and especially the
k-medians ones behave well. However, further considerations based on benchmarks calculations
showed that the number of bins should probably be raised to an amount superior to the usual
value of 20, whatever the form of the tables. In fact, it is even believed that the best option is to
stick to very large equiprobable probability tables, with for instance 1000 bins. This assumption
is motivated by several facts. First of all, computer memory has become a less impacting issue
than speed for Monte-Carlo calculations. This paves the way for larger, more precise tables.
Secondly, larger tables might slightly decrease the speed of current Monte-Carlo codes which
rely on a search routine to select the probability tables bins. However, using equiprobable
bins, this search step can be omitted so that larger tables do not slow down the Monte-Carlo
codes. Finally, equiprobable tables make the energy interpolation of the probability tables
unambiguous and reduce the interpolation errors. This latter point has been proved important
in several cases. At last, the choice of the energy mesh on which probability tables are provided
to the Monte-Carlo codes is questionable. We propose the processing codes to provide them
on an averaged-linearized grid to be coherent with the doing of the MF3 PENDF file, which is
usually thinner than the initial reference energy mesh from the evaluations.

In this work, the unresolved resonance parameters have also been exploited to compute
average cross sections according to the Hauser-Feschbach formalism. This theory relies on the
calculation of a width fluctuation correction factor (WFCF), which can be accomplished from
several manners. In this work, the usual Moldauer method for the computations of the WFCF
has been implemented, as well as a more complex method referred to as the GOE method. This
latter includes GOE fluctuations of the resonance parameters whereas the former assumes the
resonance widths follow independent χ2 distributions, which is an asymptotic result only. In
order to compute the average cross sections with the GOEmethod from the resonance parameters
given in the ENDF formalism, two additional hypotheses were made. The first one relates
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the parameters to the transmission ratios following a classical practice, and the second one
divides the reaction widths provided with a degree of freedom greater than 1 into as many
reaction channels with equal widths. Following these hypotheses, average cross sections have
been computed for all elementary spingroups of JEFF-3.2 according to both methods. The
results closely match for spingroups with a low Γ/D ratio, and progressively disagree when the
ratio increases until it reaches a 30% disagreement. This huge outcome is not fully explained
yet, but could be due to the fact the relation between the transmission ratios and the resonance
parameters does not hold anymore. At the same time, the average cross sections derived from
the ladder method samplings have been compared for all these spingroups with the Hauser-
Feschbach values. Results match when the WFCF is computed with the Moldauer method.
Note that this is also true when resonance spacings are correlated according to the GOE in the
ladder method. This result should probably be investigated more in detail when the resonances
widths are correlated in the ladder method sampling step, which has not been carried out in
this thesis.

It is useful to underline some aspects of the work performed here which are of interest in
other fields. In particular, a common methodology has been developed in this work to derive
meaningful results, based on the decomposition of the evaluations content in the unresolved
resonance range into elementary spingroups. These elementary spingroups correspond to sets of
16 scalar input parameters that play a role in the unresolved resonance range calculations, for a
particular spingroup of a given isotope at a single reference energy. All calculations performed in
the unresolved resonance range can be decomposed into the sum of sub-calculations performed
for these elementary spingroups. Their main interest is directly related to their scalar nature,
which enables to perform detailed calculations to estimate the weight of each parameter in the
final results. This allows to identify the more critical cases for an output of interest. This
has been used successfully to identify spingroups of the nuclides of JEFF-3.2 which needed the
larger ladders or the more Monte-Carlo iterations at the resonance sampling step. It has also
been used to estimate the most sensitive cases to the resonance correlations, and for which the
width fluctuation correction factor differed between the Moldauer and GOE approaches. Finally,
it has been used to identify a nuclide with a very skewed probability distribution, 156Eu, for
which accurate probability tables are very difficult to build. It is believed this decomposition
of the evaluations content in elementary spingroups could actually be a relevant approach for
other purposes, such as a real sensitivity analysis of the resonance parameters in the unresolved
resonance range. This latter point has not been investigated in this work, but seems promising.

Considering the work carried out in this thesis, future perspectives look numerous and chal-
lenging, as they concern evaluators, processing codes developers, and neutronics codes users. To
begin with, the correlation of reaction widths in the Monte-Carlo sampling of resonances based
on the random matrix theory should be investigated. It is indeed probable that the influence of
the widths correlation bring out significant changes. In particular, the calculations of the average
cross sections should be inspected, and compared to the GOE variant of the Hauser-Feschbach
problem. Such an implementation would require to match the R-Matrix theory with the GOE
eigenvectors structure, and is not trivial. Secondly, we strongly suggest to design the new gen-
eration of neutronics Monte-Carlo codes – currently in development under the name HPC28 – to
be able to handle large equiprobable probability tables, which are likely to behave well for these
computations. In parallel, it is advised to get prepared for a more sophisticated representation of
cross section distributions, using parametric estimators notably. More tests are however required
to find a relevant form of such an estimator. Considering the proper development of GAIA-2, it
could be very interesting to achieve the implementation of a Nuclear Data Handler and an ACE
file parser to get rid of the ENDF limitations, and of any use of NJOY. This is an urgent topic
as the GNDS is about to become the dominant format for newly released evaluated nuclear data
files in the upcoming years. Finally, it seems relevant to perform benchmarks sensitive to the

