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Abstract

This thesis was developed in the framework of the multi-scale and multi-physics mod-
eling for the simulation of criticality accidents, carried jointly between the CNRS and the
IRSN. A multi-physics and multi-scale approach aims to produce a numerical model tak-
ing into account all the relevant physical phenomena existing in nuclear systems as well
as their coupling. This approach makes possible to improve the predictive capacities of
the single physics models and to numerically study the behavior of a nuclear system under
conditions that would be difficult to achieve or reproduce by experiments. The multi-scale
/ multi-physics approach is, therefore, particularly useful for the study of nuclear reactor
criticality accidents, or more generally, for all nuclear systems where a tight coupling exists
between neutronics, mechanics (of solids and fluids) and heat transfers.

The objectives of the thesis were, firstly, to develop a new numerical scheme for the
coupling between the neutronic code Serpent 2 (Monte Carlo code) and the Computa-
tional Fluid Dynamics (CFD) code OpenFOAM. Secondly, to develop the physical models
that allow greater flexibility for criticality accidents studies in terms of type of transients,
systems and phenomena considered. Among the various physical models developed dur-
ing the work, it can be mentioned the transient neutronic models based on a quasi-static
Monte Carlo approach and on the deterministic SP1 and SP3 methods. A porous medium
model was also developed during the work to allow performing studies on nuclear systems
containing a solid nuclear fuel cooled by a fluid. The numerical implementation of the
multi-physics coupling was performed in C/C++ in the OpenFOAM code. This code is
very well suited to numerically solve continuous mechanics problems using a finite volume
method. It also provides very large library of CFD algorithms (RANS, LES and DNS).
The thesis work specially focused on the study of the strategy to be followed to implement
the quasi-static method numerically with a Monte Carlo type code in the same platform
through internal coupling.

The performances of the coupling and the developed models were studied for differ-
ent scenarios and nuclear systems: the transient Godiva experiments, an international
benchmark for multi-physics codes for Molten Salt Reactor and the case of a hypothetical
criticality accident in a Boiling Water Reactor (BWR) Spent Fuel Pool. These diverse sce-
narios and systems were selected because they are characterized by presenting a multitude
of highly coupled physical phenomena which required a very careful modeling. One can
mention: the Doppler and fuel density effects, the thermal expansion and thermomechan-
ical stresses, the presence of laminar or turbulent flows in the coolant or liquid fuel, the
delayed neutrons precursors convection, and the energy and mass transfers and the phase
change in porous media. The comparison between the multi-physics tool and the available
data shows a very good agreement and confirms that the selected approach is pertinent for
the study of criticality accidents and allows obtaining very good precision and flexibility
while maintaining satisfactory computational costs.
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Résumé

Cette thèse s’inscrit dans le cadre de travaux portant sur la mise au point de modèles multi-
échelle et multi-physiques pour la simulation des accidents de criticité, menés conjointement
par le CNRS et l’IRSN. L’approche multi-physique et multi-échelle a comme objectif de pro-
duire un modèle numérique prenant en compte tous les phénomènes physiques importants
dans les systèmes nucléaires ainsi que leur couplage. Cette approche permet d’améliorer les
capacités prédictives des modèles et d’étudier de manière numérique le comportement des
composants d’un système nucléaire dans des conditions difficilement réalisables/reproduc-
tibles par des expériences. Elle est donc particulièrement utile pour l’étude des accidents de
criticité, ou plus généralement, pour tous les systèmes nucléaires où de très forts couplages
existent entre la neutronique, la mécanique (des solides et des fluides) et la thermique.

Les objectifs de la thèse étaient, d’une part, de développer un nouveau schéma numé-
rique de couplage entre le code neutronique Serpent 2 (code du type Monte Carlo) et le
code OpenFOAM (code de mécanique des fluides numérique ou CFD) et, d’autre part, de
développer des modèles physiques permettant une plus grande flexibilité dans les études
des accidents de criticité en termes de type de transitoires, de systèmes et de variété de
phénomènes. Parmi les modèles développés dans notre outil multi-physique on peut citer
des modèles neutroniques transitoires du type quasi-statique Monte Carlo et déterministes
SP1 et SP3. Un modèle thermo-hydraulique du type milieu poreux a été aussi mis en place
pour les études des systèmes comportant du combustible solide entouré par un calopor-
teur. L’implémentation numérique du couplage multi-physique a été faite en C/C++ sur la
plateforme OpenFOAM qui permet la résolution numérique de modèles de mécanique des
fluides (RANS, LES et DNS), et plus généralement, de la mécanique des milieux continus,
en utilisant la méthode des volumes finis. Le travail de thèse a porté par ailleurs sur l’étude
de la stratégie à suivre pour implémenter numériquement la méthode quasi-statique avec
un code de type Monte Carlo dans la même plateforme et à travers d’un couplage interne.

Les performances du couplage et des modèles que nous avons développés dans la thèse
ont été testées dans différents scénarios et systèmes nucléaires : expériences transitoires
avec l’expérience Godiva, benchmark international entre codes multi-physiques d’un ré-
acteur à sels fondus et scénarios hypothétiques d’accidents de criticité dans des piscines
de combustibles des Réacteur à Eau Bouillante (REB). Ces divers scénarios et systèmes
ont été choisis pour leurs nombreux phénomènes physiques couplés nécessitant une modé-
lisation très précise : effet Doppler, expansion thermique et contraintes thermomécaniques
dans le combustible, présence des écoulements laminaires ou turbulents dans le caloporteur
ou le combustible liquide, convection des précurseurs de neutrons retardés et phénomènes
de transfert de masse, transfert d’énergie et de changement de phase dans des milieux po-
reux. La confrontation des prévisions de l’outil multi-physique et des résultats disponibles
s’avère très satisfaisante et montre que l’approche adoptée est très pertinente et adap-
tée aux particularités des études de criticité avec un niveau de précision et une flexibilité
adéquate tout en présentant des coûts computationnels raisonnables.
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Chapter 1

Introduction

The French regulation concerning the safety rules related to the use and storage of

nuclear materials relies on separate decrees for operating nuclear reactors (where self-

sustained fission chain reactions or criticality are part of the nominal functioning of the

reactor) and for safety-criticality installations which encompass all other uses of nuclear

materials (as for instance fuel storage, fuel reprocessing facilities, Spent Fuel Pool (SFP),

Fuel Assemblies (FAs), transport of radioactive materials, loading of nuclear reactors, or

nuclear medicine just to name a few). In these latter installations, criticality conditions are

prohibited so that operators have to demonstrate that all industrial operations involving

fissile materials stay at a certain "distance" of criticality. Any flaw in the design of such an

industrial facility, or in the criticality-safety demonstration regulating its use, can therefore

lend itself to persisting neutron chains, eventually culminating in a critical or super-critical

state of the system. Such uncontrolled events, called criticality accidents, can result in

the release of high radiation doses and cause possible dispersion of radioisotopes, while

possibly exposing the workers and the public. Less than fifty known criticality accidents

with sanitary consequences occurred worldwide in the past, most of them being hardly

documented, the others being reviewed in [1]. The last known accident occurred in the

Mayak Russian military complex in 2017 causing the release of ruthenium 106 detected at

different places in Europe. Another example is the accident that took place in the Fuel

Conversion Test Building at the JCO company site in Tokai-mura, Japan. An 18% enriched

uranyl nitrate solution and an unfavorable geometry vessel used during the processing of

this solution, along with protocol violations, led to the loss of the lives of two operators

and to the exposure of the surrounding population to measurable airborne fission products
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activity. This criticality accident lasted more than twenty hours, so that questions were

raised afterwards concerning eventual mitigation strategies that could be used during the

happening of such events.

Understanding the progression of criticality accidents is however a prerequisite before

elaborating any such strategy, and this motivated different criticality programs and exper-

iments in the past. But bridging the gap between such experiments and their associated

modeling still constitutes a challenge: the diversity of the physics phenomena implied in

these experiments ranges from the ability to simulate thermal expansion and compressibil-

ity effects (such as shock waves) to the modeling of chemical processes such as radiolysis,

and to the fine calculation of precursors advection. Also, the quick variations found dur-

ing criticality accidents calls for relying on state-of-the-art methods in each sub-field: for

instance, the simulation of neutron transport under such conditions requires to precisely

calculate fission source distributions (to predict precise radiation dose), or to be able to

homogenize and condensate macroscopic cross sections on tightly coupled system with fast

variations of spatial and spectral distributions, among others. To study these phenomena

in different nuclear systems, the criticality experiments usually employ homogeneous or

heterogeneous nuclear fuel in very diverse configurations, geometries and size scales. In

addition, the time scales characterizing the physics of such experiments involve transients

ranging from some microseconds to many hours or even days.

In the past, different ad-hoc numerical modeling tools have been developed to support

criticality experiments but their use was very often restricted to a particular application:

for example, specific codes were developed to model the criticality of wetted powders

while other codes would support only the modeling of specific geometries containing liquid

solutions.

This PhD thesis therefore targets the development of a more general, multi-scale and

multi-physics numerical tool, that can be used to study in detail the large variety of physics

phenomena occurring during criticality accidents and allowing the best estimate of target

quantities and the propagation of uncertainties. A particular emphasis will be devoted to

neutronics models, as well as their coupling with thermal-hydraulics and thermal-mechanics

phenomena. However, in regards of such a versatile tool to model complex geometries and

phenomena in an environment rich in numerical methods suited to deal with convergence

problems, one has to consider the cost of relying on enlarged input data (materials prop-
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erties, geometry descriptions, initial and boundary conditions, ...) and on the intensive

computational resources that are required by such codes.

Therefore, to properly handle a wide range of physics phenomena, geometries and

time scales, it was decided that the code could be developed with the aid of the C++

Library Open-source Field Operation and Manipulation (OpenFOAM) [2][3] for continuum

mechanics and, specially, Computational Fluid Dynamics (CFD). This library provides a

syntax-friendly finite volumes framework with state-of-the-art CFD algorithms (RANS,

LES and DNS) and other continuum mechanics models (e.g. Conjugated Heat Transfer),

and a toolkit of numerical schemes making this library well suited for coupling with other

codes.

However, a certain degree of adaptation of current tools and implementation of new

models under the same solver was needed, especially concerning neutronics. Indeed, while

the use of brute-force approaches relying on the Monte Carlo solving of the critical trans-

port equations -making very few hypotheses- is not always practically possible (due to

the calculation costs), using deterministic solvers (such as diffusion) might also consti-

tute a challenge as these methods are often fine-tuned for specific problems (for example,

dealing with discontinuity factors [4] at assembly interfaces when simulating a Spent Fuel

Pool). Both complementary approaches were therefore developed to perform transient

calculations: a stochastic method based on the Monte Carlo code Serpent 2 [5][6] and a

deterministic method based on a Simplified PN (SPN) method. The Monte Carlo method

is indeed well suited for the modeling of criticality accidents since it can readily handle

a large variety of geometries and materials, it uses continuum-energy cross sections data,

and has the possibility to perform uncertainties propagation (for stand-alone neutronics

calculations at least). Nevertheless, an important drawback of these methods when cou-

pled to multi-physics codes is the prohibitive computational cost needed by a Monte Carlo

simulation, especially by the so-called Dynamic Monte Carlo [7] that simulates each

time steps and takes into account feedbacks reactions between time steps. To overcome this

issue, we explore the use of a Quasi-Static Method (QSM) to perform transient neutronics

simulations with a Monte Carlo code. As an alternative neutronic method, a Simplified

P1 (SP1) and a Simplified P3 (SP3) models were also developed and implemented in the

multi-physics tool. This latter deterministic approach will serve as a reference calcula-

tion to compare computational time and results accuracy with the ones obtain with the

Chapter 1 Juan Antonio Blanco 3
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stochastic methodologies.

The objectives of this thesis work include:

• The development of a multi-scales, multi-physics numerical tool internally coupling

Serpent 2 and OpenFOAM including a triple coupling between neutronics, thermal-

mechanics and thermal-hydraulics under the same solver.

• The analysis of the performances of a Quasi-Static Method when modeling fast -but

still realistic- transients. Other works have extensively studied in the past the limits

of the Quasi-Static Method but using hypothetical cases with a very large reactivity

insertion (and thus not realistic) intended for the method to fail as we will see in

section 5.1.

• The investigation of the performances of the tool to study tightly coupled small

nuclear systems where the diffusion hypothesis fails.

• The investigation of the performance of the tool to model liquid fuel.

• The evaluation of the respective computational cost when using stochastic or deter-

ministic approaches, in an effort to check the feasibility of the first when performing

a normally expensive transient calculation.

• The precise modeling of thermal expansion in systems where leakage is very depen-

dent on the changes in the cross sections due to density modifications and, thus, it

provides a strong correlation to thermal volume expansion.

• The implementation of a porous medium model to study criticality accidents in a

heterogeneous medium.

• The study of the convergence of neutron sources (in magnitude and spatially). In

nuclear safety studies, having a good estimation of the neutron source term is critical

for the accuracy of the analysis. To this extent, it can be noticed that the use of a

Monte Carlo code does not lead to over-prediction of the source term like in more

conservative methods.

In summary, this work presents the mathematical modeling and numerical implementa-

tion of the diverse phenomena taking place in nuclear systems subject to potentially acci-

dental conditions. The numerical implementation of the thermal-mechanics and thermal-

hydraulics models was performed using OpenFOAM [2][3]. The neutronics simulations

were carried-out using a Quasi-Static Method applied to the Serpent 2 Monte Carlo code

[5][6] and, a SP1 and SP3 stand-alone methods. This PhD manuscript is organized as fol-
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lows: the nuclear systems used to test the coupled tool are described in Chapter 2, then, a

detailed explanation of the neutronics, thermal-mechanical and thermal-hydraulics models

is given in Chapter 3. The methodology covering the Serpent-OpenFOAM coupling, the

implementation of the SPN equations, the density and Doppler broadening feedback effects,

and algorithms used in the simulation of the transients are discussed in Chapter 4. Then,

results on the deterministic and stochastic respective performances during the transient

simulations are presented in Chapter 5 along with a discussion on the main features of the

methods and their computational costs. In addition, a porous medium model applied to a

heterogeneous medium is studied. Finally, the conclusions on the overall performances of

the methodologies adopted are discussed in Chapter 6.
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Chapter 2

Criticality Accidents

As stated in the previous chapter, the precise study of criticality accidents in nuclear

systems has a major impact on the design of facilities and protocols used to deal with nu-

clear materials and constitute an operational experience that can be used during criticality

safety assessments. The physics phenomena involved in criticality accidents are however

diverse. A Phenomena Identification and Ranking Table (PIRT) has been done to identify

as much of the phenomena present during a criticality accident, the following list is not

exhaustive but covers a significant part of them:

• Transient neutron transport including super-prompt criticality

• Doppler broadening

• Radiolysis and bubbles formation within a fluid

• Precursors transport in solid and liquid medium

• Buoyancy

• Conjugated heat transfer

• Radiative heat transfer

• Incompressible laminar and turbulent flow

• Compressible flow and shock waves

• Multi-phase flow

• Stress and strain analysis

• Elasticity and plasticity

• Thermal expansion

• Geometrical and material heterogeneity

• Different time and space scales
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• Anisotropic medium

• Phase change and mass transfer (e.g boiling and condensation, solidification)

• Fluid free surface (sloshing)

• Multi-phase multi-component flow in porous medium

Hence, the purpose of this work was to develop a tool versatile enough to tackle as

many as possible of these complex phenomena while being capable of robust prediction.

For this reason, three systems, or cases of application, were selected in an attempt to

include a selection of the aforementioned phenomena.

The first consists in a solid homogeneous medium known as the Godiva Experiment,

characterized by its fast neutronic transient (∼ µs) and thermal expansion as it will be

introduced in Section 2.1. The second is a liquid homogeneous medium based on

a simplification of the Molten Salt Fast Reactor (MSFR) developed as a benchmark by

the participants of the European Project SAMOFAR. It introduces convective phenomena

including buoyancy and precursors transport in a slower transient (∼min). This Molten Salt

Cavity Benchmark (MSCB) is described in Section 2.2. Finally, the recriticality possibility

of a Spent Fuel Pool assembly is explored with a slow transient (∼hours) in a solid-liquid

heterogeneous medium with a hypothetical model based on the Fukushima nuclear

accident. An overview of the progression of such an accident is discussed in Section 2.3.

2.1 LANL Godiva Experiment

The Godiva device was built by Los Alamos National Laboratory (LANL) and has

been in operation since August, 1951. The device is made from Oralloy: uranium enriched

to a nominal U-235 isotopic abundance of 93.5% . It has three main sections that could

be assembled into a nearly spherical shape as can be seen in Figure 2.1. In practice, a

shim of Oralloy had to be added for achieving criticality giving to the system a slightly

elongated sphere shape. In addition, to fine tune the experience reactivity, the device had:

i) two different mass adjustment Oralloy plugs on the surface, ii) two Oralloy rods could

be inserted in the static central section for continuously variable reactivity control and iii)

a third Oralloy rod that could be propelled by an explosive charge for a rapid reactivity

insertion. A more detailed description of the device is given in reference [8].

Other identified interesting experiments including more phenomena were the SILENE
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Reactor [9] (includes radiolysis and shock waves) and the CABRI Facility (Reactivity-

Initiated Accident which must be considered in the safety analysis of PWRs). For lack of

time, these were not modeled but should be studied in the future.

Figure 2.1 – Godiva device in scrammed position [10].

As discussed, we are particularly interested in studying the performance of the neu-

tronics models during very fast transient. Such transients were performed in Godiva as

a result of a reactivity insertion over prompt critical and were known as the Godiva

prompt-burst program [10]. These experiments were intended to study various phe-

nomena: firstly, the system behaviour in the verge of a delayed to super-prompt criticality

(reactivity ranging from 95 to 110 cents); secondly, the self-termination of the burst due

to the assembly thermal expansion effect on leakage; thirdly, whether the mass associated

with prompt-criticality prediction was accurately predicted from the estimations at low re-

activities with the in-hour equation; and finally, if there were short-period delayed neutron

emitters.

The Godiva prompt-burst program experiments were initiated at zero power (low neu-
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tron counts) and without external source by a quick reactivity insertion, which caused a

sudden exponential increase in the fission rate and, therefore, in the power. Afterwards,

the assembly thermal expansion caused a decrease in reactivity causing the power to drop.

This bell-shaped transient is known as burst. Finally, a lower power level was sustained by

the delayed neutrons and it was terminated upon scramming of the assembly (disassembly

of the device). The experimental results were compared in [10] with an analytical model

based on point kinetics taking into account the thermal expansion feedback as observed in

Figure 2.2.

In the same work, experimental results of several power excursions with initial zero

power (low neutron counts) without source with different reactivity insertions were re-

ported.

Figure 2.2 – LANL Data Experimental and Point Kinetics model.

In this work we focus the analysis in the transient having a 29.5 µs reactor period

because it was fast enough not to have a significant precursors concentration but still slow

enough to avoid pressure waves. The maximum reactivities were chosen in the experiments

to limit this issue, as explained in [11].

The LANL point kinetics model reported in [8] follows equation 2.1 for the fission rate

Ḟ :

Ḟ = f2ρ2
0ap

expα (t− tm)

[1 + expα (t− tm)]
2 (2.1)

where ρ0 is the initial super prompt reactivity in dollars, f = 4.8 × 1016 fissions and ap =
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1.03 × 106 s−1 are parameters derived from experimental data [8], α = 1/Tr with Tr being

the reactor period or e-folding time.

The fission rate peak value and the total fissions can be calculated from equations 2.2

and 2.3 respectively [8].

ḞMax =
1

2
ρ2

0ap (2.2)

ḞTot = 2ρ0 (2.3)

From this description, it can be seen that a model covering neutronics - thermome-

chanical coupling with volume thermal expansion was needed. It was developed and im-

plemented as explained in Chapters 3 and 4 respectively. The results for the Godiva

Experiment 29.5 µs prompt-burst are later presented in Section 5.1.

2.2 CNRS Molten Salt Square Cavity Benchmark

The study case used to evaluate the performance of the multi-physics coupling in a liq-

uid homogeneous fissile medium was the multi-physics benchmark proposed by the CNRS

to identify error sources between different multi-physics tools [12].

As displayed in Figure 2.3, the system is a critical 2 m x 2 m 2-D square cavity filled

with a FLiBe molten fuel salt, under natural and forced convection conditions. The FLiBe

molten fuel salt has a composition of 6Li, 7Li, 9Be, 19F and 235U with atomic fractions

of 2.11488%, 26.0836%, 14.0992%, 56.3969% and 1.30545% respectively. Both, the salt

composition and geometry dimensions were selected to match the MSFR spectral indexes

and dominance ratio, to provide a representative simplified case study. All cavity walls are

fixed, except the upper one which have a constant velocity Ux to induce forced convection

conditions inside the cavity. Non-slip velocity and adiabatic conditions are imposed at

all the cavity walls. Gravity and thermal fluid expansion are allowed to create a strong

coupling between thermohydraulics and neutronics phenomena.

To avoid uncertainties arising from turbulence modeling, the benchmark uses laminar,

incompressible formulation of the Navier-Stokes equations along with Boussinesq approxi-

mation to determine the impact of natural circulation, fuel salt thermal expansion feedback

and delayed neutron precursors drift in a simple way (modeled in Chapter 3). The choice

of the viscosity, Prandtl (Pr) and Schmidt (Sc) numbers were carefully optimized in order
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to highlight important physical phenomena and reduce, at the same time, the impact of

numerical issues whose evaluation was beyond the scope of the present benchmark. The

heat is removed from the cavity via a uniform artificial volumetric heat removal coefficient:

q
′′′

(~r) = hsink (T (~r)− Tref ) (2.4)

where hsink = 106 WK−1m−2 and Tref = 900 K.

The neutron data library JEFF-3.1 was used with an 8 groups effective delayed neutron

precursors. Doppler effect correction is not made to avoid introducing uncertainties related

to the Doppler treatment. However, the macroscopic cross sections of the molten fuel salt

are modified accordingly to the salt temperature and the thermal expansion coefficient,

i.e.:

Σ (T ) =
ρ (T )

ρ (Tref )
Σ (Tref ) (2.5)

(A) (B)

Figure 2.3 – CNRS multi-physics benchmark: (A) Lid-driven Cavity Geometry (B) Ex-
ample of velocity field under forced and natural convection conditions [13].

The benchmark is divided in three phases: Phase 0 (single physics and one-way cou-

pling verification), Phase 1 (steady-state benchmark), and Phase 2 (transient bench-

mark).

Three steps of the Phase 0 were used in this work:

• Step 0.1 aims to accurate simulate the steady-state incompressible flow of the molten

salt setting the top-lid velocity of the cavity to 0.5 m s−1. The stand-alone hydraulics

is tested.
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• Step 0.2 focus on the neutronics criticality eigenvalue problem in the presence of a

static fuel, 900 K uniform temperature distribution and normalized power to 1 GW.

• Step 0.3 tests the energy equation stand-alone resolution in the presence of the

velocity field calculated in Step 0.1 and the heat source distribution from Step 0.2.

The heat removal follows equation 2.4.

For Phase 1, four of the steps present in the benchmark relabelled as in reference [14]

were simulated:

• Step 1.1 adds the effect of the circulating fuel to the neutronics criticality eigenvalue

problem. The fixed velocity field from Step 0.1 is used to compute the precursors

transport and quantify its effect on the neutronics. Neutron flux is normalized to

obtain an integrated power of 1 GW. Temperature field is not calculated and set to

900 K uniformly.

• Step 1.2 the two-way coupling between the neutronics and the temperature distri-

bution in the presence of the velocity field from Step 0.1 is observed. The effect

of the non-uniform fuel temperature field on the neutronics is quantified. Power is

normalized to 1 GW.

• Step 1.3 uses the full neutronics-thermal-hydraulics coupling. Velocity at the top

lid is set to 0 m s−1. Buoyancy effects are presented at this step. Power is normalized

to 1 GW.

• Step 1.4 once again uses the full coupling but with a fixed velocity at the top lid.

In the benchmark velocities from 0 to 0.5 m s−1 with a step of 0.1 m s−1 and power

between 0.2 and 1 GW with a step of 0.2 GW are analysed. In this work, we treat

only the case of 0.5 m s−1 and 1 GW.