28High Performance Computing.
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unresolved resonance range of several nuclides of interest for the nuclear industry, and sensitive
to the many nuclides for which not a single benchmark has been ever designed. This latter point
is a complex topic though, but could help to provide more information about the dynamic of the
statistical properties of the nuclear levels, and to determine the situations in which multigroup
or probability tables approaches are the more informative. All these issues are believed to be
extremely useful for both nuclear physics and engineering points of view.
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Appendix A: Central spacing
distribution in the bus waiting time

paradox

The aim of this appendix is to establish the distribution of the central spacing between
resonances around the reference energy in the ladder method. It has been pushed forward in
Section 3.1 that the situation can be closely related to a well-known paradox, the so-called bus
waiting time paradox, which states that someone randomly walking by a bus stop is highly likely
to wait more than (half) the mean time between the buses. To be consistent with the problem
in the literature, this appendix aims at establishing the statistical waiting time of a pedestrian
standing at a bus stop. Afterwards, the situation can be directly translated to the problematic
of nuclear resonances sampling. The proof presented here has been taken from [88], and only
requires a small mathematical background. We then present some convergence results for the
Poisson and Wigner spacing case.

Proof of the central spacing distribution

Over a day, successive buses reach a bus stop at times modeled with a sequence of random
variables Tk (k ≥ 2), all independent and following the same law T , in order to take into account
the randomness of traffic conditions. At time t = 0, the first bus leaves the bus stop29, and we
introduce Sk =

∑k
i=1 Ti the time at which the kth bus reaches the bus stop. Let us consider a

finite number of buses over the day, namely n buses, so that the last bus reaches the bus stop
at time t = Sn. A pedestrian walk by the bus stop at random before the end of the day. Let
us call T ∗n the time elapsed between the departure of the previous bus (let us define its number
as N∗n) and the arrival of the next one. The objective here is to detail the law of T ∗n and it’s
asymptotical behavior (which corresponds to the case where there is an infinity of buses).

First of all, let us remark that T ∗n (nor its limit T ∗) is unlikely to follow the same law T
which models the times between the buses. Indeed, T ∗n depends on the arrival of the pedestrian
at the bus stop. However, he is more likely to reach the bus stop while the time between the
buses is, actually, long. The fact that the distribution of T ∗n differs from T results in the waiting
time paradox. Figure 11 pictures the situation.

Let g be a measurable bounded function. As it is common, we will try to establish an
expression for E[g(T ∗n)], before taking g(x) = eiux to establish an equality in law through the
use of the characteristic functions. Breaking down T ∗n over the various values of N∗n, next
relationship holds:

29Of course, we neglect the time spent by buses at the bus stop to pick up travelers.
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Figure 11: The waiting time bus paradox: the pedestrian is more likely to reach the bus stop
while buses are far from each other [89]

E [g (T ∗n)] =
n∑
k=1

E
[
1{N∗n=k}g (Tk)

]
(1)

The pedestrian coming at the bus stop can be modeled with a random variable, which follows
USn, U being the uniform law over [0, 1]30. Subsequently, {N∗n = k} =

{
U ∈

]
Sk−1
Sn

, SkSn

]}
. There,

introducing the next lemma is useful:

Lemma. For a random variable Z independent from U, and any bounded measurable function
φ:

E[φ(U,Z)] = E
[∫ 1

0
φ(u, Z) du

]
(2)

It is thus straightforward to rewrite the the probability for the immediate bus to be the k-th
one:

P (N∗n = k) = E
[
1
{U∈]

Sk−1
Sn

,
Sk
Sn

]}

]
= E

[
Sk
Sn
− Sk−1

Sn

]
= E

[
Tk
Sn

]
(3)

There, we can notice that all Tk
Sn

follow the same law. As a consequence,

1 = E
[∑n

k=1 Tk
Sn

]
=

n∑
k=1

E
[
Tk
Sn

]
=

n∑
k=1

E
[
T1
Sn

]
= nE

[
T1
Sn

]
= nE

[
Tk
Sn

]
(4)

And thus P (N∗n = k) = 1
n , and N

∗
n follows a uniform law over {1, . . . , n}. We can now jump

back to the decomposition of the expected value of g(T ∗n) in Equation (1), and make use of the
proposed lemma once again:

E [g (T ∗n)] =
n∑
k=1

E
[
1{N∗n=k}g (Tk)

]
=

n∑
k=1

E
[
1
{U∈]

Sk−1
Sn

,
Sk
Sn

]}
g(Tk)

]
(5)

=
n∑
k=1

E
[
Tk
Sn
g(Tk)

]
(6)

= E
[
nT1
Sn

g(T1)
]

(7)

Let us now try to obtain the asymptotic distribution followed by T ∗n , when n → ∞. Let us
first define the random variable Xn = nT1

Sn
. Using the fact that Sn/n

n∞−−→ µ and the continuity
of the application x 7→ T1/x in µ, the variable Xn converges almost surely toward the random
variable X = T1/µ.

30This comes from the fact that the elapsed time between the first and last bus is Sn.
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It is now relevant to use the linearity of the expected value, to get

E[g(T ∗n)] = E[Xng(T1)] = E[Xg(T1)] + E[(Xn −X)g(T1)] (8)

Using the triangular inequality and the fact that g is bounded:

|E[(Xn −X)g(T1)]| ≤ E[|Xn −X||g(T1)|] ≤ ||g||∞E[|Xn −X|] (9)

Let us briefly prove that Xn
n∞−−→ X implies E[|Xn − X|] n∞−−→ 0. Such a demonstration

makes use of Lebesgue’s dominated convergence theorem to pass the limit into the expectation.
There, we can introduce the (continuous) function ψ+ : x 7→ max(x, 0), so that for x ≥ 0,
y ≥ 0, ψ+(x− y) ≤ x. Introducing Yn = ψ+(X −Xn), we are able to use Lebesgue’s dominated
convergence theorem, as

- ψ+ is continuous so Yn → 0
- |Yn| ≤ X
- X is integrable

and we can prove that lim
n∞

E[Yn] = E[lim
n∞

Yn] = 0.
Connecting |.| and ψ+ is straightforward, as for x ≥ 0, |x| = −x+2ψ+(x), and we can finally

conclude that E[|Xn − X|] = E[−X +Xn + 2ψ+(X −Xn)] = 2E[ψ+(X − Xn)] −−→
n∞

0 almost
surely.

Returning back to Equations (8) and (9),

lim
n∞

E[g(T ∗n)] = E[Xg(T1)] = 1
µ
E[Tg(T )] (10)

As this equation is true for any bounded measurable function g, we can conclude that (T ∗n , n ≥ 1)
converges to a variable T∗, whose density is f∗ : t 7→ t

µf(t), where f is the density of T , and µ
is the expected value of T .

This proves the bus waiting time paradox. In our case, the expected value of the Wigner
law equals 1, and the central spacing follows a Maxwell-Boltzmann distribution with parameter√

2
π
, in the asymptotic case of many resonances in the ladder.

Study of the convergence to the asymptotic limit

It is of interest to study the convergence of (T ∗n , n ≥ 1) to its asymptotic limit T ∗. Let us
remind that n is the number of buses in a day, or alternatively, the number of resonances in a
ladder for the problem tackled in this thesis. Carrying out this study is useful for the original
problem of resonance ladders sampling, especially when the ladder is built starting with the
leftmost resonance (NJOY-like method). More precisely, if the ladder has too few resonances,
the central spacing is likely not to follow the asymptotic distribution T ∗. Instinctively, this
may be understood as follows: enough resonances must be sampled so that the influence of the
starting point does not intervene anymore.

Let us come back to the buses, keeping in mind that the results are easily transportable to
the resonance ladders problem. We will simulate the waiting time of pedestrians according to
the number of buses in a day. In order to achieve this goal, we will simulate the arrival times
of n buses over a day, and then randomly sample the arrival time of a pedestrian between the
first and the last bus, and store the interval of time elapsed between the previous and next bus.
Then, we will repeat this operation over many days to obtain a valid statistic of the central
spacing. A slightly simplified version of the algorithm (where buses comes at random time, thus
following a Poisson process) can be found for instance in [89]. In Python, the algorithm using a
Wigner law for the spacing between the buses can the be written as:
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de f simulate_days ( ndays = 10000 , nbus_day = 100) :
span_times= [ ]
rand = np . random . RandomState ( )
f o r i i in range ( ndays ) :

spacing_buses = ray l e i gh . rvs ( s i z e=nbus_day−1, s c a l e=np . sq r t ( 2 . / np . p i ) )
a r r i va l_t imes = np . z e ro s ( nbus_day )
f o r j j in range (1 , nbus_day ) :

a r r i va l_t imes [ j j ] = ar r i va l_t imes [ j j −1] + spacing_buses [ j j −1]
passenger_time = ar r iva l_t imes . min ( ) + ( ar r i va l_t imes .max( ) −

ar r i va l_t imes . min ( ) ) ∗ rand . rand (1 )
i = b i s e c t . b i s e c t_ l e f t ( ar r iva l_t imes , passenger_time )
span_times . append ( a r r i va l_t imes [ i ] − ar r i va l_t imes [ i −1])

re turn span_times

An usual practice is to suppose that the arrival of a bus does not depend on the arrival time
of previous buses, 31 so that they actually follow a Poisson process and are not correlated. In this
case, the law of spacing between them is an exponential law E(x) = e−x, and the corresponding
asymptotic limit for T∗ is a Gamma law of parameter 2, E∗(x) = xe−x.