In Phase 2, to compare the multi-physics model predictions in transient conditions,

the benchmark adopted a different approach to what is usually used in transient analysis

of nuclear systems. Rather than studying the maximum (or minimum) values taken by key

parameters (for example the temperature), the benchmark studies the frequency domain

response (i.e. the transfer function of the tool) of the multi-physics tool for a small pertur-

bation: a ±10% amplitude sinusoidal fluctuation of the heat exchange coefficient hsink was

introduced during a transient simulation. By performing several transients with different

period length of the perturbation Tp, the frequency response of the tool can be obtained.

Since the system response is almost linear for such small perturbation, the predictions of

Chapter 2 Juan Antonio Blanco 13



Neutronic, thermohydraulic and thermomechanical coupling for the modeling of nuclear systems

different multi-physics tools can then be compared using a Bode plot containing the phase

and the amplitude amplification at different frequencies. Note that changes on the heat

coefficient will modify the natural circulation conditions and thus the delayed neutron pre-

cursors distribution. This method allows then to test the coupling of different equations.

Tools having similar Bode diagram will have similar transient response for small pertur-

bations. Phase 2 of the benchmark is particularly well adapted to study the numerical

performance of the different transient neutronics models used in our multi-physics tool.

More details on these three phases of the benchmark can be found in [12] while more

detailed results on the multi-physics benchmark obtained from various multi-physics codes

used by the participants of the SAMOFAR project (and the one treated here) can be found

in [14].

The results of the neutronics-thermohydraulics simulations for the Molten Salt Cavity

Benchmark are presented in Section 5.2.

2.3 Spent Fuel Pools

In this study, the Spent Fuel Pool (SFP) configuration of the Fukushima Daiichi Nuclear

Power Plant (NPP) Station has been used. The Fukushima Daiichi NPP has six General

Electric BWRs. Units 1 (BWR3) and Units 2-5 (BWR4) have a Mark I type of containment

while the containment of Unit 6 (BWR6) is Mark II type (a schematic of a BWR [15] is

displayed in Figure 2.4(A)). The Spent Fuel Pool of each Unit is located in the secondary

containment. In March 11, 2011 during the accident caused by the Tohuku earthquake

and the subsequent tsunami, Units 1 to 3 were in operation, Unit 4 was defueled for

maintenance and Units 5 and 6 were on cold shutdown also for maintenance [15]. To

maximize the reactivity, this study is based on the Spent Fuel Pool composition of the

Unit 4 since it contained, at the same time, fresh and low irradiated Fuel Assemblies.

The SFP4 consisted in 53 fuel storage racks as shown in Figure 2.4(B). The assemblies

were arranged in racks of high-density design in a 3x10 configuration. Cooling water in

the pool has natural boron which ensures adequate criticality margin thanks to the very

high thermal neutron absorption of boron-10 ( 3800 barns). The figure also shows on the

right side the approximate residual power distribution in the pool at the moment of the

accidents: in red the most recently offloaded fuels are shown [16]. As can be seen, fresh
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(A)

(B)

Figure 2.4 – (A) Generic cross section of a BWR/4 with a Mark-I containment [15] (B)
Thermal loading in the Unit 4 Spent Fuel Pool [16].
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Fuel Assemblies (racks in blue) [17] have no heat production. In the case of interruption

of the cooling system in the Spent Fuel Pool, the water level will decrease as result of

the coolant evaporation. In some hypothetical scenarios, this could lead to a condition

where the reactivity margins are sufficiently degraded and the Spent Fuel Pool recriticality

scenario cannot be fully excluded. In Figure 2.5, a progression of this type of accidents is

detailed (from [15]). It can be observed that, due to the loss of cooling from the coolant,

the temperature rises and a natural convection loop is established inside the Spent Fuel

Pool. Once the coolant reaches the saturation point, water boiling starts. After a few

days (if evaporation is the only mechanism for the loss of coolant) the assemblies will

be partially uncovered and natural convection will stop since the resulting cross flow will

be blocked by the walls of the BWR Fuel Assemblies and the walls of the solid steel

racks. The fuel temperature will continue to rise as a result of the reduction of the heat

removal mechanisms. Moreover, the high temperature existing in the uncovered part of

the Fuel Assemblies will lead to zirconium oxidation and hydrogen production. This will

significantly degrade the fuel cladding, and, if no action is taken, it will cause the release

of the fission products. As the water surface descends under the level of the racks, natural

convection in the air-steam mixture will be established aiding the cooling. However, if not

acted upon, severe fuel failure will be reached including fuel melting. From a neutronic

point of view different phenomena play an important role in the accident. The large gaps

of water between assemblies under normal conditions assures enough cooling and neutronic

decoupling between racks to allow the system to be at a subcritical over-moderated state.

At normal conditions the water density in the Spent Fuel Pool is much higher than in

reactor conditions, giving better moderation but a much higher absorption. The Spent

Fuel Pool is therefore overmoderated which explains why the Loss of Coolant Accident

(LOCA) could lead to a potential significant reduction of the criticality margins. And, as

said before, a scenario involving a criticality accident cannot be fully excluded.

An adequate numerical model to study this accident requires therefore coupled neutron-

ics and thermohydraulic calculations to study all potential scenarios. The thermohydraulic

model is necessary to correctly predict the water levels in the Spent Fuel Pool and in the

racks and should include phenomena such as convective and conductive heat transfer,

change from water to air natural convection, boiling and two-phase flow and hydrogen

production and combustion from zirconium–steam reaction. The neutronics model should
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Figure 2.5 – Progression of a Spent Fuel Pool loss of cooling/coolant accident [15].

be able to accurately predict the Spent Fuel Pool reactivity and the phenomena associ-

ated to a hypothetical criticality accident. Due to its geometrical complexity, the Spent

Fuel Pool containing the racks and the Fuel Assemblies is simplified as a porous medium

as we will see in Section 3.3.7. The level of detail required for this highly heterogeneous

type of systems makes it computationally unfeasible to model it otherwise. Results for

an hypothetical accidental scenario are presented in section 5.3 to illustrate some of the

capabilities of the tool to simulate different racks and Fuel Assemblies configurations.
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Chapter 3

Model

As discussed in Chapter 2, a wide range of phenomena exists during a criticality acci-

dent (thermal expansion, compressibility effects such as shock waves, radiolysis, precursors

advection, ...). In addition, nuclear systems concerned by criticality accidents or critical-

ity experiments are very diverse and may employ homogeneous or heterogeneous nuclear

fuel nuclear in different configurations, geometries and sizes (from centimeters to meters).

Moreover, the time scales of these experiments can also be very different: transients ranging

from some microseconds to many hours or even days. A comprehensive numerical tool to

study these accidents has therefore to implement a multi-scale and multi-physics modeling

approach.

The development of such a tool was initiated at CNRS for the study of Molten Salt

Fast Reactor [18] and, as discussed in Chapter 1, the objective of this research work was to

enhance this multi-physics tool by developing and numerically implementing the models

required for the criticality accidents. These models include new transient neutronics mod-

els, a solid thermomechanical model and different thermohydraulical models. A numerical

coupling between OpenFOAM and Serpent 2 codes was also needed for the neutronic mod-

eling and thus implemented during this work (See Chapter 4). This chapter presents the

theoretical basis used in developing these models and it is divided in three parts. The first

part presents the development and numerical implementation of the transient neutronic

models which include a Monte Carlo Quasi-Static Method and a deterministic Simplified

PN (SP1 and SP3). The second part presents the solid mechanics model used for studying

the Godiva experiment, in particular the adaptation of a linear thermoelasticity model al-

ready existing in OpenFOAM. The last part of the chapter is devoted to the development
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of a porous medium model with two phase flow, phase change and two temperatures. This

porous medium model was developed in this thesis work by enhancing an already existing

model in OpenFOAM (Horgue et al. [19]) and it was used to study potential Spent Fuel

Pool criticality accidents. This last part also discusses the turbulent models existing in

OpenFOAM and used for studies of nuclear systems containing a liquid fissile such as a

liquid fuel.

3.1 Neutronics

Adopting the notation of reference [20], the neutron transport equation 3.1 can

be derived as a balance of the different mechanisms by which neutrons can be gained

(neutron sources like fission or delayed neutrons, streaming, scattering from any energy or

direction to the ones of interest (E′ → E, ~Ω′ → ~Ω)) or lost (leakage, absorption/scattering

collision removal from energy and direction of interest) from an arbitrary volume within the

considered system [21]. The neutron angular flux ψ depends on 7 variables: three spatial

coordinates (~r), two directions (~Ω), energy (E) and the time (t) and can be calculated from

equation 3.1:

1

v(E)

∂ψ

∂t
(~r, ~Ω, E, t) =

[
− L − T + S +

χp(E)

4π
(1− β)F

]
ψ(~r, ~Ω, E, t)

+

Gd∑
d=1

χd(E)

4π
λdCd(~r, t) (3.1)

where Σr is the macroscopic cross section for reaction r with r as the total (t), fission (f)

or scattering (s) reaction, ν is the average number of neutrons emitted per fission, χp and

χd are the fraction of the prompt p or delayed d fission neutrons spectrum emitted at a

certain energy (E). L, T , S and F are the Transport, Removal, Scattering and Fission

operators respectively defined as follows considering an isotropic fission source:

Lψ(~r, ~Ω, E, t) = ~Ω · ~∇ψ(~r, ~Ω, E, t) (3.2)

T ψ(~r, ~Ω, E, t) = Σt(~r,E, t)ψ(~r, ~Ω, E, t) (3.3)

Sψ(~r, ~Ω, E, t) =

∫∫
Σs(~r,

~Ω′ · ~Ω, E
′
→ E, t)ψ(~r, ~Ω′ , E

′
, t) d ~Ω′ dE

′
(3.4)

Fψ(~r, ~Ω, E, t) =

∫∫
νΣf (~r,E

′
, t)ψ(~r, ~Ω′ , E

′
, t) d ~Ω′ dE

′
(3.5)
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Among the neutrons sources, the delayed neutrons source produced as a consequence of

the decay of certain fission products (known as delayed neutron precursors) was included

in the previous analysis.

The delayed neutron precursors concentration (denoted as Cd) is obtained from a bal-

ance between their production proportional to the fission source and their radioactive decay.

In the case of a solid fuel, the delayed neutrons source of equation 3.1 can be calculated

using equation 3.6 below. Normally, the fission products generated by the nuclear fission

are very diverse and usually not worthy to simulate in detail unless we are dealing with

burn-up calculations. Indeed in most applications, such as neutronic transient calculations,

we only want to know the rate at which delayed-neutrons are produced and in which en-

ergy range or group. For this reason, they are represented by a few-families (either 6 or 8

in general) having an effective decay constant λd and a relative delayed-neutrons fraction

produced per fission βd for family d [21]:

∂Cd
∂t

(~r, t) = βd

∫∫
Fψ(~r, ~Ω, E, t)dE d~Ω − λdCd(~r, t) d = 1 to Gd (3.6)

Note that for the case of a system containing a liquid fissile (e.g. a reactor using a

liquid fuel or a fissile solution) two new terms will have to be added in equation 3.6: i)

a convection term representing the precursors transport by the fluid and ii) a diffusion

term that depends on the medium diffusion coefficient, which can be usually neglected.

Therefore, for systems having a liquid fissile the precursors equation 3.7 has to be used

[12]:

∂Cd
∂t

(~r, t) + ~u · ∇Cd(~r, t) = ∇ · [Dd∇Cd(~r, t)]

+ βd

∫∫
Fψ(~r, ~Ω, E, t)dE d~Ω − λdCd(~r, t) d = 1 to Gd (3.7)

There are several difficulties for solving the system of equations 3.1 to 3.7:

• There are seven independent variables as enumerated before,

• The nuclear reaction cross sections spatial dependence can become rapidly compli-

cated in reactors with complex geometries, which is normally the case,

• The nuclear reaction cross sections dependence on energy has complex structure with

resolved and unresolved resonances, threshold effects, etc.

An analytical solution for this integro-differential equation is only possible for very
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simple theoretical cases usually not representative of our applications. Moreover, the nu-

merical resolution of these equations is in general not practical unless some approximations

are introduced such as it is done in most of the deterministic methods. Among the various

deterministic methods existing in neutronics we have selected for this work the approach

known as Simplified PN that is based on the Legendre Polynomial expansion of the angular

dependence of the flux. This method was chosen for its simplicity and also because, in the

formulation chosen here, the order 1 (SP1) is equivalent to the diffusion approximation.

The Simplified PN implemented in this work is presented in section 3.1.3. This method will

serve, in this work, as a deterministic reference calculation and it will provide a fast and

useful method in many applications involving large systems (in terms of neutrons mean

free path).

The most precise method, with only a few approximations, to solve the neutron trans-

port equation, is the statistical approach (also called stochastic method) based on Monte

Carlo calculations which will be discussed in the next section 3.1.1. Nonetheless, the

computational effort required by this method for transient calculations is still extremely

demanding, in terms of CPUs and memory consumption, and for transients calculations

unfeasible in most cases [22][23]. For this reason, we implemented the Monte Carlo method

by using an approximation based on the Quasi-Static Method which is presented in section

3.1.2.

3.1.1 Monte Carlo

3.1.1.1 Introduction

The idea of the Monte Carlo method goes back in history but it became feasible in

the 1940’s with the increase of computing power. As stated by Lux and Koblinger [24],

the general method to solve for particle transport was developed by Fermi, Ulam and

Von Neumann, and the first comprehensive review was published by Kahn [25]. Most

books, such as Bell and Glasstone [26], present this method as one of the tools to solve the

transport equation. If a more in-depth mathematically analysis is desired by the reader

Spanier and Gelbard [27] and, more recently, Lux and Koblinger [24] presents such a work

for the bases of Monte Carlo applied to neutron transport.

It is not an easy task to define what Monte Carlo is. A very concise definition is given by

Lux and Koblinger [24]: “In all applications of the Monte Carlo Method a stochastic model

22 Chapter 3 Juan Antonio Blanco



Neutronic, thermohydraulic and thermomechanical coupling for the modeling of nuclear systems

is constructed in which the expected value of a certain random variable is equivalent to the

value of a physical quantity to be determined. This expected value is then estimated by the

average of several independent samples representing the random variable introduced above.

For the construction of the series of independent samples, random numbers following the

distributions of the variable to be estimated are used”. This is however a quite a complex

definition but embodies all of the essential parts of a Monte Carlo simulation.

For the problem of neutron transport, the general approach normally consists in gener-

ating a set of neutrons (with given positions and velocities) and following them. Since the

cross sections represent the probability of a given interaction per unit length, the length

between collisions and type of interaction can be sampled from generated random numbers.

In addition, energy and direction after collision can be sampled from the corresponding

probability laws. This sampling of the path with the cross sections and the probabilities

laws constitutes the stochastic model. Along the process, some statistical data is stored

related to the quantities that we wish to calculate. This statistical data is therefore col-

lected by formulating a random variable, which can be seen as a function that assigns

values to each independent sample. The value it takes at each sample is called a score.

This random variable is chosen in a way that the average of all scores will converge to the

physical quantity to be determined. This convergence is true if the expected value of the

random variable gives us back the physical quantity.

For the sake of clarity, an example by Spanier and Gelbard [27] is shown here. Let us

consider an experiment with two possible outcomes: the event Ω forms a space consisting

of two points ω and its complement ω′ with the probability P defined as

P (ω) = p, 0 ≤ p ≤ 1

P (ω′) = q = 1− p (3.8)

Then, a random variable ξ can be defined as ξ(ω) = 1 and ξ(ω′) = 0. The probability

distribution of ξ is defined as

F (t) = P{ξ < t} = pχ(t− 1) + qχ(t) (3.9)
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where

χ(t) =


0 if t < 0

1 if t ≥ 0

(3.10)

When performing N independent trials of the experiment, the space to examine is ΩN

consisting of all N-tuples (ω1, . . . , ωN ) of points of Ω. Its probability is defined as

PN (ω1, . . . , ωN ) =

N∏
i=1

P (ωi) (3.11)

N random variables ξi on ΩN are defined as ξi(ω1, . . . , ωN ) = ξ(ωi) with 1 ≤ i ≤ N .

Then, the sum

ξ(N) =

N∑
i=1

ξi (3.12)

is also a random variable representing the total count the event ω has happened. Its

probability distribution is the binomial distribution

FN = P{ξ(N) ≤ t} =
∑
k≤t

N
k

 pkqN−k (3.13)

In addition the random variable

¯ξ(N) = ξ(N)/N (3.14)

represents the frequency of occurrences of the event ω.

Then, calculating the expected value and standard deviation of the latter random

variable we obtain

E
[

¯ξ(N)
]

= p σ
[

¯ξ(N)
]

=

√
pq

N
(3.15)

As we can see, the random variable representing the frequency of occurrence is the

probability associated with the event ω. This way, information from the parent distribution

can be obtained. This is a trivial case where we know from the beginning the probability.

However, in real problems the stochastic model becomes more complex and the desired

physical quantity is not explicitly available.

In general, when the stochastic search for the quantity of interest is faithful to the

physical process it is known as an analog process. In particular, for particle transport,
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such as the neutron transport, this type of Monte Carlo simulation is known as an analog

random walk process, where a random walk denotes the path of the neutron consisting

of a succession of random steps. Nevertheless, it can be solved in an non-analog way if it is

needed because of poor statistics or high variances for example. In addition, even though

Monte Carlo has a direct application to random processes, it can also be used for solving

problems that have no direct probabilistic interpretation.

The main advantage of the Monte Carlo method is that it can solve problems with few

approximations in complex geometries. It eliminates the problem of additional calcula-

tions like the multi-group cross sections generation1 for deterministic models for example.

However, the computational effort required is normally high and, for many problems, de-

terministic methods are accurate enough2. Later on, an effort to circumvent this issue will

be done by applying the Quasi-Static Method to Monte Carlo.

3.1.1.2 Tracking Methods

The core of the Monte Carlo neutron transports is the particle tracking routine, i.e.,

following the path that a neutron undertakes through the different regions of the geometry.

The distance between two events (collision, leakage, absorption) is called track. The set of

all tracks of a single neutron from its birth to its removal (either by absorption or leakage)

is called a neutron history.

For this purpose, the sampling of the mean free path between two points is vital to the

simulation. As explained in [24][29], this sampling procedure goes as follows:

First, a neutron travelling through an infinite homogeneous media is considered. The

total cross section Σt describes the probability of interaction per unit length. The proba-

bility of interaction along a distance dx can be define as

dP = Σt dx (3.16)

Now, P0(x) denotes the probability that a neutron has reached a position x without

1For deterministic calculations, information about the nuclear data should be adapted to the problem,
i.e. homogenized and condensed from continuous data to the right amount of groups and regions to
correctly describe the problem. In contrast, Monte Carlo can directly use continuous-energy nuclear data

2For example, for nuclear reactors in power plants, the mean free path of the neutron is several times
smaller than the “neutronic” size of the same. Thus, the diffusion approximation, for example, yields
accurate enough results given that the boundaries are not as sensitive as in smaller geometries. This
boundaries represent a very small part of the geometry in terms of mean free path. In addition, some
adapted boundary conditions simplifies the problem, for example, extrapolated length [28]
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any interaction. The reduction of P0(x) as it moves a distance dx through x is equal to

dP0 = −P0(x)dP = −P0(x)Σtdx (3.17)

Then, the non-interaction probability is

P0(x) = e−xΣt (3.18)

The probability of a neutron moving first a distance x without interactions and then

interacting in the interval dx is

P0(x)dP = P0(x)Σtdx = Σte
−xΣtdx (3.19)

The Probability Density Function (PDF) and the Cumulative Distribution Function

(CDF) of the free path are respectively

f(x) = Σte
−xΣt (3.20)

F (x) = 1− e−xΣt (3.21)

Finally, the neutron’s distance to the next collision can be sampled by means of the

inversion method [24] :

x = − 1

Σt
log(1− ζ) = − 1

Σt
log(ζ) (3.22)

where ζ is a generated random number, i.e., in this case, a number between 0 and 1 obtained

from an equally probable distribution. In addition, the distributions of (1 − ζ) and ζ are

similarly distributed (both generates equally probable random numbers between 0 and 1)

and, therefore, they can be interchanged.

The tracking can be a combination of the ray tracing based surface-tracking and the

rejection sampling based delta-tracking. This methods are usually referred as surface-

tracking and delta-tracking.

Surface-tracking

For calculating the neutron path length using equation 3.22 it is necessary for the

material to be homogeneous. When the cross section is spatially dependent the integrals
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to obtain the PDF and CDF from equation 3.19 become more complex. Nevertheless,

for most problems, the geometry consists of several regions with homogeneous materials,

also called cells. When tracking the neutron, it can cross different regions which have

different properties. For this reason, every time the neutron crosses a region interface the

collision probability changes and the sampled path length is not statistically valid for the

next region. To solve this problem, the neutron is stopped at the interface surface and the

length is either adjusted or a new sample is made as can be seen in [24][29]. This strategy

is a ray tracing algorithm that follows the neutron from one surface to another [30].

Delta-tracking

The delta-tracking method was first introduced by Woodcock in the 60’s. This method

is explained by Leppänen [31] and in more mathematical detail by Lux and Koblinger [24].

The main idea (and advantage) behind this method is that it samples the next collision

point without handling surfaces interface crossing.

In this method, a virtual collision is created. It is an interaction characterized by the

cross section Σ0(r, E) that preserves the incident energy and flight direction. An arbitrary

number of virtual collisions can occur during the neutron lifetime without affecting the

simulation converged results3 by preserving the average of the scores. In each material a

virtual collision cross section is added in order to have the same modified (called majorant)

total cross section all over the geometry. This way, the total interaction probability is the

same everywhere and thus the need to adjust the free path length at each surface disappears

as well as the calculation of the distances to the surfaces. If the neutron undergoes a

collision which is a virtual collision, the neutron history rests unchanged.

The main disadvantage of this method is that the crosses between surfaces are not

registered and, therefore, the track length estimator (explained in the next section) is not

available and the possibly less efficient collision estimator has to be used. Another problem

arises when there are localised heavy absorbers like control rods or burnable poisons [31].

In this case, the virtual collision cross section necessary to homogenize the modified total

cross section all over the system can be simply too big. As a consequence, the frequency

of virtual collisions in regions with lower adsorptions increases and a lot of computational

time is wasted in sampling several times the same collision site. In addition, the search for

3However, the statistics will be altered, in particular, affecting the variance and, therefore, the simulation
time and performance will not be the same.
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the majorant cross section adds to the computational effort required in this method.

Because of these limitations, and depending on the system, a combination of the surface-

tracking and the delta-tracking is normally performed [31].

3.1.1.3 Estimators

In the deterministic approach the equations describing the neutrons transport using

some approximation (diffusion, SPN, among others) are solved for the neutron flux either

analytically (very rarely if a simple problem is given) or numerically via a discretization of

the equations in a mesh. Different to this, Monte Carlo provides an estimate of a random

variable whose expected value precisely converges (without any bias) to the integral of the

flux (or more complex observables, such as currents or reaction rates, or deposited energy)

in a phase-space volume; the flux (or the other associated observables) is the formal solution

of the Boltzmann equation. In this way, it shares certain analogy to making experimental

physical measurements.

A very important capability, specially for this work, is the evaluation of reaction rates

by flux integrals of the type:

R =

∫∫∫
f(r, E)φ(r, E) dt d3r dE (3.23)

where f(r, E) represents any physical parameter, i.e., if f(r, E) = Σa then R is the total

absorption rate (or counts) in a certain volume, energy range and over a given period

of time. As in an experiment, the longer it is being measured (more neutron histories)

then the larger will be the obtained integral, i.e., the accumulated scores will continue to

increase. To be able to have a physically meaningful quantity it is necessary to normalize

the rate obtained from equation 3.23 in a specific method as it is explained in more detail

in Leppänen [29].

In order to obtain the value of the integral an estimator is needed. In the words of Amit

Majumdar [32]: “An estimator is a specific function of the random samples, of a random

variable, that statistically represents a true unknown mean. If x is a random variable with

an associated distribution and an unknown mean, then the function X(x1, x2, x3, . . . , xn) is

an estimator of the unknown mean. The set {x1, x2, x3, . . . , xn} consists of n independent

random samples selected from the probability density distribution of x. A good estimator
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should be unbiased, consistent, and efficient. An estimator is unbiased if its expected value

equals the true mean, µ, i.e.,

E(X) = µ

for all X. Consistency applies to a single sample where the sample size, n, becomes large.

An estimator is consistent if it approaches, in a statistical sense, the true mean as n

gets large. An efficient estimator is the one, among a group of unbiased estimators, that

produces the minimum variance for a given sample size n. ”.

In other words, the scores (recorded events) obtained during the simulation can be

combined to form statistical estimates of the physical quantities. These counts of recorded

events yielding estimates (and interpreted as Monte Carlo results) are colloquially known

as tallies [33]. These tallies can be either analog, i.e., directly related to the simulation

process such as the multiplication factor calculated from equation 3.24; or implicit (non-

analog), this is the case of the integral reaction rates following equation 3.23.

kn =
number of source neutrons in cycle n+ 1

number of source neutrons in cycle n
(3.24)

The most common implicit estimators includes the collision estimator and the track

length estimator. A detailed description of these two estimators can be found in Lep-

pännen [34].

Collision Estimator

The analog collision estimator would consist on scoring each collision interaction of

a certain type (e.g. counting absorbed neutrons for the absorption rate analog tally).

Instead, if the probability of interaction α (e.g. a given nuclear reaction) is scored, the

collision estimator can be described as

R =
∑
i

ωi
f(ri, Ei)

Σ(ri, Ei)
(3.25)

where ωi, ri and Ei are the weight4, position and energy associated with the i-th simulated

neutron and Σ is the cross section used to sample the path length. For example, if f = Σa,

the probability α = Σa/Σ is the probability of absorption of the particle i and R is an
4At is essence, the weight is a tally multiplier. We will not go into detail on the theory of Monte Carlo

(see [33]) but, often, a weight is introduced in order to reduce the variance. A departure from a direct
physical simulation, thus, having a non-analog simulation.
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estimate of the absorption rate after proper normalization. Similarly, other reaction rates

can be obtained as it will be shown in Section 4.3.1.2.3.

This estimator is more efficient than the analog one since it is registered at each collision

even if the interaction does not happen. It is always scored for physical collisions in both

surface and delta-tracking mode, to avoid under-sampling and non-physical results.

Track Length Estimator

The track length estimator is defined as

R =
∑
i

ωif(ri, Ei)li (3.26)

where li is the length of the neutron track and ri, Ei, f and ωi are defined in the same way

as in the collision estimator. Same as the collision estimator, it is used as a reaction rate

tally by setting the parameter f according to the physical quantity we want to calculate.

The advantage of this estimator is that the efficiency is better since it records every

time the neutron makes a track inside a region where it does not necessarily collide. It

works even in void regions.

The disadvantage is that it cannot be used with delta-tracking because surface crossings

are not recorded. Given that it can cross different regions with different material the

response function f may change its value along the track. Delta tracking does not store

this information either.

3.1.1.4 Transport simulation

The simulation of the neutron chain reaction can be done using different methods

depending on the system to be modeled. Even though the operations involved in performing

the neutron histories calculations in these methods are practically the same, there are big

differences in how the neutron population is treated as a whole [35]. The methods can

be divided into criticality and external source simulations that are discussed in the next

subsections. As we will discuss later, both methods could be used with the Quasi-Static

Method approach, however, one of the them will be easier to implement.

3.1.1.4.1 Criticality Source

There are two possible approaches among the criticality source methods: the α-eigenvalue
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method which will not be used in our applications and thus not treated here (see [36][29])

and the k-eigenvalue method [24]. The k-eigenvalue method (sometimes colloquially called

k-code mode) is used for simulating self-sustaining chain reactions equivalent to equation

3.27. In this method, the simulation is divided into cycles, generations or batches. The

source distribution in each cycle, from which the neutrons are sampled, is given by the

fission source distribution from the previous one. The neutron histories are terminated

when the neutrons are either captured, undergo fission or escape the system.

During criticality source calculations the neutron histories are started from an initial

guess (normally Dirac or uniform distribution). In addition, the initial cycles or inactive

cycles are discarded for scoring purposes to ensure that the results are not influenced by

the initial guess. The population is normalized [24] at the beginning of each cycle forcing

the system to a steady-state conditions. The multiplication factor is calculated as the ratio

between the new source neutrons generated by the end of each cycle divided by the total

statistical weight at the beginning.

Note that in the criticality calculations the converged source distribution corresponds

to the fundamental flux mode of equation 3.27:

[
L + T − S

]
ψ(~r, ~Ω, E) =

1

keff

1

4π

χp(E)(1− β) +

Gd∑
d=1

χd(E)βd

 F ψ(~r, ~Ω, E) (3.27)

with keff being the multiplication factor.

In addition, the algorithm jumps in a given cycle from one fission to another rather than

continue to track the neutrons born after the fission. Opposite to the External Source mode

or Transient Calculations explained in the next section, fission is considered a terminating

event, i.e., the neutron fission source is saved along with tallies for different quantities,

then the fission source is normalized and a new generation of neutrons is sampled from

the saved source distribution. Also, all prompt or delayed neutrons are considered to

be emitted instantly after fission following the corresponding spatial, angular and energy

probability distributions.

3.1.1.4.2 External Source and Transient calculations

In the external source method, neutrons are started from an user-defined source dis-

tribution. Neutron histories are terminated by capture or leakage. In case of fission, the

histories are split into new paths (as many as neutrons generated by the fission event).
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In this mode, neutrons are not batched into generations (or cycles) and it is analogous to

solving the time-dependent transport equation 3.1 in deterministic methods.

When the system is sub-critical, it reaches a steady-state (corresponding to a given

source amplification).

This method is typically used for shielding and dose calculations as well as for the

study of some advanced nuclear reactors such as Accelerator-Driven Systems (ADS). The

physical consistency of this method allows to, given that the histories are not batched into

generations, discretize the time into intervals and solve for the time-dependent problem.

This is a variant of the external source calculation often called a Dynamic Monte Carlo

simulation [7][35], which can provide very accurate information at the expense of a high

computational cost (memory and processors).

Note that for the particular case of a super-critical nuclear system the neutron histories

will grow exponentially to infinity. Then, the simulation is limited to very short periods

of time. To solve for longer simulated time, special population control and normalization

methods are necessary as it can be observed in the Monte Carlo transient approach (often

called Dynamic Monte Carlo) already existing in Serpent 2 [35]. More detail about popu-

lation control, time cut-off and binning, precursors treatment, normalization and tallying

for transient Monte Carlo can be found in Sjenitzer and Hoogenboom [7][22].

3.1.1.4.3 Important Remarks for Systems Containing a Liquid Fissile

Monte Carlo codes for neutronics are usually developed assuming solid fuels since the

vast majority of nuclear reactor used solid Fuel Assemblies. When using a Monte Carlo

code for a system containing a liquid fissile material some modifications are needed to

include the phenomenology associated to the delayed neutron precursors convection and

diffusion. Indeed, as can be seen from equation 3.7, in this case the delayed neutrons

will not be born at the same place where the precursor has been produced by the fission.

Failing to consider this phenomenon could results in a significant bias on the results of

the simulation (such as the effective fraction of delayed neutrons, the reactivity or the flux

shape).

A simple way to take into account the precursors transport in a liquid fissile system is

to use the External Source method [35] in the Monte Carlo simulation. In this case, the

precursors concentration, equations 3.7, are solved by other means, for example using a
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deterministic solver such as OpenFOAM, and then the resulting delayed neutron precursors

concentrations are used as the external neutron source for the Monte Carlo simulation.

A fixed-point iteration between the precursor concentration solver and the Monte Carlo

routine will be required in this case for obtaining adequate convergence. In addition only

prompt neutrons have to be sampled from the fission source by using a neutron yield

reduced by the physical total delayed neutron fraction (β).

Moreover, when using the Monte Carlo transient solver (Dynamic Monte Carlo) [37][38],

two options can be imagined if the fluid velocity field (~u) is provided:

• If there is precursors tracking, the position of the precursors can be modified by

~r = ~r0 + ~u∆t to update its position with the advection of the liquid fissile.

• If there is no precursors tracking the position for the new born delayed neutrons can

be obtained by first sampling the decay time from its Poisson distribution and then

moving the position the same way as in the previous point.

However, this options may required modification to the source code.

Alternatively to the source method, the k-eigenvalue method can be used to obtain a

steady-state solution by introducing some modifications in the original algorithm. In this

case, delayed neutron precursors concentration distribution obtained from equation 3.7 is

still solved by other means (e.g. OpenFOAM). Then, during the criticality calculations

every time a delayed neutron is sampled by the tracking routines, the spatial coordinate

of it emission is sampled from the precursors concentration distribution via a rejection

method5. In other words, the k-eigenvalue method is only modified in the sense that the

delayed neutron is emitted with an energy and direction sample by traditional means and

the position will follow the externally solved precursor distribution. Iteration is also needed

between the solvers for convergence. This will be further explained in Section 4.3.1.1.

3.1.1.4.4 Important Remarks for Transient Calculations

As discussed in the previous sections, a Monte Carlo code can be used to perform

transient calculations using the source method and discretizing the time variable. This

5In some cases the inversion method is not practical [24][29][27] because the inverse is expensive to
calculate or it cannot be solved at all (Maxwell-Boltzmann distribution). The rejection method offers an
alternative to calculate a sample from a probability density function g(x).
First, a function g1(x) = g(x)/gMax is defined, where gmax is the maximum value taken by g(x). Then,

0 ≤ g1(x) ≤ 1 in the interval a ≤ x ≤ b. After, two random numbers (ζ1, ζ2) are generated and interpreted
as a point with plane coordinates (a+ ζ1(b−a), ζ2). This is a point inside the rectangle of base (b−a) and
height 1. If the point falls below the curve g1(x), it is accepted as a sample of g(x); if not, it is rejected and
a new sample is sorted. The samples obtained this way are proven to follow the distribution of g(x)[27]
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approach called Dynamic Monte Carlo does not require new approximations but has a

very high computational cost that limits its utilisation in most applications involving a

multi-physics code. An alternative approach is proposed in this thesis. This approach is

based on the Quasi-Static Method and can be used both with the source or the k-eigenvalue

methods. The Quasi-Static Method is presented in the next section.

3.1.2 Quasi-Static Method

As already discussed, the full direct resolution of the neutron transport equation 3.1

is computationally expensive and, thus, not practical in most multi-physics applications.

Many different methods (Deterministic or Stochastic) have been proposed to reduce the

computational effort of solving the transport equation without losing significant precision.

Among these methods and related to the resolution of the time dependency one can cite

the Quasi-Static Method, which is a relatively well known method that was proposed

firstly in the works published by A. Henry [39][40] and K. Ott [41][42]. One can note that

several novel applications of this method for deterministic methods have been proposed

until recent years (Dulla et al. [43]).

In this work, we propose to use the Quasi-Static Method along with some modeling

approximations in order to perform transient calculations using a Monte Carlo code and

a large range of nuclear systems. This is a relatively new application of the Quasi-Static

Method that is also being investigated by other authors (Jo et al. [20]). In this section,

we briefly present the derivation of the main equations of the Quasi-Static Method and we

will focus the discussion on the approximations needed to adapt this method to a Monte

Carlo code calculation.

3.1.2.1 Integral Notation

For the sake of simplicity we will use the following notation in the derivation of the

Quasi-Static Method equations:

∫∫∫
f(~r, ~Ω, E, t)W (~r, ~Ω, E, t) dV d~Ω dE = 〈f(~r, ~Ω, E, t) | W (~r, ~Ω, E, t)〉 (3.28)

where f(~r, ~Ω, E, t) and W (~r, ~Ω, E, t) could be any arbitrary functions. In general, W will be

a weight function as we will see in the next sections. We will use the definition given by
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equation 3.28 for the rest of this manuscript.

3.1.2.2 Method Description

The very first step on developing the Quasi-Static Method consists in proposing the

factorization of the neutron angular flux in the two functions shown in equation 3.29.

This is purely an arbitrary definition and embodies no physical assumption. As we can

observe, the amplitude function n(t) depends solely on time, whereas the flux shape function

φ(~r, ~Ω, E, t) depends on the time and on the space, direction and energy coordinates in the

phase space:

ψ(~r, ~Ω, E, t) = n(t)φ(~r, ~Ω, E, t) (3.29)

Replacing the angular flux in equations 3.1 and 3.6 by the equation 3.29 and rearranging

the terms the new set of equations 3.30a and 3.30b for the flux shape function and the

precursors concentration is obtained. As we can see, these equations are similar to the

original set 3.1-3.6 except for the new term 1
v(E)

1
n(t)

dn(t)
dt , that can be seen as an effective

cross section and the normalization factor n(t) for the delayed neutrons source.

1

v(E)

∂φ

∂t
(~r, ~Ω, E, t) =

[
− L − T + S − 1

v(E)

1

n(t)

dn(t)

dt

+
χp(E)

4π
(1− β)F

]
φ(~r, ~Ω, E, t) +

1

n(t)

Gd∑
d=1

χd(E)

4π
λdCd(~r, t)

∂Cd
∂t

(~r, t) = βdFφ(~r, ~Ω, E, t)n(t) − λdCd(~r, t) d = 1 to Gd

(3.30a)

(3.30b)

The Quasi-Static Method derives the differential equations 3.31 and 3.32 for the am-

plitude function n(t) and the precursors concentration by multiplying equations 3.30a and

3.30b by an arbitrary weighting function W (~r, ~Ω, E, t) (which depends on all the seven vari-

ables) and integrating them in all variables except for the time (according to equation

3.28), as explained in section 3.1.2.1, and dividing by 〈v−1(E)φ(~r, ~Ω, E, t) | W (~r, ~Ω, E, t)〉.
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dn(t)

dt
=


〈[
− L − T + S +

χp(E)

4π (1− β)F
]
φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉


−
〈

1
v(E)

∂φ
∂t (~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
n(t)

+

∑Gd
d=1

〈
χd(E)

4π λdCd(~r, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉 (3.31)

〈
χd(E)

4π

∂Cd
∂t (~r, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉 =

〈
χd(E)

4π βd F φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉

− λd

〈
χd(E)

4π Cd(~r, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉 (3.32)

By rearranging and grouping the terms we obtain the equations 3.33a and 3.33b.

dn(t)

dt
=

ρ− βeffΛ
−

〈
1

v(E)
∂φ
∂t (~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
n(t) +

Gd∑
d

λdc̄d (3.33a)

〈
χd(E)

4π

∂Cd
∂t (~r, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉 =
βeffd

Λ
n(t) − λdc̄d (3.33b)

where ρ, βeffd , Λ, c̄d are scalar time-dependent parameters defined in equations 3.34b to
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3.34f as follows:

H(t) =

〈χp(E)

4π
(1− β) +

Gd∑
d=1

χd(E)

4π
βd

F φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉

ρ(t) =
1

H(t)

〈(
− L − T + S

)
φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
+ 1

βeffd (t) =
1

H(t)

〈
χd(E)

4π
βd F φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉

βeff (t) =

Gd∑
d=1

βeffd (t)

Λ(t) =
1

H(t)

〈
1

v(E)
φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉

c̄d(t) =

〈
χd(E)

4π Cd(~r, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉

(3.34a)

(3.34b)

(3.34c)

(3.34d)

(3.34e)

(3.34f)

By now, we arrived to equations 3.33a and 3.33b that are really close to the well-

known point kinetic equations, which we want to obtain. Nonetheless, the temporal partial

derivatives in the numerators forbid us from condensing these integrals as in the parameters

defined between equations 3.34b to 3.34f. However, applying to the numerators of the

uncondensed terms in equations 3.33a and 3.33b the chain rule and the Leibniz integral

rule we are able to obtain equations 3.35a and 3.35b.

d

dt

〈
1

v(E)
φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
=〈

1

v(E)

∂φ

∂t
(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
+

〈
1

v(E)
φ(~r, ~Ω, E, t)

∣∣∣∣ ∂W∂t (~r, ~Ω, E, t)

〉
(3.35a)

d

dt

〈
χd(E)

4π
Cd(~r, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
=〈

χd(E)

4π

∂Cd
∂t

(~r, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
+

〈
χd(E)

4π
Cd(~r, t)

∣∣∣∣ ∂W∂t (~r, ~Ω, E, t)

〉
(3.35b)

From equations 3.35a and 3.35b is easy to see that if W is independent of time, i.e.,

W (~r, ~Ω, E, t) = W0(~r, ~Ω, E) then ∂W
∂t (~r, ~Ω, E, t) = 0 and the equivalent expressions shown

by equations 3.36a and 3.36b can be used. Further explanation of this time-independent

Chapter 3 Juan Antonio Blanco 37



Neutronic, thermohydraulic and thermomechanical coupling for the modeling of nuclear systems

weight condition is discussed in section 3.1.2.5.

d

dt

〈
1

v(E)
φ(~r, ~Ω, E, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉
=

〈
1

v(E)

∂φ

∂t
(~r, ~Ω, E, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉
(3.36a)

d

dt

〈
χd(E)

4π
Cd(~r, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉
=

〈
χd(E)

4π

∂Cd
∂t

(~r, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉
(3.36b)

Replacing 3.36a and 3.36b in 3.33a and 3.33b we obtain equations 3.37a and 3.37b.

dn(t)

dt
=

ρ− βeffΛ
−

d
dt

〈
1

v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉
n(t) +

Gd∑
d

λdc̄d(t) (3.37a)

d
dt

〈
χd(E)

4π Cd(~r, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉 =
βeffd

Λ
n(t) − λdc̄d(t) (3.37b)

Now, arbitrarily forcing the denominator in equations 3.37a and 3.37b to be constant6,

as shown in equation (3.38), the time derivative in the numerator of the second term in the

RHS of equation 3.37a vanishes. Moreover, we can move the now constant denominator in

the term on the LHS of equation 3.37b inside the time derivative.

〈
1

v(E)
φ(~r, ~Ω, E, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉
= constant (3.38)

Introducing these modifications and defining c̄d as in equation 3.34f, we can obtain a

set of equations for the neutron flux amplitude as shown in equations 3.39a and 3.39b:

dn(t)

dt
=

ρ− βeff

Λ
n(t) +

Gd∑
d

λdc̄d(t)

dc̄d
dt

(t) =
βeffd

Λ
n(t) − λdc̄d(t)

(3.39a)

(3.39b)

In Section 3.1.2.4, the justification of this choice will be discussed from a mathematical

point of view and in Section 3.1.2.6.1 a physical interpretation will be given. Albeit, this

does not intend to be a rigorous analysis of the normalization but only an approach to

justify every step in the method and discuss later the numerical implementation of the

method and the approximations that have been made.

6As it will be explained later, this step is not compulsory but it will simplify the implementation of the
method.
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Note that the equations 3.39a and 3.39b are similar now to the point kinetics equa-

tions but the coefficients are different since they have to be calculated accordingly to the

weight function, which may be different from the adjoint flux normally used in the point

kinetics approach. It is also important to stress that so far, at this point we have made no

assumptions on the physics but rather we have used some mathematical tricks to derive

the set of equations 3.30a, 3.30b, 3.39a and 3.39b following the weight constrain and the

normalization constraint 3.38 and definitions in 3.34a to 3.34f. For now, it may seem as

it is just a complex way of solving the original neutron transports equation 3.1 and the

precursors equation 3.6 but this splitting will be advantageous to relax the computational

demand, specially when is used combined with some of the simplifications shown in section

3.1.2.8.

3.1.2.3 Liquid Fuel

It is important to recall that some nuclear systems studied in criticality accidents

contain a liquid fissile such as the reactors using a liquid fuel (e.g. SILENE or a MSR) or

at some stage of the fuel fabrication (Tokai-mura accident). Therefore, the development of a

Quasi-Static Method approach requires to consider phenomena such as the delayed neutron

precursors motion. In particular, this new phenomenology will require using equation 3.7

rather than the classic precursors concentration equation 3.6 for solid fuels.

A general Quasi-Static Method approach for liquid fuel has been proposed by Dulla et

al. [44], where a factorization similar to the one used in equation 3.29 for the angular flux

is applied to each family of precursors. In this work, an alternative method is proposed

and implemented. The implementation of this method is relatively simpler but it requires

introducing some additional hypotheses concerning the limits of the fluid system that will

be discussed at the end of this section. Firstly, the shape equation 3.30a rests the same and

3.30b is modified in the same manner as equation 3.7. Then, following the same process as

the previous section for deriving the amplitude equations we arrived to two new integrals

defined as follows:

〈
χd(E)

4π
∇ · [Dd∇Cd(~r,E)]

∣∣∣∣ W0(~r, ~Ω, E)

〉
(3.40)〈

χd(E)

4π
~u(~r) · ∇Cd(~r,E)

∣∣∣∣ W0(~r, ~Ω, E)

〉
(3.41)
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At this point, we introduce the first simplification which consists in assuming a space

independent weight function, i.e., W0(~r, ~Ω, E) = Ŵ0(~Ω, E). By using Gauss’s Theorem the

volume integral of equation 3.40 can be written as:

∫
V

∇ · [Dd∇Cd(~r,E)] Ŵ0(~Ω, E) dV =

∫
V

∇ ·
[
Dd∇Cd(~r,E)Ŵ0(~Ω, E)

]
dV

= Ŵ0(~Ω, E)

∫
S

[Dd∇Cd(~r,E)] · ~n dS (3.42)

In addition, if the liquid fissile can be approximated as an incompressible flow, the

continuity equation is valid and ∇ · ~u = 0 as it will be derived in Section 3.3.3. Then,

equation 3.41 becomes:

∫
V

~u(~r) · ∇Cd(~r,E) Ŵ0(~Ω, E) dV =

∫
V

∇ ·
[
~u(~r)Cd(~r,E)Ŵ0(~Ω, E)

]
dV

= Ŵ0(~Ω, E)

∫
S

[~u(~r)Cd(~r,E)] · ~n dS (3.43)

Finally, if the liquid system is surrounded by walls, non-slip boundary conditions for

the fluid (i.e. ~u = 0) can be used and the precursors do not flow through the walls

(i.e. ∇Cd = 0), then both integrals (equations 3.40 and 3.41) are zero. By using these

hypotheses, we recover the amplitude equations 3.39 once again. Note that the additional

hypotheses that we have introduced in our model to simplify the equations are justified

in most of the systems of interest. In particular, the geometry of most systems studied

in criticality accidents (or nuclear reactor systems) can be defined in such a way that the

limits of the system of interest can be approximated as walls. For example, in the case of

a tank with a free surface between a liquid and a gas (e.g. water and air) there will not be

non-slip conditions on the liquid-gas interface. Nonetheless, the Control Volume (domain

of the system) can be expanded up to a size where there is a zero-velocity boundary, e.g,

up to the walls of the tank including the gas inside, then the same equations stated before

can be used taking into account the gas velocity.

3.1.2.4 Normalization Constant

As explained before, setting
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣ W (~r, ~Ω, E, t)
〉

= constant serves as a

mathematical trick to obtain the classical set of ODEs usually referred to as point kinetic

equations [45] when the weight function is the adjoint neutron angular flux.
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In addition, note that the factorization in equation 3.29 does not guarantee the unique-

ness of the splitting. Since it is arbitrary, we could multiply n(t) by a constant α and divide

φ(~r, ~Ω, E, t) by the same constant and obtain the same angular flux ψ(~r, ~Ω, E, t) as shown in

equation 3.44: [46][43][47].

ψ(~r, ~Ω, E, t) = n(t)φ(~r, ~Ω, E, t)

=
[
n(t)α

] [φ(~r, ~Ω, E, t)

α

]

= n̂(t)φ̂(~r, ~Ω, E, t) (3.44)

In order to ensure this uniqueness the normalization constraint discussed earlier is used.

Even though in this work this constraint is applied, it is possible to derive unconstrained

kinetic equations introducing slight modifications as can be seen in equations 3.45 to 3.47

[48]. Note that the shape equations and the rest of the kinetic parameters rest the same:

dn(t)

dt
=

[
ρ− βeff

Λ
− λs

]
n(t) +

Gd∑
d

λdc̄d(t) (3.45)

dc̄d
dt

(t) =
βeffd

Λ
n(t) − ( λd + λs ) c̄d(t) (3.46)

λs =

d
dt

〈
1

v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉 (3.47)

3.1.2.5 Weight Function

The choice of the weight function in the Quasi-Static Method is completely arbitrary.

Indeed it could be time-dependent as developed by Becker [49] from a variational principle.

Nonetheless, when the importance function (adjoint neutron angular flux) is used, the

classic point kinetics coefficients are obtained. Moreover, it was proven by Monier [48][50]

that the error in the ratio ρ
Λ (t) is reduced by this choice as reproduced here from Monier’s

work.