Figure 12 displays the convergence of the distribution of the spacing between buses at the
pedestrian arrival time, according to the number of buses in the day. It appears that the
convergence to the the limit T ∗ is slightly faster for the Wigner distribution. Anyway, the
asymptotic limit seems to be reached quite fast.

Figure 12: Convergence of the distribution of the interval between buses at a pedestrian arrival
as a function of the number of buses per day. On the left, when buses are uncorrelated (Poisson
process), on the right when the spacing between buses follows a Wigner distribution.

31Which is of course not the case, as buses have a time schedule, and are often able to adapt their journey to
maintain a more regular space between them.
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Appendix B: Materials related to
the size of ladders

Present appendix refers to the work carried out in Section 3.3.1 which investigated the
required number of resonances to sample in the ladder method.

First, the convergence plots – equivalent to Figures 3.6–3.8 – are plotted when cross sections
have been Doppler-broadened at T=293.6K. Several statistics representative of cross sections
sets (from which probability tables will be derived) obtained from ladders of different sizes
are compared to asymptotic values obtained from cross sections derived from large ladders of
resonances, composed of 500 pairs. For each statistics, the relative difference (in %) with the 500-
pairs result are plotted on Figures 13–15. Each set of figures corresponds to a particular reaction,
and each figure corresponds to a particular statistics. On each figure, each line corresponds to a
particular elementary spingroup from JEFF-3.2, defined in Section 3.2.1. The red line is the less
converged case. All calculations have been carried out with set of 100 000 cross section values,
corresponding to 100 000 ladders.

The results do not differ significantly from the behavior observed at T=0K, even if the
number of pairs to sample seems rather more important. This issue is discussed in the main
body of the present thesis.

In a second time, scatter plots equivalent to Figures 3.15–3.15 display the minimum number
of pairs of resonances to sample using a weaker criterion.
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Figure 13: Convergence of various statistics of the elastic sampled cross sections set toward
the reference (500 pairs of resonances) at T=293.6K. (a) mean, (b) variance, (c) skewness,
(d) kurtosis, (e) first quartile, (f) fourth quartile, (g) 95th percentile, (h) Kolmogorov-Smirnov
distance.
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Figure 14: Convergence of various statistics of the capture sampled cross sections set toward
the reference (500 pairs of resonances) at T=293.6K. (a) mean, (b) variance, (c) skewness,
(d) kurtosis, (e) first quartile, (f) fourth quartile, (g) 95th percentile, (h) Kolmogorov-Smirnov
distance.

221



Figure 15: Convergence of various statistics of the fission sampled cross sections set toward
the reference (500 pairs of resonances) at T=293.6K. (a) mean, (b) variance, (c) skewness,
(d) kurtosis, (e) first quartile, (f) fourth quartile, (g) 95th percentile, (h) Kolmogorov-Smirnov
distance.
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Figure 16: Required number of resonances to reach close to 1% of the 500-pairs values for each
spingroup, plotted against their Γ/D value, at T=0K. Each figure corresponds to a statistics of
interest: (a) mean, (b) variance, (c) skewness, (d) kurtosis, (e) first quartile, (f) fourth quartile,
(g) 95th percentile, (h) Kolmogorov-Smirnov distance.
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Figure 17: Required number of resonances to reach close to 1% of the 500-pairs values for
each spingroup, plotted against their Γ/D value, at T=293.6K. Each figure corresponds to a
statistics of interest: (a) mean, (b) variance, (c) skewness, (d) kurtosis, (e) first quartile, (f)
fourth quartile, (g) 95th percentile, (h) Kolmogorov-Smirnov distance.
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Appendix C: Statistics of cross
sections obtained from correlated

spacings

The random matrix theory has been adapted to produce resonance ladders with correlated
spacings in Chapter 4. For all 41 486 elementary spingroups of JEFF-3.2 defined in Section 3.2.1,
cross sections sets have been computed with this method. Due to the huge amount of time
required, only 20 000 Monte-Carlo iterations were performed with ladders of size 1000, to be
compared to the 200 000 iterations performed in Chapter 3 with uncorrelated spacings. The
next moment and quantile statistics have been computed for cross sections sets issued from both
methods: mean, variance, skewness, kurtosis, first and fourth quartile, and 95th percentile. The
percentage difference between each statistics computed from the two sets (Wigner - 200 000
iterations) and (GOE - 20 000 iterations) have been performed, and displayed in this Appendix
on Figure 18 for T = 293.6K. On this figure, the x-axis is an index on which spingroup cases
have been ranged and sorted in ascending Γ/D ratios.

Note that the Kolmogorov-Smirnov statistics widely used in Chapter 3 has not been com-
puted between these two ensembles of cross sections, because it requires to store all the elements,
which was too complex from a storage point of view. This statistics has been computed however
when both sets of cross sections are only composed of 20 000 elements, and displayed in the
body of this thesis. It notably served as a basis for a strict hypothesis test.