Dividing equation 3.34b by equation 3.34e and rearranging terms we obtain equation
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3.48

ρ

Λ
(t) =

〈
L(~r, ~Ω, E, t)φ(~r, ~Ω, E, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉
E(t)

(3.48)

where,

L(~r, ~Ω, E, t) =

[
− L − T + S +

χp(E)

4π
(1− β) +

Gd∑
d=1

χd(E)

4π
βd

F ] (~r, ~Ω, E, t)

E(t) =

〈
1

v(E)
φ(~r, ~Ω, E, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉
where E(t) is the weighted neutron density. Considering that we begin from a critical

configuration, then at t = t0 the operator L(~r, ~Ω, E, t) is the steady-state operator that

satisfies equation 3.49 equivalent to equations 3.30a and 3.30b in steady-state.

L(~r, ~Ω, E, t0) φ(~r, ~Ω, E, t0) = 0 (3.49)

And, therefore,

ρ

Λ
(t0) =

〈
L(~r, ~Ω, E, t0)φ(~r, ~Ω, E, t0)

∣∣∣∣ W0(~r, ~Ω, E)

〉
E(t0)

= 0 (3.50)

The temporal dependence of both L(~r, ~Ω, E, t) and φ(~r, ~Ω, E, t) can be expressed as an

initial value plus a perturbation term:

L(~r, ~Ω, E, t) = L(~r, ~Ω, E, t0) + δL(~r, ~Ω, E, t) (3.51)

φ(~r, ~Ω, E, t) = φ(~r, ~Ω, E, t0) + δφ(~r, ~Ω, E, t) (3.52)

Now, substituting the definitions 3.51 and 3.52 in equation 3.48 we obtain

ρ

Λ
(t) =

[〈
L(~r, ~Ω, E, t0)φ(~r, ~Ω, E, t0)

∣∣ W0(~r, ~Ω, E)
〉

+
〈
δL(~r, ~Ω, E, t0)φ(~r, ~Ω, E, t0)

∣∣ W0(~r, ~Ω, E)
〉

+
〈
L(~r, ~Ω, E, t0)δφ(~r, ~Ω, E, t0)

∣∣ W0(~r, ~Ω, E)
〉

+
〈
δL(~r, ~Ω, E, t0)δφ(~r, ~Ω, E, t0)

∣∣ W0(~r, ~Ω, E)
〉] [ 1

E(t0) + δE(t)

]
(3.53)
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If the changes in L(~r, ~Ω, E, t) are small, the second order term δLδφ can be neglected.

Since the initial flux shape function satisfies the initial flux shape equation 3.49 the first

term in equation 3.53 is zero. When the perturbation term δE(t) is brought to the numerator

using a truncated Taylor series, only second order terms results. Therefore, that term is

dropped. Only two terms remain and the equation reduces to equation 3.54

ρ

Λ
(t) =

1

E(t0)

[〈
δL(~r, ~Ω, E, t0)φ(~r, ~Ω, E, t0)

∣∣ W0(~r, ~Ω, E)
〉

+
〈
L(~r, ~Ω, E, t0)δφ(~r, ~Ω, E, t0)

∣∣ W0(~r, ~Ω, E)
〉]

(3.54)

It can be seen that any variation of φ(~r, ~Ω, E, t) produces a first-order variation in ρ/Λ.

But, if the adjoint flux φ+(~r, ~Ω, E, t) (defined in equation 3.55) is used this dependence can

be eliminated.

L+(~r, ~Ω, E, t0) φ+(~r, ~Ω, E, t0) = 0 (3.55)

where L+(~r, ~Ω, E, t0) is the adjoint operator defined such that it satisfies equation 3.56:

〈
L+(~r, ~Ω, E, t0) v(~r, ~Ω, E)

∣∣ u(~r, ~Ω, E)
〉

=
〈
L(~r, ~Ω, E, t0) u(~r, ~Ω, E)

∣∣ v(~r, ~Ω, E)
〉

(3.56)

where v(~r, ~Ω, E) and u(~r, ~Ω, E) are arbitrary functions.

Applying equation 3.56 to the second term on the RHS of equation 3.54 we obtain 3.57.

ρ

Λ
(t) =

1

E(t0)

[〈
δL(~r, ~Ω, E, t0)φ(~r, ~Ω, E, t0)

∣∣ W0(~r, ~Ω, E)
〉

+
〈
L+(~r, ~Ω, E, t0)W0(~r, ~Ω, E)

∣∣ δφ(~r, ~Ω, E, t)
〉]

(3.57)

If the adjoint flux is used as the weight function W0(~r, ~Ω, E) = φ+(~r, ~Ω, E, t0) the second

term in equation 3.57 is zero and we obtain equation 3.58.

ρ

Λ
(t) =

1

E(t0)

〈
δL(~r, ~Ω, E, t0)φ(~r, ~Ω, E, t0)

∣∣ W0(~r, ~Ω, E)
〉

(3.58)

This way, the reactivity calculation does not depend on knowing δφ(~r, ~Ω, E, t).
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3.1.2.6 Physical Interpretation

3.1.2.6.1 Normalization Condition

If we consider that n(t) φ(~r, ~Ω, E, t)/v(E) is the neutron density, then the value of〈
1

v(E)φ(~r, ~Ω, E, t)
∣∣ W (~r, ~Ω, E, t)

〉
is asymptotically proportional to the fundamental mode

power level. So, for a small perturbation, any asymptotic change in power level is ex-

pressed by a variation of the amplitude function n(t), it having required that the factor〈
1

v(E)φ(~r, ~Ω, E, t)
∣∣ W (~r, ~Ω, E, t)

〉
be time-independent (Henry [45]). Then, when the flux

rises on an asymptotic period (all other modes vanishes), the shape φ is independent of

time and the constant constraint from equation 3.38 on
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣ W (~r, ~Ω, E, t)
〉
is

fulfilled automatically.

3.1.2.6.2 Kinetics Parameters

As previously discussed, the definition of the weight function will determine the phys-

ical meaning of the parameters 3.34b to 3.34f. If the adjoint flux is used as the weight

function, these parameters will have the classical interpretation given in the reactor point

kinetics model. Otherwise, these parameters do not have the standard meaning of the

point kinetics model but this should be relativized since the total flux (Equation 3.29) can

be obtained regardless the chosen weight function (by solving the set of shape and am-

plitude equations at the same time). If the adjoint-weighted parameters are desired, they

can be straightforwardly calculated afterwards from the flux solution. Moreover, different

weighted (subscript t) parameters can be related as in equation (10) as discussed by Henry

in [45].

ρ = ρt + Λ
dn/dt

n
+ Λt

dnt/dt

nt
+
QtΛtHt −QΛH

Hn
(3.59)

where H, Λ and ρ are the parameters define in equations 3.34a, 3.34e and 3.34b respectively,

n is the amplitude function and Q an external source. The subscript t denotes that the

parameters are weighted by a function different from the parameters without subscript.

This means that in the absence of a source Q and in slow transients (dn/dt = 0) the

reactivity value will be approximately independent of the weight function.

Nevertheless, it is important to stress that any choice for the normalization is valid as

long as all equation are defined consistently to this choice but it does not necessarily have

a physical interpretation.
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3.1.2.7 Summary

To summarize, the multi-variable system of partial integro-differential equations that

will be used to solve the shape function φ(~r, ~Ω, E, t) are presented in equations 3.60 for solid

precursors (equation 3.60b) and liquid precursors (3.60c).

Then, in 3.61, the amplitude equations (similar to the point kinetics) associated to

the shape equations are shown, which will be used for solving the amplitude n(t) of the

factorization presented in 3.29. All of this given the parameters condensation stated in

3.62 following the assumptions made in the derivation of the method.

Shape Equations

1

v(E)

∂φ

∂t
(~r, ~Ω, E, t) =

[
− L − T + S − 1

v(E)

1

n(t)

dn(t)

dt

+
χp(E)

4π
(1− β)F

]
φ(~r, ~Ω, E, t) +

1

n(t)

Gd∑
d=1

χd(E)

4π
λdCd(~r, t)

∂Cd
∂t

(~r, t) = βd

∫∫
Fφ(~r, ~Ω, E, t)dE d~Ω n(t) − λdCd(~r, t) d = 1 to Gd

∂Cd
∂t

(~r, t) + ~u · ∇Cd(~r, t) = ∇ · [Dd∇Cd(~r, t)]

+ βd

∫∫
Fφ(~r, ~Ω, E, t)dE d~Ω n(t) − λdCd(~r, t) d = 1 to Gd

(3.60a)

(3.60b)

(3.60c)

Amplitude Equations

dn(t)

dt
=

ρ− βeff

Λ
n(t) +

Gd∑
d

λdc̄d(t)

dc̄d
dt

(t) =
βeffd

Λ
n(t) − λdc̄d(t)

(3.61a)

(3.61b)
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Parameters Condensation

H(t) =

〈χp(E)

4π
(1− β) +

Gd∑
d=1

χd(E)

4π
βd

F φ(~r, ~Ω, E, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉

ρ(t) =
1

H(t)

〈(
− L − T + S

)
φ(~r, ~Ω, E, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉
+ 1

βeffd (t) =
1

H(t)

〈
χd(E)

4π
βd F φ(~r, ~Ω, E, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉

βeff (t) =

Gd∑
d=1

βeffd (t)

Λ(t) =
1

H(t)

〈
1

v(E)
φ(~r, ~Ω, E, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉

c̄d(t) =

〈
χd(E)

4π Cd(~r, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W0(~r, ~Ω, E)

〉

(3.62a)

(3.62b)

(3.62c)

(3.62d)

(3.62e)

(3.62f)

Assumptions

The main assumptions to inferred the systems of equations proposed are:

• The factorization of ψ(~r, ~Ω, E, t) is possible.

• The weight function is independent of time W (~r, ~Ω, E, t) = W0(~r, ~Ω, E).

• The constraint
〈

1
v(E)φ(~r, ~Ω, E, t)

∣∣∣∣ W (~r, ~Ω, E, t)

〉
= constant is applied7.

• Incompressible fluid with non-slip boundary condition and no loss of precursors

through the boundaries (for liquid fissile).

3.1.2.8 Common simplifications used to solve the Quasi-Static Method equa-

tions

In this section, we will introduce some common approximations made in the Quasi-

Static Method. These approximations will simplify its numerical implementation and more

important they will allow us to take full advantage of the mathematical model shown before

and thus relax the computational demand of the method numerical implementation.

3.1.2.8.1 Improved Quasi-Static Method

If we choose not to introduce any simplification and solve the full set of Quasi-Static

7Notice that, in the case of the system following the stable period this condition is automatically fulfilled
since φ(~r, ~Ω, E, t) is already independent of time and the factorization ψ(~r, ~Ω, E, t) = n(t)φ(~r, ~Ω, E, t)
becomes a separation of variables [45]
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Method equations 3.60 and 3.61 with its constrains, the method is referred to as Improved

Quasi-Static Method.

3.1.2.8.2 Original Quasi-Static Method

To simplify the numerical integration a common approximation is to assume that the

rate of change of the flux shape function is significantly smaller than the rate of change of

the amplitude, i.e. ∂φ/∂t << (dn/n)/dt→ ∂φ/∂t = 0. This approximation is known as the

Original Quasi-Static Method. This way, the equation 3.60a can be solved as being

steady-state for the flux shape function as can be seen from equation 3.63 [42]. Moreover,

the term containing the derivative of the flux amplitude can be seen as a "correction" on the

collision cross section. The precursors equation remain unchanged, i.e., no approximation

is made:

[
− L − T + S − 1

v(E)

1

n(t)

dn(t)

dt
+

χp(E)

4π
(1− β)F

]
φ(~r, ~Ω, E, t)

+
1

n(t)

Gd∑
d=1

χd(E)

4π
λdCd(~r, t) = 0 (3.63)

3.1.2.8.3 Adiabatic Method

In most of the adiabatic variants of the Quasi-Static Method an additional approx-

imation is introduced. This approximation consists in neglecting both time derivatives

(∂φ/∂t = 0; dn/dt(t) = 0) only in the neutron angular flux shape equation 3.63:

[
− L − T + S +

χp(E)

4π
(1− β)F

]
φ(~r, ~Ω, E, t)

+
1

n(t)

Gd∑
d=1

χd(E)

4π
λdCd(~r, t) = 0 (3.64)

Even thought this equation neglects an important part of the coupling between equa-

tions 3.60a and 3.61a, these equations are still related by the feedback in the removal and

fission source operators and the precursors concentration [42]. Moreover, with the adia-

batic approximation, the original transient equation 3.60a has now be transformed in a

steady-state problem as can be seen in equation 3.64. Note that if a steady-state solution

of the equation 3.64 exist (i.e.the system is not prompt super-critical), the flux shape can

be calculated with a Monte Carlo code using for example the external source method.

This approach may not be the most computationally efficient method but it could be used
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for sub-critical systems or for systems that are super-critical but well below the prompt

criticality (as long as it exist a steady-state solution of equation 3.64).

The resolution of equation 3.64 can be further simplified by introducing an additional

approximation (not inherent to the adiabatic approximation) that consists in considering

that the precursors concentrations are in equilibrium with the fission source:

χp(E)

4π
(1− β)F φ(~r, ~Ω, E, t) +

1

n(t)

Gd∑
d=1

χd(E)

4π
λdCd(~r, t) →

1

4π
[χp(E)(1− β) + χd(E)β] F φ(~r, ~Ω, E, t) (3.65)

The benefit of this additional approximation (only used in for the calculation of the

flux shape) is obvious, the problem can be transformed in the standard neutronics keff

eigenvalue problem as follows:

[
L + T − S

]
φ(~r, ~Ω, E, t) =

1

keff

1

4π
[χp(E)(1− β) + χd(E)β] F φ(~r, ~Ω, E, t) (3.66)

Equation 3.66 has several advantages, first it ensures the existence of a steady non-

trivial solution. Secondly the delayed neutrons source can be calculated directly from the

fission source. Several standard methods are available to solve this problem. In particular,

equation 3.66 can be simply calculated from a Monte Carlo code using the k-eigenvalue

method. Nevertheless, by solving the flux shape using equation 3.66, we are considering

that the precursors distribution is in equilibrium with the instantaneous fundamental mode

of the neutron flux shape. We do not distinguish then the shape of the prompt neutron

fission source from the shape of the delayed neutron source. This approximation may

introduce a significant error in transients where the delayed neutron precursors have an

important effect on the flux shape and their spatial distribution is far from equilibrium

with the neutron flux. In such transients equation 3.64 should be preferred.

The numerical resolution of equation 3.64 can be simplified by transforming equation

3.64 in an eigenvalue problem. To do that, the delayed neutron source of equation 3.64

is estimated with the fission rate operator and corrected with the normalized precursors
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distribution shape. This replacement allows rewriting the equations as follows:

[
− L − T + S − 1

v(E)

1

n(t)

dn(t)

dt
+

χp(E)

4π
(1− β)F

]
φ(~r, ~Ω, E, t)

+

Gd∑
d=1

χd(E)

4π
βd

∫
Fφ(~r, ~Ω, E, t)dV

Cd(~r, t)

Cmax
= 0 (3.67)

This equation can now be solved with most neutronics standard solvers. In particular

a k-eigenvalue method in Monte Carlo code can be used with some small modifications.

As we will discuss in Chapter 4, to obtain the solution of equation 3.67 the Monte Carlo

k-eigenvalue solver will have to be modified. In particular, the neutron sampling algorithm

will have to use the equation 3.61 to setup the position of delayed neutrons rather than

using the neutron source obtained in the previous batch.

Since equation 3.67 does not assume equilibrium conditions between the neutron pre-

cursors distributions and the neutron flux, it can therefore be used in more general cases

as for example in the case of a system with a liquid fissile such as a liquid fuel. As we have

seen in section 3.1.2.3 and from equation 3.7, the spatial distribution of each precursor

family can be heavily distorted in such systems and using equation 3.66 would introduce

a significant error.

Note that while equation 3.67 uses the correct delayed neutron precursors distribution,

it still has one minor approximation: the probability of the delayed neutron emission at a

given position is calculated using the physical delayed neutron fraction and the neutron flux

rather than the precursors concentration and the decay probability. In most situations,

the error introduced by this last approximation in the calculation of the neutron shape

function is small as we will see in the results of Chapter 5. This can be explained for

various reasons: the velocity of motion of the precursors is relatively small (order of a

few centimeters per second), neutron precursors will have a relatively low effect during

transients resulting from larger reactivity insertions and, on the contrary, during slow

transients (low reactivity insertion) the approximation will work better. Nevertheless, the

error can be avoided by introducing a straightforward modification on the criterion used by

the Monte Carlo code for sampling the neutrons. We chose not to do these modifications

to minimize the changes on the original Serpent code and since the error was small for the

studied cases.

Finally, it is important to remark that independently of which equation is used (either
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equation 3.66 or equation 3.67), the precursors time derivative in either case is not ne-

glected (i.e. dCd/dt 6= 0) in equations 3.6 and 3.67. The amplitude equations also rest the

same (equations 3.1.2.7). Therefore, time evolution is followed mainly via the amplitude

equations and the precursors equations.

3.1.2.9 Monte Carlo Quasi-Static Method

In this work, a Quasi-Static Method was implemented with a Monte Carlo method

using the adiabatic form to simplify the developments. An important advantage of the

adiabatic approximation is that the resulting equations 3.66 and 3.67 are equivalent to the

transport problem solved by the criticality Monte Carlo calculation. Therefore a transient

calculation of the neutron flux in the Adiabatic QSM can be performed by determining

the flux shape function with a Monte Carlo code (using the standard criticality calculation

mode) while the flux amplitude is determined with a simple ODE solver which numerically

integrates the equations 3.1.2.7. This approach has be implemented in our work using

Serpent 2 and OpenFOAM codes. The details on the strategy used to couple the Monte

Carlo calculations for the flux shape function and with the flux amplitude calculations

using OpenFOAM are given in Chapter 4.

Better approximations like the Original Quasi-Static Method can be implemented by

adding an external source for the precursors (or correcting the amplitude of the source

by modifying the probability of emission (β) of a delayed neutron ) and modifying the

cross sections by the (dn/n)/dt term. However, it is shown in this work that the adiabatic

approximation provides accurate enough results even during very fast transients or with

liquid fissile systems as it will be illustrated by the results of Chapter 5. Equation 3.66 can

be used for solid fuel systems assuming that the spatial distribution of the delayed neutrons

is close to an equilibrium with the neutron flux or that the delayed neutron precursors have

not an important effect on the flux shape (such as in some Godiva experiments as we will see

in Chapter 5). For the other cases, equation 3.67 should be preferred, which is equivalent

to Equation 3.66 at the limit of static liquid fuel (~u = ~0).

3.1.3 Simplified PN

As discussed at the beginning of this chapter we have selected the Simplified PN method

as an alternative deterministic method to the Monte Carlo Quasi-Static Method approach
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described in the previous sections. The SPN was chosen because of its relatively simple

numerical implementation. In addition, the order one of this method (SP1) is equivalent,

in this formulation, to the diffusion approximation. In this section, we will review the

mathematical derivation with special focus on the modifications that were needed to obtain

the final equations used in the algorithm implemented in our multi-physics modeling tool.

The numerical implementation of the algorithm will be presented in Chapter 4.

3.1.3.1 Method Description

The Simplified PN (SPN) was first proposed by Gelbard [51] based on heuristic argu-

ments to justify the approximation. The SPN method is indeed a 3D extension of the slab

PN equations but due to the lack of a strong theoretical justification it was not considered

until recently as an accurate method for the resolution of the transport equation. Since its

first appearance, asymptotic and variational analysis have been done proving the validity

of the SPN method[52] which, in many cases, gives the same results as the PN equations

and in others it represents an improvement over the diffusion approach. However as stated

in the work of McClarren [52], this is true as long as the problem is either close to diffusive

or locally 1D. The interested reader is encouraged to read McClarren’s work as it gives a

very good insight of the assumptions, the heuristic derivation as well as the asymptotical

and variational derivations, the treatment on the interface and boundary conditions and

the time-dependent SPN equations. McClarren [52] also provides a brief discussion over

the optimal order N of the SPN approximation since in some cases the SPN approximation

is not asymptotic to the transport equation and, therefore, increasing in the order of the

approximation does not necessarily means an increase in accuracy.

Most practical derivations of the SPN method are for the steady-state reactor analysis,

as seen presented in the work of Hamilton and Evans [28] in the framework of CASL DOE

Energy Innovation Hub. The latter approach is used here to derive the transient equations.

The formal derivation of Gelbard begins with the PN equations for 1-D slab geometry [51].

We will first show the multi-group one-dimensional formulation of the transport equation.

As a difference from Hamilton and Evans [28] we will account for the time dependency by

adding the time derivative of the neutron angular flux divided by the neutron speed. In
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addition, the delayed neutron source was incorporated as observed in equation 3.68.

1

vg
∂ψg

∂t
(x, µ) + µ

∂ψg

∂x
(x, µ) + Σgtot(x)ψg(x, µ) =

Ng∑
g
′
=1

∫
4π

Σgg
′

s (x,Ω · Ω
′
) ψg(x,Ω

′
), dΩ

′

+
χgp
4π

(1− β)

Ng∑
g
′
=1

∫
4π

νΣg
′
f (x) ψg

′
(x,Ω

′
) dΩ

′
+

χgd
4π

Gd∑
d=1

λdCd(x) (3.68)

where all quantities are defined to take the multi-group formulation into account using the

superscript g to denote the energy group. ψg, vg and Σgr are the angular flux, neutron speed

and macroscopic cross section for reaction r, respectively. χgp and χgd are the fractions of

prompt and delayed neutrons born in group g. Σgg
′

s is the scattering macroscopic cross

section from the energy group g′ to g, i.e., is the coupling reaction between any two energy

groups. Finally, µ is the cosine of the direction angle θ in the lab system, i.e. µ = cosθ.

The neutron angular flux and the scattering macroscopic cross section are written in

these equations using the following Legendre polynomials expansions to obtain the PN

equations:

ψ(µ) =

N∑
n=0

2n+ 1

4π
φnPn(µ) (3.69)

Σs(µ0) =

N∑
m=0

2m+ 1

4π
ΣsmPm(µ0) (3.70)

where µ0 = Ω · Ω′ and Pl(Ω · Ω
′
). The spatial dependence of the modes φn was omitted to

simplify notation.

From these definitions is easy to see that the scalar flux will be the order zero of the

expansion (φ(x) = 2π
∫ 1

−1
ψ(x, µ′), dµ′ = φ0(x)). Replacing this definitions in equation 3.68

we obtain the PN equations for a slab geometry in Cartesian coordinates as shown in 3.71

(for simplicity the spatial and time dependency are not explicitly shown).

1

vg
∂φgn
∂t

+
∂

∂x

[
n

2n+ 1
φgn−1 +

n+ 1

2n+ 1
φgn+1

]
+

Ng∑
g′=1

(
Σgtotδgg′ − Σgg

′
sn

)
φgn

=

χgp(1− β)

Ng∑
g′=1

νΣg
′

f φ
g′
n + χgd

Gd∑
d=1

λdCd

 δn0 (3.71)

For the SPN equations an ad-hoc replacement was made by Gelbard [51] as pointed out

by McClarren [52]: for n odd φn is replaced by a vector (φn → ~φn = (φxn, φ
y
n, φ

z
n)t) and the

spatial derivative by a spatial gradient (d/dx→ ∇), and for n even the spatial derivative is
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replaced by the spatial divergence (d/dx → ∇·). This way, we arrived to the multi-group

time-dependent SPN set of equations 3.72.

1

vg
∂φg0
∂t

+∇ · ~φg1 +

Ng∑
g′=1

(
Σgtotδgg′ − Σgg

′
s0

)
φg0 = χgp(1− β)

Ng∑
g′=1

νΣg
′

f φ
g′
0 + χgd

Gd∑
d=1

λdCd

(3.72a)

1

vg
∂~φgn
∂t

+∇
[

n

2n+ 1
φgn−1 +

n+ 1

2n+ 1
φgn+1

]
+

Ng∑
g′=1

(
Σgtotδgg′ − Σgg

′
sn

)
~φgn = 0 for odd n

(3.72b)

1

vg
∂φgn
∂t

+∇ ·
[

n

2n+ 1
~φgn−1 +

n+ 1

2n+ 1
~φgn+1

]
+

Ng∑
g′=1

(
Σgtotδgg′ − Σgg

′
sn

)
φgn = 0 for even n

(3.72c)

Similar to Hamilton and Evans [28], but adding into the SPN equations the transient

term and the delayed neutrons source, we can define the multi-group quantities from equa-

tions 3.72 in a matrix form:

Φn =
(
φ0 φ1 · · · φNg

)T ~Φn =
(
~φ0

~φ1 · · · ~φNg
)T

Xd =
(
χ0
d χ

1
d · · · χ

Ng
d

)T
Sd =

Gd∑
d=1

λdCd

I1/v =



1
v0 0 · · · 0

0 1
v1 · · · 0

...
...