The lack of iterations and the apparently small impact of the spacings correlation on the
cross sections distributions makes the real impact of the method hard to separate from the
Monte-Carlo fluctuations. It seems like the variance is still slightly impacted by the change of
method in some cases, at high Γ/D.
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Figure 18: Relative difference between several scalar statistics ((a) mean, (b) variance, (c) skew-
ness, (d) kurtosis, (e) first quartile, (f) fourth quartile, (g) 95th percentile) of cross sections sets
obtained with correlated spacings (20 000 iterations) and uncorrelated ones (200 000) iterations,
at T=0K. Computations have been performed for all input parameters from JEFF-3.2, sorted
in ascending Γ/D.
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Résumé en français

L’Institut de Radioprotection et de Sûreté Nucléaire (IRSN) est l’organisme public chargé de
l’estimation et de la prévention des risques liés au nucléaire en France. Il est à ce compte chargé
d’études de sûreté, qui s’appuient sur des simulations numériques afin d’évaluer les risques
présents dans les installations nucléaires. Une discipline intervenant dans ces études est la
neutronique, qui s’intéresse au cheminement des neutrons dans la matière. Les logiciels de
neutronique modélisent de manière déterministe ou stochastique le transport des neutrons à
l’aide de l’équation de Boltzmann, qui fait intervenir les sections efficaces de réaction, grandeurs
décrivant la probabilité pour une réaction nucléaire particulière de se produire en fonction de
l’énergie des neutrons. Les sections efficaces font partie intégrante de l’ensemble des données
utilisées à l’interface entre la physique et l’ingénierie nucléaire, appelées données nucléaires.

Le calcul des sections efficaces est réalisé par des codes de traitement de données nucléaires,
dont le représentant le plus connu est le logiciel NJOY développé au Los Alamos National Lab-
oratory, aux Etats-Unis. Récemment, l’IRSN a engagé le développement d’un code équivalent,
GAIA-2, afin d’implémenter des méthodes indépendantes de traitement des données nucléaires.
L’objectif est de s’assurer de la qualité des données utilisées par les codes de neutronique au cours
des études de sûreté nucléaire. Les développements réalisés au cours de la présente thèse ont
visé à estimer la qualité des modèles existants pour traiter les sections efficaces dans un domaine
d’énergie particulier, appelé domaine des résonances non résolues, et à proposer de nouvelles
méthodes de traitement des données nucléaires. Ces dernières ont été mises en œuvre dans le
logiciel GAIA-2. Ce travail a été réalisé en collaboration avec le Commissariat à l’Energie Atom-
ique et aux Energies Alternatives (CEA) à Saclay, qui possède une expertise manifeste dans le
domaine et développe également un logiciel de traitement des données nucléaires, GALILLE-1.

Pour un type de noyau atomique donné, les sections efficaces sont des fonctions de l’énergie
du neutron incident. En réalité, trois plages énergétiques peuvent être distinguées. A faible
énergie, le couplage entre l’énergie du neutron incident et les niveaux d’énergie discrets du
noyau cible crée un phénomène de résonance, qui structure la section efficace. Celle-ci présente
alors des pics bien espacés ; il s’agit du domaine des résonances résolues. Au fur et à mesure
que l’énergie du neutron augmente, les résonances se rapprochent jusqu’à devenir indiscernables
expérimentalement. On parle alors du domaine des résonances non résolues. Enfin, à haute
énergie, les niveaux d’énergie se superposent et le phénomène de résonance disparaît, ce qui
définit le domaine du continuum. La présente thèse s’intéresse au calcul des sections efficaces
dans le domaine des résonances non résolues. Dans ce domaine, seules les valeurs moyennes des
paramètres expérimentaux depuis lesquels les sections efficaces sont calculées sont accessibles.
En conséquence, seules les valeurs moyennes des sections efficaces peuvent être calculées grâce
à un formalisme théorique dit de Hauser-Feschbach, ainsi que leurs distributions de probabilité
à des valeurs d’énergie tabulées, à l’aide d’une méthode Monte-Carlo appelée la méthode des
ladders. Cette dernière représentation est généralement exploitée sous forme discrète (on parle
alors de tables de probabilité) dans les codes neutroniques stochastiques.
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Au cours de cette thèse, une méthodologie complète de calcul des tables de probabilité dans
le domaine des résonances non résolues a été établie. La quasi-totalité des questions liées à la
mise en œuvre de la méthode a été abordée, et dans la plupart des cas des éléments de réponse
ont été apportés.