. . .
...

0 0 · · · 1

vNg


F =



χ0
pνΣ0

f χ0
pνΣ1

f · · · χ0
pνΣ

Ng
f

χ1
pνΣ0

f χ1
pνΣ1

f · · · χ1
pνΣ

Ng
f

...
...

. . .
...

χ
Ng
p νΣ0

f χ
Ng
p νΣ1

f · · · χ
Ng
p νΣ

Ng
f



Σn =



(
Σ0
Tot − Σ00

sn

)
−Σ01

sn · · · −Σ
0Ng
sn

−Σ10
sn

(
Σ1
Tot − Σ11

sn

)
· · · −Σ

1Ng
sn

...
...

. . .
...

−Σ
Ng0
sn −Σ

Ng1
sn · · ·

(
Σ
Ng
Tot − Σ

NgNg
sn

)



With these definitions, the SPN equations 3.72 can be rearranged to form a more
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compact set of equations:

I1/v
∂~Φn
∂t

+∇
[

n

2n+ 1
Φn−1 +

n+ 1

2n+ 1
Φn+1

]
+ Σn~Φn = 0 for odd n

I1/v
∂Φn
∂t

+∇ ·
[

n

2n+ 1
~Φn−1 +

n+ 1

2n+ 1
~Φn+1

]
+ ΣnΦn

= [(1− β)FΦ0 +XdSd] δn0 for even n

(3.73a)

(3.73b)

Here we introduce two approximations that will be discussed later:

• The time derivative of the odd modes are set to zero, which means that the time

variation of odd flux modes are much smaller than the spatial flux variations of even

flux modes [53].

I1/v
∂Φn
∂t

= 0 for odd n (3.74)

• The scattering is considered isotropic between energy groups, i.e. there is no group-

to-group anisotropic scattering. This approximation is called the within-group ap-

proximation, which is a common assumption in multi-group diffusion theory as ex-

plained by Brantley and Larsen [54]. It can be expressed as:

Σgg
′

sn = 0 g′ 6= g n > 0 (3.75)

Using the first assumption we can reduce in half the amount of equations to solve by

replacing the odd modes in the even modes as shown in equation 3.76. It should be noted

that this is particularly true for steady-state. The second assumption, eliminates all non-

diagonal elements from Σn matrices of non-zero orders (n > 0). In this work, it was applied

to the non-zero odd orders. Then, the Σn matrices for odd n are easily inverted.

~Φn = −Σ−1
n ∇

[
n

2n+ 1
Φn−1 +

n+ 1

2n+ 1
Φn+1

]
for odd n (3.76)

Then, replacing in 3.76 in 3.73b thus having the second-order form of the SPN equations:

I1/v
∂Φn
∂t

− ∇ ·

[
n

2n+ 1
Σ−1
n−1 ∇

(
n− 1

2n− 1
~Φn−2 +

n

2n− 1
~Φn

)
+

n+ 1

2n+ 1
Σ−1
n+1 ∇

(
n+ 1

2n+ 3
~Φn +

n+ 2

2n+ 3
~Φn+2

)]
+ ΣnΦn

= [(1− β)FΦ0 +XdSd] δn0 for even n (3.77)
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For the current analysis we will be using up to the third mode of the method since

this provides sufficient accuracy. The series of equations 3.77 are, therefore, truncated to

N=3 (i.e. φi = 0 for i > 3). Then, by working on the flux modes of order 0 and 2 (the

odd modes are included in the second order equations) and by using a change of variables

U1 = Φ0 + 2Φ2, the SP3 equations used in this analysis are obtained.

I1/v
∂U1

∂t
= ∇ ·

(
1

3
Σ−1

1 ∇U1

)
− Σ0 (U1 − 2Φ2)

+ (1− β) F (U1 − 2Φ2) +XdSd + 2 I1/v
∂Φ2

∂t

3 I1/v
∂Φ2

∂t
= ∇ ·

(
3

7
Σ−1

3 ∇Φ2

)
−
(

5

3
Σ2 +

4

3
Σ0

)
Φ2

− 2

3
(1− β) F (U1 − 2Φ2) − 2

3
XdSd +

2

3
Σ0U1 +

2

3
I1/v

∂U1

∂t

(3.78a)

(3.78b)

This set of equations is similar, but not exactly the same, to those used by Fiorina [55].

It is easy to see that by setting Φ2 = ~0 the SP1 equation is obtained. Moreover, by defining

the diffusion coefficient as D = (1/3)Σ−1
1 , the SP1 equation becomes the standard diffusion

equation. In this sense, the higher orders are a correction on the diffusion equations.

3.1.3.2 Boundary Conditions

The general boundary conditions for a given system can be expressed in terms of the

angular flux coming into the system as follows:

ψ(~r,Ω) = Ψ−(Ω) for Ω · n̂ < 0, ~r ∈ ∂Γ

where n̂ is the outward normal of the boundary of the domain ∂Γ.

In our analysis, the boundary conditions are treated in an approximate way using the

Marshak boundary conditions8 from equation 3.79.

2π

∫
µin

Pi(µ)ψ(µ) dµ =

N∑
n=0

2n+ 1

2
φn(x)

∫
µin

P2m−1(µ)Pn(µ)

= 2π

∫
µin

P2m−1(µ)Ψ−1(µ) for x = 0, X and m = 1, 2, · · · (N + 1)/2 (3.79)

8Bell and Glasstone [26] explain that the exact boundary conditions cannot be satisfied because these
are imposed over half the angular range whereas the expansion coefficients apply over the whole range of
µ ∈ [−1, 1]. There are two reasonable options for a free surface, either Marshak conditions, which have
the virtue of including the diffusion theory zero incoming current case, and the Mark boundary conditions,
which is equivalent to placing a pure absorber outside the domain.
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For the case of vacuum, Ψ−(µ) = 0 making the RHS zero as well. In the one-dimensional

problem the flux expansion is truncated at N (i.e., φN+1 = 0) but McClarren points out

there are other possibles closures. This gives us (N + 1)/2 equations at each side of the

slab closing the system of (N + 1) equations 3.71.

Moreover, by using the ad-hoc replacement proposed in Gelbard’s SPN formal deduc-

tions and considering that µ → n̂ · ~Ω we obtain the general form of the SPN method

boundaries conditions:

N∑
n even

2n+ 1

4π
φn(~r)

∫
n̂·Ω>0

P2m−1(n̂ · Ω)Pn(n̂ · Ω)d2Ω

+

N∑
n odd

2n+ 1

4π
~φn(~r)

∫
n̂·Ω>0

P2m−1(n̂ · Ω)Pn(n̂ · Ω)d2Ω

=

∫
n̂·Ω>0

P2m−1(n̂ · Ω)Ψ−1(n̂ · Ω)

for ~r ∈ ∂Γ and m = 1, 2, · · · (N + 1)/2 (3.80)

For the purpose of this work and without losing too much precision, we will once again

truncate the solution to the third mode (N = 3) and apply the same assumptions as

those used in equation 3.78. After some rearrangement, the Marshak vacuum boundary

conditions for the SP3 can be written as follows:

(
−1

3
Σ−1

1 ∇U1

)
· n̂ =

1

2
U1 −

3

8
Φ2(

−3

7
Σ−1

3 ∇Φ2

)
· n̂ = −1

8
U1 +

7

8
Φ2

(3.81a)

(3.81b)

Equations 3.78 and 3.81 together with the precursors concentration equations 3.6 (sys-

tem containing a solid fissile) or 3.7 (system containing a liquid fissile) allow solving the

transient neutronic problem. In this work, this system of equations was fully implemented

and numerically solved in the code OpenFOAM. The details on the algorithms used for

these equations are given in Chapter 4. In the next section, we will continue the discussion

on the model development for the multi-physics tool by presenting the solid mechanics

model.
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3.2 Solid Mechanics

Different phenomena can be developed in solid components of nuclear systems under-

going a criticality accident. Some of these phenomena are relatively simple to solve such

as the mechanical stresses resulting from thermal expansion. Other are more complicate

to solve such as pressure or sound waves. In this section, we will describe the solid me-

chanic model used to calculate the displacements and the mechanical stresses resulting

from temperature variations in a solid. This model is necessary to accurate estimate the

solid fuel density variations and its associated effects on neutronics. This model will be

key for solving some nuclear systems such as the one used in the Godiva experiments.

3.2.1 Basics notions

Mechanics is the study of the behaviour of bodies under action of forces and displace-

ments. Solid mechanics is a branch of the continuum mechanics dealing with solid

bodies [56]. In particular, the motion and deformation under action of forces, temperature

changes, phase changes, and other external or internal agents.

3.2.1.1 Stress and Strain

Given a body in equilibrium under the action of external forces, the distribution of

internal forces per unit area is called stress [57]. For these surface forces the notation is

given by σi for normal stress and τij for shear stress, where i is the normal coordinate

axis to the surface where the stress is applied and j denotes to which axes the shear stress

is parallel to. This can be observed in the infinitesimal cubic element from Figure 3.1.

Figure 3.1 – Stress Element Diagram.
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The stress tensor can be written as

σ =


σx τxy τxz

τyx σy τyz

τzx τzy σz

 (3.82)

If there are enough constraints to prevent the body from moving as a rigid body, any

displacement of its particles is impossible unless there is a deformation of the same. This

elongation per unit length is called strain. ~D (with components Di) is the displacement

field, that is, the elongation at any point in the material. If ~D0 is the displacement at a

fixed point, then at any point P, it can be noted that for each component i the displacement

is DP
i = D0

i + (∂Di/∂i)di where each ∂Di/∂i is the strain in the i direction. Given the the

elongation on every direction the cube element from Figure 3.1 will experiment a tilt given

by the shear strain. In conclusion, the relation between the strain and the displacement

can be written as follows

εi =
∂Di

∂i
γij =

∂Di

∂j
+
∂Dj

∂i
for i, j = x, y, z & i 6= j (3.83)

or in a more compact way

¯̄ε =
1

2

[
∇ ~D +

(
∇ ~D

)T]
(3.84)

where the strain tensor is

¯̄ε =


εx γxy γxz

γyx εy γyz

γzx γzy εz

 (3.85)

3.2.1.2 Hooke’s Law

Up to a certain limit the strain is proportional to the applied stress. This was deter-

mined experimentally by Robert Hooke and is now known as Hooke’s law [57]. It can be

expressed as

εx =
σx
E

(3.86)
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where E is the modulus of elasticity in tension or Young’s modulus. In addition,

the lateral contractions of the cubic element are given by

εy = −ν σx
E

εz = −ν σx
E

(3.87)

where ν is Poisson’s ratio. Within elastic limits Young’s modulus and Poisson’s ratio are

the same in compression and in tension.

If the element of the body is submitted to a normal stress in all directions, the more

general stress-strain relationship is given by

εi =
1

E
[σi − ν (σj + σk)] for i, j, k = x, y, z i 6= j 6= k (3.88)

A proportionality relationship can also be found between shear stress and shear strain

given by

γij =
1

G
τij for i, j = x, y, z & i 6= j (3.89)

where G is the module of elasticity in shear or the modulus of rigidity define as

G =
E

2(1 + ν)
(3.90)

The General Hooke’s Law can be written as

¯̄σ = 2µ¯̄ε+ λtr (¯̄ε) ¯̄I (3.91)

or, alternatively,

¯̄ε =
1

2µ
¯̄σ − λ

2µ (3λ+ 2µ)
tr (¯̄σ) ¯̄I (3.92)

where ¯̄I is the identity matrix and λ and µ are Lamé’s coefficients defined as

µ =
E

2 (1 + ν)
(3.93)

λ =


νE

(1+ν)(1−ν) for plane stress

νE
(1+ν)(1−2ν) for plane strain and 3D

(3.94)
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3.2.1.3 Thermal Stress

When considering a thermal stress, the components of the strain tensor can be con-

sidered as the sum of the contribution from the stress field and the contribution from the

temperature field. The latter is given by

¯̄εT = α (T − T0) ¯̄I (3.95)

where T0 is a reference temperature and α is the thermal expansion coefficient. The

shear strain terms are not affected by the temperature because free thermal expansion does

not produce angular distortion in an isotropic material [57]. The linear anisotropic case is

treated in [58].

Summing equation 3.95 into the General Hooke’s Law 3.92 we obtain the Duhamel-

Neumann relation 3.96.

¯̄ε =
1

2µ
¯̄σ − λ

2µ (3λ+ 2µ)
tr (¯̄σ) ¯̄I + α (T − T0) ¯̄I (3.96)

or, alternatively,

¯̄σ = 2µ¯̄ε+ λtr (¯̄ε) ¯̄I − (3λ+ 2µ)α (T − T0) ¯̄I (3.97)

3.2.2 Linear Elasticity

If a solid bar is subjected to traction and a stress-strain diagram is plotted the general

behaviour from Figure 3.2 is observed. From O to A the stress and strain are proportional.

After this point Hooke’s law is no longer valid, the line becomes a curve and the strain rate

quickly accelerates. Up to B (elastic limit) any deformation of the body disappears when

the stress is no longer applied, i.e., the state of the system returns to O, this is, the body

is perfectly elastic. From point B a sudden enlargement without appreciable increase

of the stress is observed. This is called yield and there is a permanent deformation of

the material, this is, if the stress is no longer applied only a part of the deformation is

recovered given by the elastic deformation and a permanent strain remains. Then, the

necessary stress keeps growing until point C where it reaches the peak known as ultimate

tensile strength. After the strain increases with lower charge until fracture point D[59].

Linear elasticity is the most simple model for solid mechanics. It corresponds to
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Figure 3.2 – Stress Strain Diagram.

the first part of the curve in Figure 3.2 where the bodies undergoing the action of the

external forces are perfectly elastic. Only two physical parameters are needed in this

model: the Young’s Modulus (E) and the Poisson’s ratio (ν), which can be easily obtained

experimentally.

This method is valid for small deformations when it exists a linear stress-strain rela-

tionship. In addition, there is only one configuration and only one system of coordinates.

Phenomena where the configuration changes cannot be accounted for in the linear elas-

ticity model.

3.2.2.1 Equation of motion

For an isotropic homogeneous solid body undergoing small strains the equation for

momentum balance of Cauchy’s first law of motion [60][61][62] is

∂2(ρ ~D)

∂t2
−∇ · ¯̄σ = ρ~f (3.98)

where ~f are the body forces.

If we combine the momentum equation 3.98 with the Duhamel-Neumann relation from

equation 3.97 and the strain-displacement relation 3.84, the displacement equation for

linear thermoelasticity is obtained:

∂2
(
ρ ~D
)

∂t2
= ∇

[
µ∇ ~D + µ

(
∇ ~D

)
+ λ I tr

(
∇ ~D

)]
−∇

(
E

1− 2ν
αT

)
+ ρ~f (3.99)
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Note that this equation requires knowledge on the temperature field. Equation 3.99 is

therefore coupled to the solid phase energy conservation equation discussed later. Further-

more, the resolution of equation 3.99 requires setting-up adequate boundary conditions as

discussed in the next section.

3.2.2.2 Boundary Conditions

Boundary Condition for solid mechanics can be of several types [60]. Among the most

common ones it can be cited:

• Fixed displacement

• Planes of symmetry

• Fixed pressure

• Fixed traction

• Free surface

The first condition consists in specifying ~D at the boundary, i.e., a Dirichlet Condition.

Second condition, is equivalent to mirroring the system, this is a Neumann condition. The

last three conditions in the list must satisfy the following expression:

~~σ · ~n = ~t− p~n (3.100)

where ~t is the applied traction, p the external pressure and ~n is the normal vector pointing

out of the boundary surface.

3.2.2.3 Energy conservation for a solid

We assume that energy transfer in the solid phase is caused only by thermal conduction.

Therefore, the solid temperature field can be estimated by a simple energy balance:

ρcp
∂

∂t
(T ) = ∇ · [k∇T ] + q̇V (3.101)

where ρ, cp and k are the solid’s density, specific heat capacity at constant pressure and

the thermal conductivity respectively. The term q̇V is a power source.

Note that the source term in the energy balance equation is, in our case, related to

the nuclear fission or the decay heat. This equation is therefore coupled to the neutronics

equations discussed earlier in this chapter.
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Finally, by setting adequate boundary conditions for our problem and given the temper-

ature field (e.g. calculated from the energy equation), the linear thermoelasticity equation

3.99 can be finally solved. In our approach, this set of equations was numerically resolved

by using existing libraries in OpenFOAM. An example of application is presented in Chap-

ter 5 for a Godiva experiment. Note that while the modeling of the solid phase requires

a high level of precision to adequately capture the key phenomena, most nuclear systems

have also fluid phase that is often used as a coolant to extract heat. Therefore, in the next

section, it will be discussed the modeling of the fluid equations or as it is often called the

thermal-hydraulics aspects of the model.

3.3 Thermal-hydraulics

Most of the nuclear systems studied in criticality accidents (see Chapter 2) have one

or several fluid components such as coolants, moderators or even liquid fuels. As for the

solid phase, several complex phenomena will take place in the fluid phase. Some of these

phenomena are related to the flow convective transport (e.g. heat convection, delayed

neutron precursors transport, etc.) while others will be caused by the criticality accident

itself (e.g. boiling, radiolysis, etc.). Many of these phenomena will have an important

impact on the accident evolution because of the strong coupling with the neutronic and

thermal-mechanical phenomena. In order to model them in the multi-physics model, fluid

mechanics equation have to be implemented.

Fluid mechanics theory is the branch of continuum mechanics studying fluids, that

is, liquids and gases. Opposite to solids, which resist by deforming under applied shear or

tangential stress, liquids are put in motion by the applied stress [63][64].

3.3.1 Eulerian vs Lagrangian

Traditionally, there are two approaches to analyzing problems in mechanics:

• Eulerian approach

• Lagrangian approach

The first follows a domain as material flows through it, i.e., the Eulerian approach

focuses on a specific location (Control Volume) as time passes. On the other hand, the

Lagrangian approach follows a material parcel as it moves through space and time.
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3.3.1.1 Material Derivative

The Lagrangian and Eulerian approaches are related by the Material or Lagrangian

derivative. Applying the chain rule to the total rate of change of a field variable f(t, x(t))

with Eulerian specification in a specific flow parcel we obtain

Df

Dt
=
df

dt
=
∂f

∂t

dt

dt
+
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
(3.102)

=
∂f

∂t
+ ux

∂f

∂x
+ uy

∂f

∂y
+ uz

∂f

∂z
(3.103)

=
∂f

∂t
+ (~u · ∇) f (3.104)

where ~u is the velocity vector, ∂f/∂t is the Eulerian derivative or local rate of

change and (~u · ∇) f is the convective rate of change.

The advantage of the Eulerian approach relies in that it focus its attention to a fixed

Control Volume (CV) which is the domain of interest. Whereas the Lagrangian approach

cannot be fixed to the domain of interest and the fluid parcels go to wherever the flow takes

them, not necessarily inside the domain of interest. In addition, the Eulerian approach

abandons the tedious task of tracking each individual particle. However, it introduces

non-linearities through the convective rate of change term, which represents the product

of the unknown velocity field (~u) and the gradient of an unknown variable field (∇f).

3.3.2 Reynolds Transport Theorem

The principle of conservation states that for an isolated system a particular property

is conserved over a local region. This applies to moving Material Volumes (MVs) of fluids,

not for fixed points or Control Volumes. To adapt the conservation principle to an Eulerian

approach the Reynolds Transport Theorem (RTT) is needed [65][63].

If B is any property of the fluid (mass, momentum, energy) and b = dB/dm the intensive

value of B in any small element of the fluid then the Reynolds Transport Theorem can be

expressed as (
dB

dt

)
MV

=
d

dt

(∫
V (t)

bρdV

)
+

∫
S(t)

bρ~ur · ~ndS (3.105)

where ρ is the density of the fluid, ~n is the vector normal to the Control Volume boundary,

V (t) is the deformable Control Volume, S(t) is the deformable Control Surface (boundary

of the CV), ~ur is the relative velocity ~u − ~us with ~us being the velocity of the deforming
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control surface.

If the volume is fixed, then ~us = ~0 and geometry is independent of time. In addition,

by using the Leibniz integral rule and the divergence theorem, equation 3.105 becomes

(
dB

dt

)
MV

=

∫
V

[
D

Dt
(ρb) + ρb∇ · ~u

]
dV (3.106)

We will use this equation for fixed volumes to obtain the mass, momentum and energy

conservation equations of the fluid phase in the next sections.

3.3.3 Flow Conservation Equations

In this section the Navier-Stokes equations and the energy conservation equations

are presented. The Navier-Stokes equations are a couple of highly nonlinear second order

partial differential equations in four independent variables (~r, t). They are used to describe

a broad spectrum of phenomena involving Newtonian fluids which will be discussed in

Section 3.3.3.2. Originally, the name Navier-Stokes was used to denominate the linear

momentum conservation equation but nowadays it is also use including the conservation

of mass.

3.3.3.1 Conservation of Mass

Assuming that the fluid does not experience phase change (e.g. solidification or boiling)

and since the mass change due to nuclear reactions is negligible, then we can state that

the mass m of the fluid system is conserved. In the Lagrangian description, if B = m, it

can be stated as (
dm

dt

)
MV

= 0 (3.107)

Now, using the Reynolds Transport Theorem in equation 3.106 given that b = 1 we

obtain the equivalent expression in an Eulerian coordinate system.

∫
V

[
Dρ

Dt
+ ρ∇ · ~u

]
= 0 (3.108)

For this to be true for any Control Volume V, the integrand should be zero, thus
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obtaining the differential form of the mass conservation or continuity equation.

Dρ

Dt
+ ρ∇ · ~u = 0 (3.109)

For fluid systems where the temperature gradients are relative small (no significant

density variation) and having small Mach numbers (smaller than 0.3), this equation can

be further simplified by considering the flow as incompressible, i.e.Dρ/Dt = 0 [63]. Using

the incompressible flow approximation, the continuity equation can be reduced to:

∇ · ~u = ~0 (3.110)

The continuity equation for incompressible flow means that in this particular case the

flow is divergence free or that the difference between outward and inward flow in the system

is zero. The incompressible flow approximation can be used in many types of liquids and

gases provided that the flow Mach number is small and the temperature variations do not

cause significant thermal expansion across the system. If these hypotheses are not met then

the flow should be considered as compressible and the more general continuity equation

3.108 has to be used. In our applications, the incompressible flow approximation provides

sufficient accuracy.

3.3.3.2 Conservation of Linear Momentum

The conservation of the linear momentum is obtained by applying the Newton’s Sec-

ond Law with body (~fb) or surface (~fs) forces acting on the fluid Material Volume (MV)

(~f = ~fb + ~fs). Once again, given the quantity B = m~u the conservation of momentum in

Lagrangian coordinates is:

(
d(m~u)

dt

)
MV

=

(∫
V

~fdV

)
MV

(3.111)

Since the volume integral on the Right Hand Side (RHS) is performed over the volume

occupied instantaneously by the moving fluid we can lose the MV subscript. In additon,

dB/dm = ~u and applying the Reynolds Transport Theorem we obtain

∫
V

[
D

Dt
(ρ~u) + (ρ~u∇ · ~u)− ~f

]
= 0 (3.112)
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Once again, the integrand should be zero to fulfill the previous relation. Then,

D

Dt
(ρ~u) + (ρ~u∇ · ~u) = ~f (3.113)

In addition, by regrouping and taking into account the continuity equation 3.109 the

differential conservation equation for the flow momentum is obtained:

ρ

[
∂~u

∂t
+ (~u · ∇) ~u

]
= ~f (3.114)

3.3.3.2.1 Surface Forces

Surface forces acting on the boundary surfaces of the Control Volume element are due

to pressure and viscous stresses. The stress tensor can be described in the same way as in

Figure 3.1 and defined in equation 3.82. The most important contribution to the normal

stress is the pressure. Normally the stress tensor is split into two terms giving

¯̄σ = −


p 0 0

0 p 0

0 0 p

+


σx + p τxy τxz

τyx σy + p τyz

τzx τzy σz + p


= −p ¯̄I + ¯̄τ (3.115)

where p is the thermodynamic pressure and ¯̄τ is the deviatoric or viscous stress

tensor. The thermodynamic pressure p is equal to the hydrostatic pressure when the fluid

is at rest.

Now, the integral of the surface forces on the volume applying divergences theorem is

∫
S

¯̄σ · ~ndS =

∫
V

∇ · ¯̄σdV (3.116)

Then,

~fs = ∇ · ¯̄σ = −∇p+∇ · ¯̄τ (3.117)

Newtonian Fluids

Most fluids in engineering applications can be considered as Newtonian fluids [63]. In

our applications, all the fluids of interest can be considered this way. Newtonian fluids

are defined as fluids where the stress tensor is a linear function of the strain rate. This
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property together with two general assumptions: (1) the fluid is a continuous isotropic

medium and (2) the viscous stress tensor reduces to zero when the strain rate is zero, can

be used to found the following expression for the viscous stress [66]:

¯̄τ = µ
{
∇~u+ (∇~u)

T
}

+ λ (∇ · ~u) ¯̄I (3.118)

where µ is the molecular viscosity coefficient, λ is the bulk viscosity coefficient and

the operator {} denotes the dyadic product.

Replacing the surface stress force in equation 3.114 we obtain the momentum equation

for compressible and incompressible Newtonian fluids:

ρ
D~u

Dt
= −∇p+∇ ·

{
µ
[
∇~u+ (∇~u)

T
]}

+∇ (λ∇ · ~u) + ~fb (3.119)

where fb are body forces. The previous equation can be further simplified by using the

Stoke’s hypothesis: (λ = −(2/3)µ) (verified by most fluids), assuming that the flow is

incompressible (∇ · ~u = ~0) and that the fluid viscosity µ is constant to:

ρ
D~u

Dt
= −∇p+ µ∇2~u+ fb (3.120)

This is known as the Navier-Stokes equation for an incompressible flow that will serve as

a basis for the models discussed in the rest of this chapter. It is worth to note that these

equations (one for each of the three spatial directions) are highly non-linear due to the

convective term in the Material derivative and thus only a few analytical solutions are

known. Indeed the existence of a solution to these equations is not guaranteed and usually

very complex numerical integration methods have to be used. As it is discussed later, de-

pending on the competition between inertial (convective term) and viscous forces (viscous

tensor) the flow can develop a very unstable behaviour that is called turbulence. Turbu-

lent flows will require the introduction of additional approximations in order to decrease

the complexity of the problem and the computational cost of the numerical resolution. Fi-

nally, it is important to remark that the above equations require both initial and boundary

conditions to be completely solved. In our applications, the boundary conditions will often

include: non-slip at the wall, free surface and inlet/outlet flow. More details on how these

boundary conditions can be setup can be found in [64].

68 Chapter 3 Juan Antonio Blanco



Neutronic, thermohydraulic and thermomechanical coupling for the modeling of nuclear systems

3.3.3.2.2 Body Forces

Body forces are expressed as force per unit volume. There are many examples among

them but the most common ones are: gravitational forces given by the weight

~fb = ρ~g (3.121)

where ~g is the gravitational field; and systems in rotation, i.e,Coriolis and Centrifugal

forces

~fb = −2ρ [~ω × ~u]− ρ [~ω × [~ω × ~r]] (3.122)

where ~ω is the angular velocity of the rotating reference frame.

Boussinesq Approximation

In many applications the effects of temperature variations on the flow mass conserva-

tion (i.e. fluid density and velocity fields) can be neglected and thus the flow approximated

as incompressible. These temperature effects are nevertheless more important in the mo-

mentum equation, more specifically in the gravity forces term. In many cases studied in

criticality accidents a significant error would occur if they are not considered. For exam-

ple, natural convection in a tank filled with a fissile liquid cannot be studied with a simple

incompressible flow model without any corrective term for these effects.

The Boussinesq approximation [67] provides a corrective term in the momentum equa-

tions that allows using the incompressible flow equations but still taking into account

these effects (and therefore studying phenomena such as natural convection). This is a

better option than using the more complicate to numerically integrate compressible flow

Navier-Stokes equations. Assuming that ∆T = T − T0 across the flow is small, with T0 a

temperature reference, the Boussinesq approximation estimates the density change caused

by the temperature difference with a first degree Taylor expansion, as follows:

ρ(T ) = ρ(T0) +
dρ

dT
(T0) (T − T0) (3.123)

defining the coefficient of volume expansion β as

β = −1

ρ

(
∂ρ

∂T

)
p

(3.124)
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then in the Boussinesq approximation the fluid density is written as follows:

ρ = ρ0 [1− β (T − T0)] (3.125)

By using this equation to calculate the fluid density only for the gravity force term of

the Navier-Stokes equations 3.120, the momentum conservation for an incompressible flow

using the Boussinesq approximation can be written as follows:

ρ
D~u

Dt
= −∇ (p) + µ∇2~u+ ρ~g [1− β (T − T0)] (3.126)

In the Boussinesq approximation, the flow continuity equation remains unchanged (i.e.

we still used equation 3.110). The energy equation will also be approximated. In particular,

flow compressible effects are not taken into account.

3.3.3.3 Conservation of Energy

The first law of thermodynamics states that energy can be neither created nor destroyed

during a process, it can only change from one form to another. Therefore, the total energy

for an isolated system is constant. For a Material Volume this can be expressed as

(
dE

dt

)
MV

= Q̇− Ẇ (3.127)

where Q̇ is the rate of heat addition, Ẇ is the rate of work done by the flow

and E is the total energy defined as the sum of the internal and kinetic energy (E =

m(û+ (1/2)~u · ~u)).

To apply the Reynolds Transport Theorem we define B = E and b = dE/dm = û +

(1/2)~u · ~u = e. Once again contributions of the work and heat can be split between the

surface and body contributions.

We define q̇V and q̇S as the rate of heat source or sink per unit volume and per unit

surface respectively, and the rate of work done by body and surface forces as

Ẇb = −
∫
V

(
~fb · ~u

)
dV

Ẇs = −
∫
S

(
~fs · ~u

)
dS
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With these definitions the differential conservation of energy equation in terms of the

specific total energy e is obtained.

∂

∂t
(ρe) +∇ · [ρ~ue] = −∇ · q̇s −∇ · [p~u] +∇ ·

[
τ · ~u

]
+ ~fb · ~u+ q̇V (3.128)

where ρ is the fluid density, ~u its velocity, p is the thermodynamic pressure, τ is the viscous

stress tensor, ~fb are the body forces and q̇V and q̇S are the rate of heat source or sink per

unit volume and per unit surface respectively.

For a Newtonian fluid, assuming the specific enthalpy ĥ as a function of p and T given

by the following equilibrium thermodynamic relations

dĥ = cpdT +

V̂ − T (∂V̂
∂T

)
p

 dp (3.129)

where V̂ is the specific volume and cp the specific heat capacity at constant pressure;

and neglecting the thermal radiation in the fluid, only heat transfer by conduction can

occur at the surface. By using the Fourier’s law for describing conduction transfer through

the surfaces of the system as

q̇S = −k∇T (3.130)

then the energy equation in terms of the temperature can be expressed as

∂

∂t
(ρcpT ) +∇ · [ρcp~uT ] = ∇ · [k∇T ] + ρT

Dcp
Dt

−
(
∂(log ρ)

∂(log T )

)
p

Dp

Dt
+ λΨ + µΦ + q̇V (3.131)

where k is the thermal conductivity, and Ψ and the dissipation term Φ are defined as

Ψ =

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)2

(3.132)

Φ = 2

[(
∂ux
∂x

)2

+

(
∂uy
∂y

)2

+

(
∂uz
∂z

)2
]

+

(
∂ux
∂y

+
∂uy
∂x

)2

+

(
∂ux
∂z

+
∂uz
∂x

)2

+

(
∂uy
∂z

+
∂uz
∂y

)2

(3.133)

In general, the dissipation term Φ is negligible except for supersonic flows (high Mach

number). In addition, if the fluid is incompressible, Ψ = 0 and the constant density implies
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(∂ (log ρ) /∂ (log T )) = 0. Then, the energy equation for an incompressible Newtonian fluid

is

ρcp
∂

∂t
(T ) + ρcp∇ · [~uT ] = ∇ · [k∇T ] + q̇V (3.134)

For a solid, the velocity is zero and the convective term disappears. Thus we obtain

the equation presented in the solid mechanics section:

ρcp
∂

∂t
(T ) = ∇ · [k∇T ] + q̇V (3.135)

Note that the energy equation is coupled to the neutronics model through the source

term (fission power and/or decay heat) and the Navier-Stokes equation through the velocity

field.

3.3.4 Turbulence

As discussed earlier, the non-linearity introduced by the convective term of the Navier-

Stokes equations cause the formation and growth of flow instabilities or fluctuations in

the solution at sufficiently high velocities. The onset of these instabilities depends on the

ratio between the inertial forces (convective term) which amplify the instabilities and the

viscous forces (viscous stress tensor) which tend to damp them. The flow regime predicted

by the Navier-Stokes equations accurately describes the real flow that, depending on the

average velocity, can show the two distinctive flow regimes: laminar flow and turbulent flow.

Laminar flows occurs at low velocity and are characterized by a stratified structure where

the fluid particles follow smooth current lines. On the other hand, for high enough flow

velocities a fully turbulent flow will be developed. Turbulence is a complex phenomenon

characterized by chaotic, diffusive, highly mixing, time dependent and three-dimensional

vorticity behaviour in a broad range of time and length scales. Between the laminar and

turbulent flow regimes a transition (unstable) regime will exist.

As stated before, the transition from laminar to turbulent regime can be physically

explained by the competition between two opposite flow forces: the inertia force ρ (~u · ∇) ~u]

and the viscosity force µ∇2~u. The dimensionless Reynolds number allows calculating

an approximate ratio between these two forces and thus to predict the flow regime. This
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number is defined as follows:

Re =
Inertial Forces

V iscosity Forces
=
ρ (~u · ∇) ~u

µ∇2~u
∼ ρU2/L

µU/L2
=
UL

ν
(3.136)

where U is a characteristic velocity, L a characteristic distance and ν = µ/ρ is the

kinematic viscosity or momentum diffusivity.

It has been experimentally observed that the onset of turbulence occurs when the flow

exceeds a certain Reynolds number. Transition to turbulence flow begins as instabilities

in the laminar flow, which are then amplified by the highly non-linear inertial terms.

The theory of energy cascade developed by Kolmogorov [68] [69] says that turbulence is

composed of vortex or eddies of different sizes. The larger eddies break up and transfer

their energy to the smaller ones. This happens at every smaller size up to a certain size

where the viscous dissipation is sufficiently effective. At the other end, the largest size is

proportional to the size of the geometry involved. The transition from laminar to turbulent

flow occurs for Reynolds number between approximately 1000 and 10000. This is an

approximate range that depends on the geometry being considered.

3.3.5 Reynolds Averaging

Turbulent flow regimes exist in most engineering applications and thus any multi-

physics model has to be able to handle turbulence. However, handling the chaotic be-

haviour of the turbulence flow in time and space is practically impossible from a mathe-

matical and numerical point of view. Several numerical methods exist to treat turbulence,

we will start with the simplest one developed by Osborne Reynolds in 1895 [70] and which

consists in rewriting the Navier-Stokes equations in terms of mean or time averaged turbu-

lent variables. Indeed, Reynolds observed that in time the variables could be formulated

as the sum of the mean and a fluctuating term as

~u = ~u+ ~u′

p = p+ p′

T = T + T ′ (3.137)
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where the mean of a variable φ is indicated as φ̄ and the fluctuating term as φ′. Any two

variables φ and ψ must follow some rules for deriving the Reynolds average equations.

φ′ = 0

φ = φ

∇φ = ∇φ

φ+ ψ = φ+ ψ

φ+ ψ = φψ

φψ′ = 0

φψ = φψ + φ′ψ′ (3.138)

If we replace the definitions in 3.137 into the incompressible Navier-Stokes equations

3.110, 3.120 and 3.134 and use the properties cited in 3.138 the average equations are

obtained:

∇ · ~u = 0

ρ
D~u

Dt
= −∇p+

[
∇ ·
(
τ − ρ~u′~u′

)]
+ f b

ρcp
DT

Dt
= ∇ ·

[
k∇T − ρcp~u′T ′

]
+QT

(3.139a)

(3.139b)

(3.139c)

We can identify two terms involving the fluctuations, one in the momentum equation

3.139b and another in the energy equation 3.139c. The first one is known as the Reynolds

stress tensor τR which can be written as

τ
R

= −ρ~u′~u′ = −ρ


u′xu

′
x u′xu

′
y u′xu

′
z

u′yu
′
x u′yu

′
y u′yu

′
z

u′zu
′
x u′zu

′
y u′zu

′
z

 (3.140)

The second one is the turbulent heat flux

q̇R = −ρcp


u′xT

′

u′yT
′

u′zT
′

 (3.141)

This set of equations is not closed, i.e., there are more unknowns than equations. The

strategy consists in eliminating the fluctuating terms φ′ and solve for the average ones φ.
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To fulfill this purpose a relation of the new unknowns in term of the averaged variables

is needed. This is possible via the Boussinesq Hypothesis which is analogous to the

Newtonian flows giving a linear relation given by

τ
R

= µt

{
∇~u+

(
∇~u
)T}− 2

3

[
ρk + µt

(
∇ · ~u

)]
I (3.142)

where k = (1/2)~u′ · ~u′ is the turbulent kinetic energy and µt the turbulent eddy

viscosity, which is now flow dependent.

Usually the pressure is redefined as a turbulent pressure to include the term −(2/3)ρkI.

Then, p ← p + (2/3)ρk. Now, the problem of computing the Reynolds stress tensor is

reduced to calculating µt.

Similarly for the turbulent thermal fluxes an analogy with Fourier’s law is given by

q̇R = −ρcp~u′T ′ = kt∇T (3.143)

where kt is the turbulent thermal diffusivity.

To solve for µt and kt, there are multiple turbulence models, for example, k− ε method,

k−ω method, among others. As explained before, the purpose of this section is not to have

an exhaustive treatment of turbulence but an idea of the complexity of thermal-hydraulics.

For further information, the book of Moukalled [64] is recommended.

3.3.6 Numerical Resolution Strategies

For the Navier-Stokes equations the analytical solutions are, in general, not possible

to obtained, except for very rare cases. For this reason, numerically resolution of the

equations is required. The numerical science on the resolution of the flow equations is

known as Computational Fluid Dynamics. Depending on the desired level of precision

different approaches exist. In decreasing accuracy they are described as follows

3.3.6.1 Direct Numerical Simulation

The Direct Numerical Simulation (DNS) aims to simulate all eddies up to the

minimum size possible. In DNS the original Navier-Stokes equations (without averaging)

are used. Therefore, the time resolution needed to solve every vorticity size is tiny. This im-

poses a restriction on the mesh size given by the Courant number below 1, mathematically
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expressed as

Co =
|~u|∆t
∆x

< 1 (3.144)

As a consequence, this approach is computationally expensive given the detailed mesh

of the fluid and the small characteristic time of the system. At present, only relatively

small systems with simple geometries can actually be solved. This approach is therefore

not adapted at this day for integration in a multi-physics model for our applications.

3.3.6.2 Large Eddy Simulations

A less demanding method is the Large Eddy Simulation (LES) method. In LES the

large scale of the vorticity is directly solved (as in DNS) and the smaller ones are modeled

using sub-grid scale models. It works as a low-pass filter on the spatial domain filtering

small eddies up to a set value. This method could be of interest in situations where the

details of the flow vortexes is needed for the system studied. This is not the case for the

transients or systems studied in this work where the neutron mean free path was usually

much larger than the potential vortexes and thus a time-averaged flow description was

sufficient.

3.3.6.3 Reynolds-averaged Navier-Stokes

The Reynolds-averaged Navier–Stokes equations method consists in solving for

the time-averaged equations from Section 3.3.5 with the corresponding turbulence models

(k − ε, k − ω, etc) and wall functions ([64]). In this model the conditions on the mesh size

and time step are relaxed but the problem is solved for the averaged variables, therefore,

the turbulence is not visible. Since a RANS approach provides the required precision for

our analysis and it has a lower computational cost that the DNS and LES methods, it

was adopted in the current work. As it will be discussed in Chapter 4, the existing RANS

algorithms for incompressible flows of OpenFOAM were adapted for our studies. A short

description of the RANS turbulent model used in the analysis of a tutorial test case for a

Space Nuclear Reactor Design [71] is given in the Appendix A.

3.3.7 Porous Medium

A CFD code allows numerically resolving the RANS equations to obtain very high

detail data on the local flow velocities and temperatures. Nevertheless, such a model for
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a Fuel Assembly from the Spent Fuel Pool from Chapter 2 would require a very fine mesh

to take into account the various fuel assemblies’ components: grids, nozzles, fuel rods, etc.

Given the size of the Spent Fuel Pool, this will quickly lead to a prohibitive mesh size

and would preclude any practical multi-physics coupling. On the other hand, the level of

details provided by such approach is not necessary for the criticality accident unless one

is interested on calculating local parameters. For these reasons, a porous medium model-

ing approach was taken for system comporting a solid fuel such as Fuel Assemblies. As

shown in Figure 3.3, this approach consists in replacing the heterogeneous original system

by a homogeneous one having equivalent macroscopic properties (the porous equivalent

medium). In our analysis, a multi-phase multi-component porous medium was developed

and implemented.

Figure 3.3 – Pore scale and macro scale averaging procedure and main phenomena (from
[72]).

While the mesh discretization required for numerically solving the porous medium

equations is relatively modest, all the complexities of the model are now shifted to the

determination of the macroscopic properties. To obtain these properties, an averaging

procedure [73][74][75] over a Representative Elementary Volume (REV) is usually

done in such a way that new macroscale properties can be obtained. These properties

depend on parameters such as: (a) the porosity, that is the ratio between the void space

in the porous medium and the total volume of the element (φ = Vvoid/Vtotal), (b) the

saturation, which is the ratio between the volume of the phase α and the void space

in between pores (Sα = Vα/Vvoid) and (c) the permeability K, which measures the

flow conductance of the matrix. The main idea behind this strategy is to obtain a model

that can take into account as much as possible of the microscale phenomena existing in

the multi-phase multi-component flow while being calculated in a REV big enough to

diminish the computational cost, i.e. moving from microscopic pore scale to a macroscopic
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mixed model. The equations of the equivalent porous medium representing the behavior

of the SFP were developed based on the works of [75], [76], [77], [72] and [78]. This

porous medium model considers non-equilibrium conditions between three-phases (wetting

or liquid (denote as w), non-wetting or gas (denote as n) and solid (denote as s)) and has

two components (Air and water denoted as H2O). The solid phase is considered as being

non-deformable and can only exchange energy with the surroundings. The model can be

enhanced to include more phenomena but for the present study, the level of details was

considered as sufficient for the studied cases. The next subsection provides an overview of

the various conservation equations.

3.3.7.1 Conservation of Mass

The conservation of mass in a porous medium is required only for the fluid phase

containing two phases: wetting w and non-wetting n. When considering a two-phase

two-component system, the conservation of mass reduces to four equations (3.145) [76].

Each equation states the mass conservation of species k in the α phase, where ρα is the

density of the α phase, xkα, xk(α,equil) are the mass fraction and the equilibrium mass fraction

of the species k in the α phase respectively and L is a characteristic length, normally the

pore size:

∂

∂t

(
φSwρwx

H2O
w

)
+∇·

(
ρwx

H2O
w Vw + j

H2O
w

)
= q

H2O
w −ρnSh(Re, Sc)awn

D
H2O
n,pm

L

(
x
H2O
n,equil − x

H2O
n

)
(3.145a)

∂

∂t

(
φSwρwx

Air
w

)
+∇ ·

(
ρwx

Air
w Vw + jAirw

)
= qAirw + ρwSh(Re, Sc)awn

DAir
w,pm

L

(
xAirw,equil − xAirw

)
(3.145b)

∂

∂t

(
φSnρnx

H2O
n

)
+∇·

(
ρnx

H2O
n Vn + j

H2O
n

)
= q

H2O
n +ρnSh(Re, Sc)awn

D
H2O
n,pm

L

(
x
H2O
n,equil − x

H2O
n

)
(3.145c)

∂

∂t

(
φSnρnx

Air
n

)
+∇ ·

(
ρnx

Air
n Vn + jAirn

)
= qAirn − ρwSh(Re, Sc)awn

DAir
w,pm

L

(
xAirw,equil − xAirw

)
(3.145d)

The first term of the equations represents the mass rate change inside the REV. The

second term on the LHS is a stream term representing the advection due to the velocity

field. A macroscale diffusive term given by Fick’s Law is modelled (jkα = −Dk
α,pm∇(ρkαx

k
α))

using a macroscale diffusion coefficient calculated as Dk
α,pm = τφSαD

k, where the tortuosity

τ can be obtained from τ = (φSα)
2
3φ2 as discussed in [79]. Finally, an external mass
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source term qkα is added in the equations (to model for example the change of phase).

The last term on the RHS represents the migration effect due to a local chemical non-

equilibrium. Normally, the mass fraction of the components is usually determined via

equilibrium relations such as Henry’s and Raoult’s law [80]. This point will be further

discussed in the Section 3.3.7.5 as well as the determination of the average interfacial

surface awn. Dimensionless quantities such as the Sherwood number Sh (function of Re

and Sc), the Reynolds number Re and the Schmidt number Sc are all defined in Table 3.1.

Table 3.1 – Dimensionless quantities and their definitions.

Dimensionless
Quantity

Value Interpretation

Reynolds
(Re)

ρV L
µ

InertiaForces
V iscosityForces

Prandtl
(Pr)

cpµ

λ
MomentumDiffusion
ThermalDiffusion

Schmidt
(Sc)

µ
ρD

MomentumDiffusion
MassDiffusion

Nusselt
(Nu)

hL
k

ConvectiveHeatTransfer
ConductiveHeatTransfer

Sherwood
(Sh)

βL
D

ConvectiveMassTransfer
DiffusiveMassTransfer

3.3.7.2 Conservation of energy

As seen in the works of [76] and [78], the porous medium phases can have different

temperatures, i.e. thermal non-equilibrium conditions have been considered in this model.

A standard formulation of the energy conservation for each of the three phases is provided

by equations 3.146:

∂

∂t
(φρwSwuw) +∇ ·

(
ρwVwhw +

∑
k

jkwh
k
w

)
−∇ · (φSwλw∇Tw) =

∑
k

hkwq
k
w + qenergyw

+
∑
k

η̇kwn→wh
k
n +Nu (Re, Pr) awn

λwn
L

(Tn − Tw) +Nu (Re, Pr) aws
λws
L

(Ts − Tw) (3.146a)

∂

∂t
(φρnSnun) +∇ ·

(
ρnVnhn +

∑
k

jknh
k
n

)
−∇ · (φSnλn∇Tn) =

∑
k

hknq
k
n + qenergyn

+
∑
k

η̇kwn→nh
k
w −Nu (Re, Pr) awn

λwn
L

(Tn − Tw) +Nu (Re, Pr) ans
λns
L

(Ts − Tn) (3.146b)
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∂

∂t
((1− φ)ρscTs)−∇ · ((1− φ)λs∇Ts) = qenergys −Nu (Re, Pr) aws

λws
L

(Ts − Tw)

−Nu (Re, Pr) ans
λns
L

(Ts − Tn) (3.146c)

where uα, hα, λα, Tα are, respectively, the internal energy, enthalpy, conductivity

and temperature of the α phase, hkα is the enthalpy of the species k in the α phase

and c is the heat capacity of the solid phase. The first term on the LHS of the equation

represents the rate of change of the energy in the REV. The second one represents the

advection of enthalpy carried by the same phase and the third is the diffusion of each

component of the phase. The last term on the LHS is the heat conduction inside the

phase. The first term on the RHS is the enthalpy that enters in the system due to the

external mass source and the second term is an external energy source for the phase qenergyα .