La première partie de ce document est composée de deux chapitres, qui constituent une
introduction détaillée aux problématiques de la thèse. Le premier chapitre débute avec un
rappel du modèle du noyau composé en usage pour décrire le phénomène de résonance dans
la théorie des réactions nucléaires induites par les neutrons. La notion de section efficace est
présentée, ainsi que sa représentation sous forme de tables de probabilité. Ces dernières sont une
forme discrète de la distribution de probabilité de la section efficace sur un intervalle énergétique.
Cette représentation est notamment utile car elle permet de prendre en compte lors des calculs
neutroniques le phénomène d’autoprotection, qui résulte de l’interaction entre le flux neutronique
et les inflexions résonantes des sections efficaces. Une présentation du cadre mathématique,
appelé théorie de la matrice R, permettant le calcul des sections efficaces depuis les paramètres
de résonance mesurés expérimentalement conclut ce premier chapitre.

Le second chapitre est dédié aux méthodes de traitement des données nucléaires dans le
domaine des résonances non résolues. Le format ENDF des évaluations de données nucléaires est
décrit. Les évaluations contiennent les paramètres de résonance moyens du domaine non résolu, à
savoir l’espacement moyen entre les résonances, et les valeurs moyennes des largeurs de réaction
auxquelles sont attribués des degrés de liberté. Ces paramètres sont fournis à des énergies
tabulées de référence dans le domaine non résolu, et pour plusieurs groupes de spin correspondant
aux états quantiques possibles de l’interaction neutron-noyau. Les deux voies de travail qui
permettent d’exploiter ces paramètres sont ensuite présentées. La première est la théorie de
Hauser-Feschbach, qui permet de calculer les sections efficaces moyennes depuis les paramètres
moyens directement. Celle-ci repose sur le calcul d’un facteur de correction de fluctuations des
largeurs (WFCF), qui repose habituellement sur une approximation de Moldauer supposant
que les largeurs de réaction suivent une loi statistique du χ2. La seconde approche est ladite
méthode des ladders. Le principe est d’exploiter les paramètres de résonance moyens fournis pour
échantillonner des jeux de résonances résolues statistiquement acceptables (appelés ladders) au
voisinage des énergies de référence. Un tel échantillonnage exploite les lois statistiques théoriques
des paramètres de résonance, à savoir la loi de Wigner pour l’espacement, et la loi du χ2 pour
les largeurs de réaction. Une fois les résonances échantillonnées, des valeurs de sections efficaces
peuvent être calculées à l’énergie de référence à l’aide des formules de la matrice R. En répétant
cette opération, un échantillonnage statistique Monte-Carlo de valeurs possibles des sections
efficaces est obtenu, à l’issue duquel une table de probabilité peut être dérivée. La méthode des
ladders se décompose en trois phases distinctes. La première est l’échantillonnage des résonances.
La seconde est le calcul des sections. La troisième est la dérivation d’une table de probabilité
discrète depuis l’échantillonnage des valeurs de sections efficaces. Au cours de cette thèse, seules
la première et la troisième phase ont été étudiées. Le calcul des sections efficaces suit les pratiques
usuelles. En particulier, les sections sont calculées avec le formalisme Single-Level Breit-Wigner
de la théorie de la matrice R à l’énergie de référence uniquement, et les sections élargies par
effet Doppler ψ − χ pour prendre en compte l’effet de la température.

La seconde partie de cette thèse se concentre sur l’échantillonnage statistique de réso-
nances dans le domaine non résolu. Dans le troisième chapitre, l’approche classique fondée
sur l’utilisation des lois de Wigner et du χ2 est conservée. L’objectif du chapitre est d’étudier
les modalités de l’échantillonnage. Dans un premier temps, deux méthodes de la littérature sont
présentées, qui correspondent aux pratiques des codes NJOY (Los Alamos National Laboratory)
et AMPX (Oak Ridge National Laboratory). Dans le premier cas, une première résonance est
placée à bonne distance de l’énergie de référence. Dans le second cas, un espacement central est
tiré afin de placer les deux résonances les plus proches de l’énergie de référence. Dans cette thèse,
il a été montré que les deux approches étaient équivalentes, à condition de tirer l’espacement

228



central dans la loi de Wigner biaisée par la taille. Cela permet d’éviter un biais dû à une appli-
cation originale du paradoxe de l’autobus. Dans un second temps, cette thèse s’est intéressée au
nombre minimal de résonances et d’itérations Monte-Carlo à tirer. L’idée est de reformuler le
problème en fonction des paramètres de résonances qui interviennent en pratique dans le traite-
ment du domaine non résolu. En réalité, les calculs dans le domaine réalisé lors du traitement de
bibliothèques de données nucléaires se décomposent en sous-calculs pour chaque noyau, chaque
énergie et chaque groupe de spin particulier. Les bibliothèques de données nucléaires peuvent
être transformées en groupes de spin élémentaires, jeux de 16 paramètres scalaires d’entrée de
la méthode des ladders. La conversion de JEFF-3.2 engendre ainsi 41 486 groupes de spin élé-
mentaires, qui constituent une base de cas-tests pertinente. Afin d’estimer le nombre nécessaire
de résonances pour chacun des 41 486 cas, un calcul de référence est fait avec des ladders com-
portant 500 paires de résonances, et des troncatures successives de celui-ci. Les échantillons
de sections efficaces obtenus avec différents nombres de résonances sont alors comparés avec la
distribution issue du calcul prenant en compte 500 paires de résonance, sur la base de diverses
statistiques (moments, quantiles, et distance de Kolmogorov-Smirnov), pour tous les groupes de
spin élémentaires. Un exercice similaire a été réalisé pour étudier l’influence des paramètres de
résonance sur le nombre minimal d’itérations Monte-Carlo requis. L’interprétation simultanée
des résultats pour ces deux études a permis de mettre en lumière le rôle pivot du ratio Γ/D
entre la largeur moyenne de réaction totale et l’espacement moyen entre les résonances évalué
à l’énergie de référence. Lorsque ce ratio est grand, plus de résonances et moins d’itérations
Monte-Carlo sont nécessaires pour le groupe de spin élémentaire concerné. Il est par ailleurs
suggéré de prendre au moins 100 000 itérations Monte-Carlo et 100 paires de résonances, et de
comparer le ratio Γ/D à 10−2 pour savoir quel critère augmenter.