From equations 3.145 we can calculate the mass flux for each component from one phase to

the other as η̇kwn→α = ραSh(Re, Sc)awn(Dk
α,pm/L)(xkα,equil − xkα). In this model the interface

wn is considered two-dimensional, therefore one phase mass loss must end up in the other,

that is why we can find the latter quantity in two equations at a time with opposite

sign. This latter definition is used in the third term on the RHS to take into account the

enthalpy exchange due to change of phase of a component. The last two terms represent

the thermal exchange between the phases and as expected these terms appear in two of

the equations with opposite signs. The discussion on the determination of the average

interfacial surface ans, aws is left to Section 3.3.7.5. Dimensionless quantities such as

the Nusselt (Nu), Reynolds (Re) and Prandtl (Pr) numbers are described in Table 3.1.

3.3.7.3 Darcy’s Equations

To calculate the velocity fields a relative simple version of the momentum conservation

equations in the porous medium was used which is the extended Darcy’s Law was used:

Vw = −kr,wK
µw

(∇pw − ρw~g) (3.147a)

Vn = −kr,nK
µn

(∇pn − ρn~g) (3.147b)

where kr,α is the relative permeability, which is the correction in the permeability due

to the presence of another phase, µα is the dynamic viscosity of the α phase, ~g is

the gravity and pα is the pressure of the α phase. Even though this is an empirical
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relationship, this law can be demonstrated by applying different averaging procedures

in the REV to the Navier-Stokes equations [81][82] and when the viscous forces are the

dominating forces in the porous medium. When the inertial forces and turbulence become

more significant a corrective term has to be added to these equations known as Forchheimer

term. Nevertheless for the cases studied in this work, this addition was not necessary.

3.3.7.4 Closure equation

So far, we have 9 equations and 13 unknowns (2 saturations, 4 species concentrations,

2 velocities, 3 temperatures and 2 pressures fields). The closure equations 3.148-3.151 arise

naturally to close the system.

Equation 3.151 relates the pressure in each phase by a quantity known as capillary

pressure: the differential pressure between two immiscible fluid phases occupying the

same pores caused by interfacial tension between the two phases that must be overcome

to initiate flow. Determination of this parameter is discussed in the next section.

Sw + Sn = 1 (3.148)

x
H2O
w + xAirw = 1 (3.149)

x
H2O
n + xAirn = 1 (3.150)

pn − pw = pc (3.151)

3.3.7.5 Other relationships and considerations

By now, we have a close system of 13 equations and 13 unknowns, but it is still very

important to define how the thermodynamics parameters (density, viscosity, etc.) and

volume averaged interfacial areas (awn, aws, ans) are determined and how to model the

capillary pressure and relative permeability. For the latter, the most common models

are the Brooks and Corey Model [83] and the Van Genuchten Model [84]. Both of these

thermodynamics models associate the relative permeabilities and the capillary pressure

with the saturation of the phase. In this work, the Brooks and Corey Model was used
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following equations 3.152-3.154:

kr,n = (1− Sw)m (3.152)

kr,w = Smw (3.153)

pc = pc,0S

−1
λp
w (3.154)

where m is an empirical coefficient (in nuclear m = 3 has given good results [85]), pc,0 is

the entry capillary pressure and λp is the pore size distribution index.

The interfacial areas are not straightforward to model and no general accepted function

has been identified. However, many ways of estimating them exist, such as developing a

pore-network model and estimating them as a function of saturation [76] or by lattice

Boltzmann calculations [78] for example. Another important point on the discussion is

how to compute the thermodynamic parameters. A precise approach would compute the

chemical potential of each component in each phase and then derive the non-equilibrium

properties [80][86] in the REV. The equilibrium concentrations and properties could be

obtained using the same approach. An approximation would be needed to estimate the

mixture properties as a function of the components equilibrium values in each phase given

the pressure and the temperature fields. For the sake of simplicity and without losing any

generality, in this work the equilibrium molar concentration Xk
α,equil are calculated using

the Henry’s law [80] for the air (wetting) and considering that the water pressure in the gas

phase is equal to the saturation vapor pressure, thus obtaining respectively the equations

3.155 and 3.156 [77]:

xAirw,equil = HAir(Tw)pAirn (3.155)

x
H2O
n,equil =

p
H2O
sat

pn
(3.156)

The intensive properties are thus considered as being function of the concentrations,

pressures and temperatures. In addition, given the relatively low power densities existing

in the fuel assemblies of the SFP, thermal equilibrium between the phases is assumed, i.e.

Ts = Tw = Tn = T . This approximation will be valid only if recriticality is not reached in

the SFP.

Finally the whole set of equations presented in Section 3.3.7 were implemented and
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solved in OpenFOAM to predict the velocity and temperature fields of a multiple phases

porous medium having two temperatures. This model is used to study a Spent Fuel Pool

as discussed in Chapter 5.

3.4 Conclusions

This chapter presented the theoretical basis used in developing these models required

to enhance the multi-physics tool for the study of criticality accidents. The first part

covered the development and numerical implementation of the transient neutronic models

which include the Monte Carlo Quasi-Static Method and the deterministic Simplified PN

(SP1 and SP3). The second part presented the solid mechanics model used for Godiva

experiment, in particular the adaptation of a linear elasticity model already existing in

OpenFOAM. The last part was devoted to the development of a porous medium model

for two phase flow, with phase change and two temperatures. This model, implemented in

this thesis work, enhancing an already existing model in OpenFOAM (Horgue et al. [19]),

was used to study a potential Spent Fuel Pool recriticality accident. This last part also

discusses the RANS models used for a system containing a liquid fissile such as a liquid

fuel.
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Chapter 4

Codes and Implementation

This chapter provides a description of the key algorithms used in the multi-physics

tool for the study of criticality accidents. The chapter begins with an overview of the

multi-physics tool, its main components and the codes used for developing it. Then, the

key algorithms of the developed tool to perform neutronics, solid mechanics and thermal-

hydraulics calculations are reviewed.

4.1 The Multi-Physics Code

The multi-physics tool to study criticality accidents has been developed from a cou-

pling between OpenFOAM and Serpent 2 codes. As shown in the Figure 4.1, the tool

contains three main modules: neutronics, thermal-hydraulics and thermal-mechanics. The

neutronics module calculates the reactor neutron flux, the reaction rates and the power

distribution. Two main neutronics models are available: the stochastic Monte Carlo Quasi-

Static Method and the deterministic Simplified PN Method (SP1/SP3). The volumetric

power distribution obtained from this module is used by the thermal-hydraulics module to

calculate the temperature, density and velocity fields of the fluid and solid phases existing

in the nuclear system. The thermal-hydraulics module also calculates the delayed neutron

precursors concentration if the nuclear system contain a fissile solid or liquid such as a

liquid fuel. Finally, the thermal-mechanics module can be used for the determination of

the displacements, strain and stress fields in the solid phase. As shown in the figure, the

three main modules composing the multi-physics tool allow taking into account some of

the key coupled phenomena that may exist in criticality accidents: Doppler effect, density

85



Neutronic, thermohydraulic and thermomechanical coupling for the modeling of nuclear systems

effects, precursors convection, melting and solidification, among the ones cited in Chapter

2.

Figure 4.1 – Multi-Physics Coupling Main Modules.

Most of the methods and algorithms used by the tool were developed with the aim of

obtaining a good compromise between flexibility and precision while minimizing the source

code modifications required. Serpent 2 code is used by the tool for the neutron flux shape

calculations needed by the Monte Carlo Quasi-Static Method and for the neutron cross sec-

tion libraries generation for the SPN Method while all the other models (thermal-hydraulics

and thermal-mechanics models) are numerically solved using OpenFOAM libraries. In ad-

dition, the deterministic approach SPN was fully implemented in OpenFOAM.

4.2 Codes

4.2.1 Serpent

Serpent 2 [5][6] is a Monte Carlo particle transport code under development at the

VTT Technical Research Centre of Finland. It has been programmed in C language.

The general working scheme is very similar to other Monte Carlo codes like MCNP [30].

Serpent 2 includes all the features explained in Section 3.1.1 and more.

Originally, it was developed for three-dimensional continuous-energy Monte Carlo re-

actor physics calculations including, for example, group cross sections generation, burn-up,

point kinetics parameters, among others. Nowadays, it has been expanded beyond tradi-

tional application into multi-physics simulations, photon transport, sensitivity calculations,
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among others. It also supports parallel calculations with OMP and MPI. More details on

Serpent can be found in [5][6].

4.2.2 OpenFOAM

Open-source Field Operation and Manipulation (OpenFOAM) was created in

1989 by Henry Weller [2][3]. It is an open-source C++ Library for Computational Fluid

Dynamics distributed by The OpenFOAM Foundation [87]. It is based on the Finite

Volume Method (FVM) [64] for CFD. Even though its main purpose is the fluid mechan-

ics, it is capable of solving continuum mechanics equations in general. Many numerical

solvers and schemes, and pre-/post-processing utilities are available. It is capable of solv-

ing incompressible, compressible and multi-phase flows with conjugate heat transfer and

chemical reactions, among others.

The main advantage of OpenFOAM is the friendly syntax for the Partial Differential

Equation, which, in conjunction with the accessibility to the source makes coupling with

other models (such as neutronics) easier. In addition, the use of unstructured meshes is

advantageous for modeling complex geometries. For these reasons, it was chosen for this

work.

Among the drawbacks of this code, one can mention that there are multiple enterprises/-

communities developing different versions of OpenFOAM, making it confusing when mod-

ifying existing solvers or trying to find the right one to modify afterwards. For the present

work we use OpenFOAM Foundation [87] Version 61. Also, late versions of OpenFOAM

have steeply increased in complexity with a Programmer’s guide not detailed enough, thus

making development of new applications or functionalities slower.

4.3 General Algorithm

This section presents the key algorithms of the multi-physics tool. The section starts

with the general algorithm used for the coupling of the neutronics, thermal-mechanics and

thermal-hydraulics modules. Then, algorithms used by the different models implemented

in these three modules are presented.

As explained in Chapter 1, the main motivation for the work was to develop a multi-

physics tool capable of modeling complex geometries and a wide range of time scales
1At the moment of writing this work OpenFOAM Version 8 is the latest release
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encountered in the full spectrum of criticality accidents. For this reason, ad-hoc coding or

modifications for particular problems, that is, hard coding, were limited to a minimum.

This strategy means that most algorithms were developed trying to be as general and flex-

ible as possible while minimizing the modifications required in the original source codes

Serpent 2 and OpenFOAM. This strategy has the advantage of minimizing the tool main-

tenance while it has the drawback of penalizing the computational cost of the algorithms.

Figure 4.2 shows the general algorithm of the multi-physics tool that was used for

modeling the different criticality systems presented in Chapter 2. As we can see, given the

nature of OpenFOAM, the solver is separated into several blocks covering different aspects

of the physics presented in Chapter 3.

OpenFOAM uses an segregated strategy. If we have a system of equations

u = fu(u, v) (4.1a)

v = fv(u, v) (4.1b)

the corresponding algorithm would involve solving for the system with a fixed point

iteration scheme. Accordingly, we would solve first for u with v constant from equation

4.1a and then for v with an updated constant u. Then, subsequently solving and updating

u and v at each iteration until convergence. In addition, each equation can be splitted in

explicit (using variables from the previous iteration/time step) and implicit (using variables

in current iteration/time step) terms, for example

u = fu(u, v) = f implicitu (u, v) + fexplicitu (u, v) (4.2)

and then solved for u with u and v fixed in the explicit term and only v fixed in the implicit

term. In general that is done when non-linear terms are present or when the discretized

matrix has a high condition number.

The previous strategy will become clearer in the following sections where the procedure

within each block is explained. Firstly, we will start with the neutronics algorithms.

4.3.1 Neutronics Block

The numerical implementation of the neutronics models presented in Section 3.1 is dis-

cussed in this section. Firstly, Section 4.3.1.1 describes the algorithms used for the coupling
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Figure 4.2 – General Algorithm Structure.
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between the codes OpenFOAM and Serpent 2. This coupling is key for the multi-physics

tool since it is used for performing steady-state simulations and also during the flux shape

calculations needed by the Monte Carlo Quasi-Static Method introduced in the previous

chapter. Various specific aspects of the coupling between OpenFOAM and Serpent 2 are

covered in Section 4.3.1.1: the meshes used by the two codes, the transfer of the variable

fields such as the temperature and the density between the codes and the treatment given

to the delayed neutron precursors concentration. The implementation of the algorithm for

the Monte Carlo Quasi-Static Method is described in Section 4.3.1.2. Finally, the algo-

rithms related to the Simplified PN are presented in Section 4.3.1.3. Algorithms used by the

Dynamic Monte Carlo (transient Monte Carlo) calculations presented in the next chapter

will not be discussed in this manuscript since they were not developed in the framework

of this PhD but a description can be found in references [35][7].

The neutronics module of the multi-physics tool can be simplified as a black box shown

in the Figure 4.3 with the temperature field T , density field ρ and the velocity field ~u as

inputs and the volumetric power field P = εΣfφ as an output, where ε is the energy released

at fission and deposited in the system. The neutronics model chosen by the user (Monte

Carlo Quasi-Static Method or Simplified PN) will be run a finite number of times according

to the set value of kMAX
neut to obtain the desired convergence.

Model
kneut >

kMAX
neut ?

kneut + 1

T (~r), ρ(~r)

~u(~r)

P (~r)

no

Figure 4.3 – Neutronics Block.

4.3.1.1 OpenFOAM - Serpent 2 main coupling

As can be seen in Figure 4.4, Serpent 2 code was integrated as an internal function of

OpenFOAM. Since C++ language used by OpenFOAM is compatible with C employed by

Serpent 2, it was possible to compile Serpent as an internal function of OpenFOAM. This

strategy is not mandatory but allows decreasing the computational cost of the iterations

between the two codes during the multi-physics calculation. Indeed, an external coupling

is possible at the expense of a slower coupling scheme: details on Serpent 2 multi-physics
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interface can be found on its website [88]. Moreover, for the case of a nuclear system

containing a liquid fissile, the information exchanges required for tracking the delayed

neutron precursors positions would be more complicate when handled externally, the main

reason being that it would require the use of the Monte Carlo external source method

having to deal with the control population techniques and time binning as explained in

Section 3.1.1.4.2 and, not the criticality mode used in this work (k-code). An additional

advantage of the internal coupling strategy is that both codes have access to all memory

allocated runtime variables. Important information not normally stored by Serpent can

then be treated and stored in OpenFOAM mesh-based variables for future use. Also,

the variables calculated by OpenFOAM can be transmitted directly into the Monte Carlo

tracking routine.

As discussed in the previous chapter, the criticality k-eigenvalue method of Serpent 2

was adopted in our work during the Monte Carlo simulations, more specifically, for the

flux shape calculations. The criticality k-eigenvalue algorithm of Serpent has then been

integrated in OpenFOAM as shown in Figure 4.4. This Serpent 2 algorithm consists in

a typical tracking routine sorting the free path length, the direction and the energy of

the neutrons the way it has been explained in Sections 3.1.1.2 and Section 3.1.1.4. The

information exchange between Serpent and the OpenFOAM environment are also shown

in the figure. We will focus next on different specific aspects of the coupling, starting with

the input data.

4.3.1.1.1 Input

Even though, Serpent source code was compiled within OpenFOAM environment in a

single solver, it was decided that the input management will remain segregated between the

two codes as shown in Figure 4.4. Geometry, materials and neutronics boundary conditions

must then be defined in the Monte Carlo input. That is straightforward using the current

capabilities developed by Aufiero et al. [89][90] for unstructured mesh-based geometries for

multi-physics calculations. As the system properties change during a transient calculation,

by taking advantage of the already implemented features, the non-uniform temperature and

density distributions calculated by OpenFOAM are available to Serpent from the shared

memory as it will be explained in this section.

It is important to note that each time the Serpent tracking routine is called, the whole
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Figure 4.4 – k-eigenvalue criticality source mode (adapted from Leppänen [29]) coupled
to precursors solver.
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input data file has to be reprocessed and internally updated in the OpenFOAM values/-

fields which is a non-negligible time consuming operation. This implies that when using

the internal coupling all the neutronics input data will be processed every time Serpent is

used to perform a neutron flux shape calculation and, thus, impacting in the tool perfor-

mance if too many flux shape calculations are needed. In the case of an external coupling

scheme, Serpent can go to “sleep” after the shape calculation has been completed and while

OpenFOAM solvers are being executed. This way, when Serpent is called for a new shape

calculation all necessary variables are still in the running memory and only temperature

and densities fields have to be loaded. This will avoid the input data processing time delay

on the contrary to the internal coupling scheme. If necessary, in the internal coupling

scheme, the time penalisation arising from the input processing could be avoided by using

asynchronous routines existing in Serpent. A final remark on this topic is that this time

penalty will not be avoided in transients involving quick changes on the system geometry

(e.g. Godiva experiment), since both internal or external couplings require loading and

processing the mesh and all the associated properties at each calculation of the neutron

shape function.

4.3.1.1.2 Mesh variables

As discussed earlier, Serpent 2 and OpenFOAM codes may use in the calculation differ-

ent meshes. Therefore, variables calculated in these codes may belong to different meshes

and, thus, require a conversion processing through mapping routines. For example, one of

the key variables of the coupling between the neutronics and the thermal-hydraulics and

thermal-mechanics modules is the fission volumetric power P (~r) (or power density). The

volumetric fission power distribution is determined by the neutronics module. To calcu-

late the volumetric power distribution a mesh-based tally is used in Serpent. The tally in

each cell of the Serpent mesh is calculated according to equation 3.25 using the collision

estimator technique described in Section 3.1.1.3. This tally value is then divided by the

volume of the cell to obtain the volumetric value. Accordingly, the volumetric power of

cell j is calculated setting-up the response function f of the tally (from equation3.25) to

f(r, E) = ενΣf (~r,E) thus obtaining:

P (~rj) =
1

Vj

∑
i

ωi
ενΣf (~ri, Ei))

Σ(~ri, Ei)
∀ ~ri ∈ Vj (4.3)
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It should be noticed that, since the Monte Carlo simulation can be thought as an

experiment, the value of the cell tallies will increase with the number of the simulated

neutron histories. For this reason, the volumetric power, as any other stored variable, has

to be normalized. For steady-state calculations, the volumetric tally is usually normalized

with the total power. However, by default neutron transport simulations in Serpent 2 are

normalized to unit total loss rate (i.e. neutrons absorptions and leaks).

Once the volumetric power has been determined in Serpent, it will have to be saved

in the corresponding cell of the unstructured mesh of OpenFOAM. Besides the volumetric

power, other parameters of interest will be required for the Monte Carlo Quasi-Static

Method. These variables will be discussed later in Section 4.3.1.2.

4.3.1.1.3 Non-uniform density and temperature distributions

The ability to correctly model non-uniform density and temperature distributions in

materials is a key feature for the multi-physics coupling since, during a criticality accident,

most real systems can develop a large density and temperature gradients. As we pointed

out in Section 3.1.1.2, the Monte Carlo method for particle transport is derived consid-

ering an homogeneous medium or, at least, that the domain of interest can be divided

in smaller homogeneous regions, then the cross sections are piece-wise uniform functions.

Nevertheless, when the cross sections are considered as continuous functions (e.g. due

to temperature or density gradients) this theory will no longer be valid since the func-

tion to which the inversion method is applied (equation 3.16) has no general solution and

the Probability Density Function and Cumulative Distribution Function become unknown

distributions [91].

A simple correction to take into account continuous density changes inside a same-

material region can be nevertheless straightforward implemented. For the case of the cross

sections’ temperature correction on-the-fly, the modifications are less trivial because the

Doppler effect have to be addressed explicitly taking into account the thermal motion of the

target nuclei. Other strategies like interpolating tabulating data exist but it requires narrow

spacing between the temperature points to reduce interpolation errors to an acceptable

value [92]. Fortunately, Serpent 2 already provides some algorithms that allow dealing

with these particular issues and only some minor internal modifications are required in the

source code to take advantage of the already implemented routines. This section provides
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a brief overview to the Serpent 2 algorithms that allow dealing with the effects of density

and temperature gradients. A more complete description for non-uniform density can be

found in [91] and concerning non-uniform temperature in [92][93][94].

Concerning the density gradient effects, Serpent 2 modeling strategy relies on the re-

jection sampling2 on the particle path lengths and on the use of the collision estimator.

For a non-uniform density region, the neutron path length sampling is the same as the

one of an homogeneous material using the inversion method but the maximum possible

cross section at the collision point (Σmax) is used instead. Then, a modification factor or

probability is calculated as follows:

g =
Σt(~r)

Σmax
=
ρ(~r)

ρ0
= ρk (4.4)

where Σmax is the maximum value of the cross section in a single material region and the

sample is then accepted with a probability g. The scores of all collision estimators are

modified by the factor g. This technique is very similar to delta-tracking where a majorant

cross section (Σmaj) is used and defined as the maximum value of the cross section in

the whole system, not only the single material region as the case of Σmax. It should be

noticed that any macroscopic cross section is proportional to the density and the system is

normally defined in such a way that Σmax is calculated with the density at the beginning of

the transient. Then, the ratio g defined as the division between the updated cross section

and its original value is the ratio between the densities (referred as ρk). In addition, Σmax

must be defined in order to have g < 1 at all times for this method to work [91].

Doppler effect on the neutron cross sections due to the target nucleus thermal agitation

is calculated by Serpent 2 using the Target Motion Sampling (TMS) treatment. This

technique allows taking into account the Doppler effect on-the-fly during the tracking

routine and also dealing with a non-uniform temperature distribution in the region. In its

implementation, the code samples the target nucleus velocity at each collision and then

solves explicitly the neutron-nucleus collision equations using a target-at-rest reference

2In some cases the inversion method is not practical because the inverse is expensive to calculate or it
cannot be solved at all (Maxwell-Boltzmann distribution). The rejection method offers an alternative to
calculate a sample from a probability density function g(x).
First, a function g1(x) = g(x)/gMax is defined, where gmax is the maximum value taken by g(x). Then,

0 ≤ g1(x) ≤ 1 in the interval a ≤ x ≤ b. After, two random numbers (ζ1, ζ2) are generated and interpreted
as a point with plane coordinates (a+ ζ1(b−a), ζ2). That is a point inside the rectangle of base (b−a) and
height 1. If the point falls below the curve g1(x), it is accepted as a sample of g(x); if not, it is rejected and
a new sample is sorted. The samples obtained this way are proven to follow the distribution of g(x)[27]
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frame and the neutron cross sections of the material. The code handles the fact that

the material total cross section’s temperature is a distributed quantity using rejection

techniques [92][93][94].

Finally, it is important to note that Serpent 2 can not handle thermal scattering laws

for bounded atoms at thermal energies and neither probability tables for unresolved res-

onances on-the-fly. For these cases, the neutron-cross sections have to be pre-processed

and, afterwards, interpolated on-the-fly. This situation was not found in the cases that we

have studied in this work, however it may be important in other cases.

4.3.1.1.4 Delayed Neutrons Source

As discussed in the previous chapter, to implement the Quasi-Static Method using the

eigenvalue method some minor modifications in the Monte Carlo code (tracking routine) are

needed to correctly take into account the effect of the precursors in the flux shape equations.

In the case of the adiabatic variant of the Quasi-Static Method these modifications will

concern mostly the systems where the delayed neutron precursors can be transported during

the accident, such as a system containing a liquid fissile.

In systems containing a solid fissile the fission products stays where the fission took place

and the delayed neutrons will be emitted at the same place. For such a system and assuming

that the adiabatic approximation holds, one can use equation 3.66 for the resolution of

the flux shape equation. The approximation assuming that at each fission point there

is a probability β of a delayed neutron emission should not introduce a significant error.

Accordingly, delayed neutrons will be sampled with a probability β by the Monte Carlo

tracking routine and assigned the corresponding energy and direction distribution. Note

that assuming equilibrium conditions between the prompt population and the precursors

concentration for the only purpose of the flux shape calculation (i.e. we are not assuming

equilibrium conditions in equation 3.60b nor 3.61b) would be a good approximation in

most realistic cases. During slow transients, equilibrium can be assumed while for fast

transients one can show that the neutron flux shape will be driven by the prompt neutrons

and, thus, the equilibrium condition will have a small impact. Also in some systems

where non-equilibrium conditions exist and reactivity is close to prompt criticality this

approximation gives good results as shown for the case of Godiva. For other cases and

as explained in Section 3.1.2.8 the value of β can be modified to take into account the
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non-equilibrium conditions.