Dans le quatrième chapitre, la loi de Wigner pour l’espacement a été remplacée par une
approche plus proche de la physique, qui fait intervenir la théorie des matrices aléatoires. L’idée,
due à Wigner dans les années 50, consiste à remplacer le Hamiltonien inconnu du système
par une matrice aléatoire ayant les mêmes symétries, et d’étudier la distribution statistique
des valeurs propres. Ces dernières correspondent aux niveaux d’énergie du noyau composé, et
donc aux énergies de résonance. Afin de prendre en compte le grand nombre de résonances du
Hamiltonien, la matrice aléatoire doit être étudiée lorsque sa taille tend vers l’infini. Les matrices
ayant les bonnes symétries sont les matrices de l’ensemble Gaussien Orthogonal (GOE) ; la loi de
Wigner correspond notamment à l’espacement entre les valeurs propres d’une matrice du GOE
de taille 2 × 2 seulement. En pratique, il est intéressant d’échantillonner toutes les énergies de
résonance en utilisant des matrices de grande taille, afin de prendre en compte les corrélations
entre les énergies de résonance. Dans cette thèse, les matrices du GOE ont été remplacées
par des matrices tridiagonales ayant les mêmes distributions de valeurs propres, en suivant
une recommandation de la littérature. Cette pratique permet d’accélérer les calculs. Une fois
obtenues, les valeurs propres doivent être déployées pour pouvoir récupérer leurs fluctuations.
Ce déploiement corrige la non-uniformité de leur densité. Deux méthodes sont proposées dans
cette thèse pour réaliser cette étape. La première consiste à utiliser la fonction de répartition
de la loi du demi-cercle de Wigner, forme asymptotique de la distribution des valeurs propres
de matrices du GOE de taille infinie. En pratique, les matrices échantillonnées ont des tailles
finies (de l’ordre de 102), et la densité de leurs valeurs propres ne suit pas la loi exacte du demi-
cercle de Wigner, mais une expression plus complexe dans laquelle des polynômes de Hilbert
interviennent. La deuxième méthode de déploiement proposée dans cette thèse est dite « tabulée
exacte », et repose sur le calcul numérique sur une grille fine de la densité exacte des valeurs
propres échantillonnées depuis des matrices du GOE de taille finie. Il a été montré que cette
méthode permet un meilleur déploiement des valeurs propres. Les jeux de résonances obtenus
en corrélant l’espacement diffèrent légèrement du cas non-corrélé. La loi de l’espacement est
différente de 2%, et les espacements sont autocorrélés négativement : un grand espacement entre
les résonances est plus susceptible d’être suivi par un petit. Les ladders obtenus sont ainsi plus
rigides, ce qui est mesuré par la statistique du ∆3. En pratique, la comparaison des résultats avec
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le cas non-corrélé sur les 41 486 groupes de spin élémentaires de JEFF-3.2 montre que l’impact
de la corrélation des espacements est faible. Une ouverture est faite au cours de ce chapitre sur
le calcul de Hauser-Feschbach utilisant une méthode de calcul du WFCF prenant en compte les
fluctuations du GOE. La comparaison avec les valeurs de sections efficaces moyennes calculées
avec l’approximation de Moldauer montre un bon accord pour les cas ayant un faible ratio Γ/D.
Le désaccord augmente avec cette grandeur. La comparaison avec les valeurs moyennes tirées de
l’échantillonnage corrélé ou non montre un accord avec l’approximation de Moldauer. Il serait
cependant intéressant de corréler les largeurs de réaction, afin d’estimer l’impact possible sur les
valeurs moyennes. Ce calcul n’a pas été réalisé au cours de cette thèse.

La dernière partie de la thèse s’intéresse au couplage avec les codes de neutronique stochas-
tiques (appelés également Monte-Carlo). Ceux-ci utilisent des tables de probabilité à 20 paliers,
version discrète des distributions de probabilité des sections efficaces approchées par l’échantillon-
nage statistique de la méthode des ladders. Cette conversion, qui n’est pas unique, fait l’objet du
cinquième chapitre de cette thèse. Plusieurs méthodes existantes sont présentées : linéaire, log-
arithmique, équiprobable, moments, et la méthode empirique de NJOY. Deux autres méthodes
sont introduites : k-means et k-medians, toutes deux fondées sur un algorithme de k-clustering.
L’objectif de ces méthodes est de trouver le découpage de l’échantillon de section efficace qui
minimise la variance des paliers, c’est-à-dire la somme des distances entre les éléments de chaque
palier de la table à la valeur moyenne (ou médiane) des paliers. Ces méthodes se fondent sur
un algorithme de programmation dynamique implémenté dans le package Ckmeans.1d.dp du
logiciel de statistique R. Comparées sur des cas typiques du domaine non résolu, comme 235U
ou 238U, ces méthodes se comportent très bien. En particulier, elles représentent avec précision
la queue de la distribution et les zones d’inflexion. Afin de tester ces méthodes sur des cas plus
exotiques, les 41 486 groupes de spin élémentaires de JEFF-3.2 ont été mis à profit de nouveau.
Pour chacun d’entre eux, la somme des distances des éléments de l’échantillonnage à la valeur
moyenne du palier auquel ils appartiennent a été calculée. Le cas où cette grandeur est la plus
élevée est un groupe de spin de 156Eu à 1 eV, pour lequel la distribution de probabilité de la
section efficace est très asymétrique. En ce cas précis, les tables k-means échouent à représenter
les premiers 95% de la distribution de la section efficace. Les autres méthodes ont également
des difficultés importantes pour s’ajuster à la distribution avec 20 paliers seulement.

Le sixième chapitre est un chapitre de validation des tables de probabilité échantillonnées par
la méthode des ladders dans des calculs intégraux appelés benchmarks. La production des tables
dans le domaine non résolu est intégrée dans le code de traitement de données nucléaires GAIA-2,
au sein d’un module appelée TOP (Table Of Probabilities). Trois séries de benchmarks de criticité
sont retenues, pour tester trois isotopes différents : 238U, 239Pu, et 96Mo. Une première série
de calcul du facteur de multiplication neutronique keff à l’aide du code Monte-Carlo MORET-
5.D a été réalisée, en utilisant les fichiers de données nucléaires de JEFF-3.2 traités par NJOY,
GAIA2, NJOY sans tables de probabilité, GAIA-2 sans tables de probabilité, et NJOY avec
les tables de GAIA-2 ; les tables de probabilité de GAIA-2 visant à ressembler au maximum à
celles de NJOY. Les résultats montrent un très bon accord, ce qui permet d’estimer le poids
des méthodes de traitement des tables lorsque les procédures sont modifiées. Ainsi, la forme des
tables, l’impact des corrélations des espacements entre les résonances, et le choix du maillage
énergétique sur lequel les tables sont fournies aux codes Monte-Carlo sont explorés. Concernant
ce dernier point, trois maillages sont considérés : le maillage initial des fichiers ENDF, une
procédure empirique de NJOY permettant d’ajouter des énergies de référence prédéfinies, et un
maillage dit moyenné-linéarisé, qui adapte une pratique du domaine résolu visant à fournir un
maillage permettant l’interpolation linéaire des sections efficaces avec moins de 0.1% d’erreur.
Les résultats indiquent clairement que l’erreur d’interpolation des tables est diminuée en ce
dernier cas. Par ailleurs, il est suggéré d’utiliser des tables de probabilité ayant un plus grand
nombre de paliers que 20, au vu des résultats divergents entre les méthodes équiprobables,
NJOY, et k-medians. En conséquence, la solution la plus pertinente est d’adapter les codes
Monte-Carlo afin qu’ils utilisent des tables équiprobables de grande taille (1000 paliers sont
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suggérés). En effet, les limitations liées à la mémoire des ordinateurs qui justifiaient l’utilisation
de tables de petite taille ne sont plus d’actualité, et l’utilisation de tables équiprobables permet,
grâce à leurs propriétés mathématiques, de se passer d’une routine de recherche de palier dans
les codes Monte-Carlo. Ces derniers ne seraient alors pas ralentis par l’utilisation de tables de
grande taille. Il est ainsi fortement suggéré que la nouvelle génération de codes neutroniques
stochastiques dite High Performance Computing se prépare à l’utilisation de telles tables de
probabilité.

Le travail réalisé au cours de cette thèse a ainsi permis de mettre en place une méthodologie
pour le traitement des sections efficaces dans le domaine non résolu. Les recommandations
faites au cours de cette thèse ont un impact pour les évaluateurs, les développeurs de codes de
traitement de données nucléaires, et les développeurs de codes neutroniques. Les développements
réalisés ont également été implémentés dans le code de traitement de données nucléaires de
l’IRSN, GAIA-2, au sein d’un module indépendant. Une validation sur une base de tests plus
large est néanmoins requise pour valider l’ensemble des résultats obtenus.
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