For systems containing a liquid fissile in motion and even if the adiabatic conditions

are valid, assuming that the precursors concentration are in equilibrium with the prompt

neutron population for solving equation 3.64 will introduce an error in most cases small.

As discussed in section 3.1.2.8, we solved this by using equation 3.67 which requires the

Monte Carlo tracking routine to sample the delayed neutron position with the precursors

concentration. The precursors concentrations are obtained by solving equations 3.60c with

the OpenFOAM toolkit for the Finite Volume Method. The precursors distribution is

therefore shared with the tracking routine as shown in Figure 4.4. Each time a delayed

neutron is sampled, its position will later be assigned, via the rejection method, from

OpenFOAM’s precursor distribution for the corresponding family. Energy and direction is

later handled normally. This strategy is similar to the work of Aufiero et al. [95] developed

at the LPSC. As discussed for the solid fuel case, the probability of emission is still taken

equal to β thus introducing in most cases a very small error on the flux shape (as it can

be seen for the Molten Salt Cavity Benchmark results presented in the next chapter) but

it could be easily corrected by modifying the probability of emission in the Monte Carlo

tracking routine after sampling the fission reaction.

4.3.1.2 Monte Carlo Quasi-Static Method

In the previous section we established the strategy to solve the coupling between Open-

FOAM and Serpent 2 neutronics using the eigenvalue method (thus a steady calculation).

However criticality accidents involve transient analysis and, for this reason, in Section

3.1.2 we have proposed a Quasi-Static Method to be able to perform transient neutron-

ics with a Monte Carlo code. We have also seen that there are three main variants

of the Quasi-Static Method depending on the approximations that are made: (i) Im-

proved Quasi-Static Method (no approximations made), (ii) Original Quasi-Static Method

(∂φ/∂t << (dn/n)/dt→ ∂φ/∂t = 0) and (iii) Adiabatic Method (∂φ/∂t = 0; dn/dt(t) = 0).

In this section, we will see that concerning the numerical implementation of any of the

variants of the Quasi-Static Method, there are two principal strategies:

• Improved Quasi-Static Method (IQM) (not to be confused with the Improved Quasi-

Static Method variant)

• Predictor-Corrector Quasi-Static Method (PCQM)
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We will firstly describe these two algorithms to show their advantages and inconve-

niences and then we will present the hybrid approach that was taken in this work to

perform the numerical implementation. As we will see neither of them are used in their

totality and rather features from both are taken for our approach. Indeed, the adiabatic

variant discussed in Section 3.1.2.8 was implemented in the multi-physics tool in a simi-

lar way (but not exactly) to the PCQM and thus it will be referred here as OpenFOAM

PCQM (OF-PCQM).

4.3.1.2.1 Improved Quasi-Static Method (IQM)

In this numerical approach, both systems of equations (neutron flux shape and ampli-

tude) are converged at the same time as proposed by Dulla et al. [43] and later used also

in the work of Patricot [47]:

1. An initial angular neutron flux ψ(~r, ~Ω, E, t0) and a weight function W0(~r, ~Ω, E) are

provided. With this initialisation the normalization constant is established in order

that ψ(~r, ~Ω, E, t0) also satisfies it (equation 4.5). There is still one degree of freedom

so n(t0) can be arbitrarily set. But once it is chosen this will set the value of the

constant.

〈
1

v(E)

ψ(~r, ~Ω, E, t0)

n(t0)

∣∣∣∣ W0(~r, ~Ω, E)

〉
=

〈
1

v(E)
φ(~r, ~Ω, E, t0)

∣∣∣∣ W0(~r, ~Ω, E)

〉
= constant (4.5)

During the neutron flux resolution two different time steps are used. The smaller

time step (δt) is used to integrate the point kinetics (or amplitude) equations 3.61 for

solving the neutron amplitude while a larger time step (∆t) is used for the neutron

flux shape equations 3.60. In order to decrease the computational cost, δt will be set

so that δt < ∆t and thus an effort to maximize ∆t must be made. This way the

resolution of the multi-variable equations for the neutron flux shape (which are also

the most expensive computationally) is done less frequently as possible.

2. Using the equations 3.62 and the shape function φ(~r, ~Ω, E, t0) normalized with equa-

tion 4.5, the point kinetics parameters are calculated.

3. Using the kinetics parameters from step 2 a first estimation of n(∆t) is made inte-

grating the amplitude equations (with the time step δt) during the interval ∆t.
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4. Using n(∆t) and its derivative d [n(∆t)] /dt the shape equations are solved to determine

the neutron shape function φ̃(~r, ~Ω, E,∆t). The error induced in the normalisation

condition is calculated as follows:

errornorm =

∣∣∣∣∣∣∣∣
〈

1
v(E) φ̃(~r, ~Ω, E,∆t)

∣∣∣∣ W0(~r, ~Ω, E)

〉
− constant

constant

∣∣∣∣∣∣∣∣ (4.6)

5. Since φ̃(~r, ~Ω, E,∆t) must satisfy the normalization condition set by equation 4.5 the

shape function has to be corrected by the scalar factor Z as:

φ(~r, ~Ω, E,∆t) = Z φ̃(~r, ~Ω, E,∆t) (4.7)

where Z is calculated from:

Z =
constant〈

1
v(E) φ̃(~r, ~Ω, E,∆t)

∣∣∣∣ W0(~r, ~Ω, E)

〉 (4.8)

6. With the normalized flux shape the point kinetic parameters are recalculated (step 2)

and the flux amplitude equation integrated (step 3) again to obtain a new estimation

of n(∆t).

7. Steps 4-6 are also repeated until convergence of the normalization error (errornorm).

An schematic description of this process can be seen in Figure 4.5

4.3.1.2.2 Predictor-Corrector Quasi-Static Method (PCQM)

In the PCQM the shape equations are not used but rather the original transport equa-

tions 3.1 and 3.6 are used to calculate the flux shape. The algorithm can be schematized

as follows [43]:

1. As it was done in section 4.3.1.2.1, an angular neutron flux ψ(~r, ~Ω, E, t0) and a weight

functionW0(~r, ~Ω, E) are set. Then the normalization constant and n(t0) are set such as

ψ(~r, ~Ω, E, t0) verifies the following equation (note that there is one degree of freedom

so either n(t0) or the constant can be arbitrarily set):

〈
1

v(E)

ψ(~r, ~Ω, E, t0)

n(t0)

∣∣∣∣ W0(~r, ~Ω, E)

〉
= constant (4.9)

2. Again there are two time scales to be considered: ∆t for the transport equation
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Kinetic Parameters Calculation
ρ(tn−1), βeffd (tn−1), Λ(tn−1), c̄d(tn−1)

Solve Point Kinetics Equations
(Amplitude Equations)

n(tn), dndt (tn)

Solve Shape Equations
φ̃(~r, ~Ω, E, tn)

Calculate Normalization Error
(errornorm) and Normalize the
Shape Function (φ(~r, ~Ω, E, tn))

errornorm >

tol

Kinetic Parameters Calcula-
tion ρ(tn), βeffd (tn), Λ(tn), c̄d(tn)

tn ≥ tfinal

END

no

yes

yes

no (tn+1)

Figure 4.5 – Improved Quasi-Static Method scheme.

and δt for the amplitude equations. By solving the transport equations 3.1 and 3.6

in ∆t a prediction for ψ(~r, ~Ω, E,∆t)) is obtained (any available resolution method

for the transport equation can be used for this). This predicted value is called

ψ̃predicted(~r, ~Ω, E,∆t)). It should be noticed that solving the transport equations is not

a trivial task as explained in Section 3.1 and a numerical method has to be used for

this purpose (Diffusion, SPN, Monte Carlo, among others).

3. This first estimation must verify the normalization condition defined in equation 4.9.

Thus a corrective scalar factor Z̃ is defined such as:

ψpredicted(~r, ~Ω, E,∆t) = Z̃ ψ̃predicted(~r, ~Ω, E,∆t) (4.10)
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where Z̃ is calculated as

Z̃ =
constant〈

1
v(E) ψ̃predicted(~r,

~Ω, E,∆t)

∣∣∣∣ W0(~r, ~Ω, E)

〉 (4.11)

Note that if we want to keep the constraint set by equation 4.9, the predicted flux

should be divided by the amplitude function evaluated at the shape time (n(∆t)).

However, n(∆t) would divide the predicted flux (ψ̃predicted) in equation 4.10 and also

divide the predicted flux (ψ̃predicted) inside the integral in the denominator of the

factor Z̃ in equation 4.11. Given that the integration is not carried in time, the

amplitude equation value (n(∆t)) exits the integral and vanishes when carrying out

equation 4.10 if Z̃ is replaced by its definition (the factor 1/n(∆t) appears both in

the numerator and the denominator, thus, it is omitted).

4. Using ψpredicted the kinetic parameters are evaluated and the amplitude equations are

solved during the interval ∆t.

5. Having calculated n(∆t) the flux can be corrected as shown in equation 4.12 and find

corrected values of the precursors concentration from equation 3.6.

ψcorrected(~r, ~Ω, E,∆t) = n(∆t)ψpredicted(~r, ~Ω, E,∆t) (4.12)

Steps 2-5 are sequentially repeated for all time steps ∆t until the final time is reached. An

schematic description of this process is presented in Figure 4.6.

The two algorithms explained (IQM and PCQM) have some limitations either in the

implementation or the accuracy. As we will see in the next section a compromise solution

have been opted to keep both to some extent.

4.3.1.2.3 OpenFOAM Predictor-Corrector Quasi-Static Method (OF-PCQM)

As we have seen in the IQM or the PCQM numerical implementations two time steps

are normally required by the Quasi-Static Method. A smaller one δt for the amplitude

equations and a larger one ∆t for the shape equations. However, OpenFOAM code allows

the user to define only one time step3 to integrate the partial differential equations and

thus all the solvers will be forced to use the same time step. Moreover, information on the

3There has been some attempts to use multiple time steps as seen in [96]
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cteNorm,W0(~r, ~Ω, E)

Solve Transport Equations
ψ̃predicted(~r, ~Ω, E, tn)

Normalize the Shape Function
ψpredicted(~r, ~Ω, E, tn)

Kinetic Parameters Calcula-
tion ρ(tn), βeffd (tn), Λ(tn), c̄d(tn)
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tn ≥ tfinal

END
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Figure 4.6 – Predictor-Corrector Quasi-Static Method Scheme.

runtime variables is only stored for the current time step. These limitations will have two

consequences:

1. The time step used by all the OpenFOAM solvers will have to be the smaller one, i.e.

the corresponding to the amplitude time step. By using the amplitude time step, the

parameters of the point kinetics equations can be updated as the material properties

change (e.g. density and temperature) because of the coupling with the other solvers

(e.g. energy balance equations). This choice will also provide the non-neutronic

solvers with updated power amplitude estimations for each time step.

2. The IQM numerical implementation strategy becomes challenging to implement in

the multi-physics tool. To iterate as shown in Figure 4.5 we should be able to store
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all the OpenFOAM runtime variables at the beginning of the current flux shape

iteration and to restart the shape time step at the end of it (i.e. many δt steps before

the beginning of the shape interval). That is not at all straightforward nor obvious

to implement in OpenFOAM.

For these reasons, an alternative strategy close to the PCQM was preferred. In this

alternative strategy for the numerical implementation, called OF-PCQM, only one internal

iterations in the IQM shape step (∆t) is used. Therefore, this implies that in Figure 4.5

the internal loop is not done. This approximation will provide accurate results if the

normalization error (errornorm) is low enough. In any case, accuracy can be increased, as

in any explicit scheme, by reducing the shape time step. Therefore, calculation time is

penalized for the sake of simplicity by using smaller flux shape steps.

As discussed in previous sections, in this work we use the adiabatic simplification

(Section 3.1.2.8) thus the neutron shape equations are similar to those of the criticality

calculation from Section 4.3.1.1. The resulting algorithm for the OF-PCQM using the

adiabatic variant is shown in Figure 4.7.

It should be noticed that when using the IQM or the OF-PCQM any of the simplifi-

cations from Section 3.1.2.8 can be used. In the case of the PCQM the only simplification

possibility is to neglect the angular flux time derivative (∂ψ/∂t ' 0) which is equivalent to

neglecting both the amplitude and the shape (dn/dt ' 0 and ∂φ/∂t ' 0). The treatment of

the delayed neutron source is equivalent for all methods as explained in Sections 3.1.2.8.3

and 4.3.1.1.4.

Tallies and amplitude parameters

The OF-PCQM algorithm, previously described, implemented in the multi-physics tool

requires the determination several neutronics parameters during the Monte Carlo calcula-

tion. As discussed, these parameters are estimated from tallies (see Section 3.1.1.3). These

tallies include cell-wise reaction rates and neutron current calculated in the same manner

as described for the volumetric power in section 4.3.1.1 with the collision estimator as:

R(~rj) =
1

Vj

∑
i

ωi
f(~ri, Ei))

Σ(~ri, Ei)
∀ ~ri ∈ Vj (4.13)

where ωi, ~ri and Ei are the weight, position and energy of the i-th neutron simulated, Vj

is the j-th cell volume, f is a response function (defined in Table 4.1), and Σ is the cross
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Figure 4.7 – OpenFOAM Predictor Corrector Quasi-Static Method (OF-PCQM) algo-
rithm.
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section that was used for sampling the path length.

When the above tallies involve neutron cross sections, the response function f is mul-

tiplied by the density correction g and the tallies take into account the Doppler effect by

using the Target Motion Sampling (TMS) treatment. These two corrections allow the tool

to take into account the density and temperature gradients in the materials. The full list

of the different response functions needed in our calculations are summarized in Table 4.1.

Table 4.1 – Response functions for the unweighted collision estimator. ~ω are the direction
cosines of ~v.

Response Function
f(~r,E)

Parameter

Reaction
Rate r

gΣr Σrφ(~r)

Production
Rate

gνΣf νΣfφ(~r)

Volumetric
Power

gεΣf εΣfφ(~r)

Neutron
Current

~Ω ~J =
∫
~ωψ(~r, ~Ω)dΩ

Neutron
Density

1/v N~r = 1
vφ(~r)

The response functions make it possible the estimation of the volumetric power and

the different point kinetics parameters needed for the amplitude equations. These point

kinetics parameters are determined according to the integral equations 3.62. Note that the

tallies calculated with equation 4.13 represent integrals defined in an unweighted manner,

i.e., in these tallies the weight function W0(~r, ~Ω, E) is equal to a unity constant value.

That is because in our work we have indeed chosen to set W0(~r, ~Ω, E) = 1 to simplify the

calculation of the integral kinetic parameters of equations 3.62. In addition, this choice has

the additional advantage of simplifying the modeling of a liquid fissile system with closed

boundaries as we had discussed in see Section 3.1.2.3. A more traditional option would be,

as explained in Section 3.1.2.5, to use the adjoint flux as a weight function. Nevertheless,

in a Quasi-Static Method approach the weight function is set at the beginning of the

transient and kept constant during the entire transient calculation. If the initial adjoint

flux is used it may have little relation with the system as it evolves. On the other hand,

if an instantaneous adjoint flux is used the derivation of the method used here is no

longer valid and a time dependent derivation approach such as the one of Becker [49]

should be implemented, if possible. Note that Serpent 2 capabilities can calculate adjoint-
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weighted parameters in the criticality mode. However, this adjoint flux corresponds to

the fundamental mode at steady-state given the material properties and geometry of the

system at that particular moment. Then, the more complex variational approach developed

by Becker [49] (Section 3.1.2.5) for the Quasi-Static Method should be instead use. Its

compatibility with a Monte Carlo solver should be investigated but it is certainly more

complex than the approach taken in this work.

4.3.1.3 Simplified PN

As discussed in the previous chapter, an alternative neutronics model based on the

Simplified PN method has been adopted. The Simplified PN model described in Section

3.1.3 was fully implemented in OpenFOAM. Since the sequential approach is necessary in

OpenFOAM, the multi-group scheme has to be divided into implicit and explicit terms as

shown in equation 4.2.

Using this idea, equations 3.78 for each energy group can be rewritten as follows:

Implicit︷ ︸︸ ︷
1

vg
∂Ug1
∂t

= ∇ ·
(

1

3Σg1
∇Ug1

)
− Σg0U

g
1

+2Σ0
0Φg2 + 2

1

vg
∂Φg2
∂t

+
F g

k
+ Sgd + Sg0︸ ︷︷ ︸

Explicit

(4.14a)

Implicit︷ ︸︸ ︷
3

1

vg
∂Φg2
∂t

= ∇ ·
(

3

7Σg3
∇Φg2

)
−
(

5

3
Σg2 +

4

3
Σg0

)
Φg2

+
2

3

1

vg
∂Ug1
∂t
− 2

3

F g

k
− 2

3
Sgd −

2

3
(Sg0 − Σg0U

g
1 ) +

5

3
Sg2︸ ︷︷ ︸

Explicit

(4.14b)

where

F g = (1− β)χgp
∑
g′
νΣg

′
f

(
Ug
′

1 − 2Φg
′

2

)
Prompt Fission Source

Sgd = χgd

∑
l

λlCl Delayed Neutron Source

Sg0 =
∑
g′ 6=g

Σgg
′

s0

(
Ug
′

1 − 2Φg
′

2

)
Order 0 Scattering Source

Sg2 =
∑
g′ 6=g

Σgg
′

s2 Φg
′

2 Order 2 Scattering Source

Σgn = Σgt − Σggsn Order n Removal Cross Section
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where all quantities were defined to take the multi-group formulation into account using

the superscript g to denote the energy group. vg and Σgr are the neutron speed and the

macroscopic cross section for reaction r, respectively; χgp and χ
g
d are the fractions of prompt

and delayed neutrons born in group g; Σgg
′

sn is the scattering macroscopic cross section from

the energy group g′ to g of order n, i.e., is the coupling reaction between any two energy

groups; and Φg0 and Φg2 are the modes of the flux expanded in Legendre Polynomials of

orders 0 and 2 respectively for group g as shown in Section 3.1.3 with U1 = Φ0 + 2Φ2.

In Figure 4.8 the algorithm used to solve the SPN equation is sketched. Depending on

the order of the expansion the algorithm can solve either the SP1/Diffusion equations or

the SP3 equations. Precursors advection in a system containing a liquid fissile is also taken

into account if needed.

Start Iteration

First
Iteration?

Update Cross
Sections

Density/
Temperature

Fields

Solve for Ug0

Solve
Order 2

Solve for Φg2

Solve for Pre-
cursors Cd

Liquid Fuel
Velocity Field

Calculate k

Power
Iteration?

Normalize
Fission Source

Stop Iteration

no

yes

no

yes

yes

no

Figure 4.8 – Simplified PN implementation.

Chapter 4 Juan Antonio Blanco 107



Neutronic, thermohydraulic and thermomechanical coupling for the modeling of nuclear systems

For steady-state calculations a classic power iteration technique is used [21] to con-

verge the flux solution. The power iteration consists in normalizing the fission source by

the multiplication factor k after each iteration until convergence of the fission source and

the k value. For example, for the iteration j+ 1 the multiplication factor k is calculated as

follows:

kj+1 =

∑
g

∫ (
F gj+1 + Sgd,j+1

)
dV

1
kj

∑
g

∫ (
F gj + Sgd,j

)
dV

(4.15)

This procedure is similar to Monte Carlo algorithm in criticality source mode. Note

that the multiplication factor has been placed in the explicit term of equations 4.14.

It is easy to see that for a solid fuel it is equivalent to calculate (both numerator and

denominator) as the integral of the ν-fission rate, i.e.,

∫ (
F gj+1 + Sgd,j+1

)
=

∫ ∑
g′
νΣg

′
f

(
Ug
′

1 − 2Φg
′

2

)
dV (4.16)

For a liquid fuel, it is not so trivial and the previous equivalence holds only in case

of no loss of precursors through the system boundaries and incompressible fuel with non-

slip condition, which is exactly the case treated in this work. Indeed, taking equation 3.7

with ∂Cd/∂t = 0 and summing over all precursors family and then applying the divergence

theorem as in Section 3.1.2.3 for the advection and diffusion terms we obtain that the

delayed neutron source is:

∑
d

∫
λdCd(~r, t)dV =

∑
d

∫ [
∇ · [Dd∇Cd(~r, t)] + βdFψ(~r, ~Ω, E, t) − ~u · ∇Cd(~r, t)

]
dV

=
∑
d

[∫
∇ · [Dd∇Cd(~r, t) + ~uCd(~r, t)] dV +

∫
βdFψ(~r, ~Ω, E, t)dV

]

=
∑
d

∫
���

���
���

���
���:

= 0

[Dd∇Cd(~r, t) + ~uCd(~r, t)] · ~n dS +

∫
βdFψ(~r, ~Ω, E, t)dV


= β

∫
Fψ(~r, ~Ω, E, t)dV (4.17)

If we add this result to the prompt fission, equation 4.16 holds but it is limited to

solid fuels and the incompressible case with non-slip and no loss of precursors through the

boundaries condition. For this reason, equation 4.15 is used in this work to keep things as

general as possible.
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4.3.1.3.1 Cross Sections

Simplified PN model requires the user to provide the nuclear system neutron reactions

macroscopic cross sections condensed to NG energy groups and homogenized in a volume

representative of the cells of the spatial mesh. Once the transient calculation has started,

these macroscopic cross sections have to be updated according to the system modifications.

The Update Cross Section block from Figure 4.8 takes into account how density and

temperature changes in the system affects the macroscopic cross sections. Density effects

are again straightforward to be taken into account in the macroscopic cross sections since

they are proportional to the atomic density which is also proportional to the material

density. For this reason, a cell-wise correction, like the one for Monte Carlo, is used

(equation 4.18). Thermal effects, on the other hand, are more challenging. However, for

small changes in the temperature, a logarithmic interpolation between cross sections library

data for two pre-calculated temperatures bounding the system was implemented. In total,

the macroscopic cross sections are updated cell-wise in the following way:

Σ(~r) =
ρ(~r)

ρ0

(
Σref − δΣαlog

(
T (~r)

Tref

))
(4.18)

where

δΣα =
Σmax − Σref
log (Tmax/Tref )

with Σmax and Σref the cross section corresponding to the maximum and reference (or

lower limit) temperature considered Tmax and Tref , respectively.

It is important to remark that the determination of the condensed and homogenized

macroscopic cross sections of the system can be very challenging in the case of highly

heterogeneous systems or in systems with important neutron leaks. In such systems spatial

and energy self-shielding effects could be very important (e.g. in PWR fuel rods or in the

control rods). Neutron leaks will also complicate the homogenization process. For such

heterogeneous systems very fine energy and space meshes are usually required together

with specific algorithms to treat neutron cross sections resonances and leakage. Most of

the cases studied in this PhD were homogeneous (Godiva and the Molten salt Cavity) with

the exception of the Spent Fuel Pool and thus these effects were less of an issue for the

Monte Carlo code. The latter can deal with these through detail modeling of the geometry,

continuous in energy nuclear data and the discussed routines for density and temperature
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changes (Section 4.3.1.1.3) along with its computational cost.

4.3.1.3.2 Boundary Conditions

The Marshak boundary conditions from equations 3.81 were implemented. Moukalled

[64] gives a good insight on how to implement new boundary conditions in OpenFOAM.

A generic boundary condition for a variable φ can be written as:

∇φ = a(bφ+ c) (4.19)

where a, b and c are parameters that have to be set according to the system conditions.

The gradient is discretized as follows:

∇φ · ~n = (φface − φcenter) ∆ (4.20)

where ∆ is the inverse center-face distance parallel to the normal vector ~n at the boundary.

Then, the value used in OpenFOAM for calculating the φ variable at the boundary face

center is:

φface =
ac∆

1−∆ab
+ φcenter

1

1−∆ab
(4.21)

This was applied to each flux order and energy group fluxes BCs. Ideally, the whole

system (including the boundary conditions) would be evaluated in a block coupling scheme

(everything solved at the same time). However, the sequential nature of OpenFOAM

requires an iterative process. Nonetheless, some efforts to do block coupling in non-official

OpenFOAM versions (e.g. extend version) exist at this time.

Boundary conditions 3.81a is assigned to solve for the order 0 equations (Ug1 ) and

boundary condition 3.81b to solve for the order 2 (Φg2). Then, iterating over all orders and

energies groups the system of equations is converged.

4.3.1.3.3 Acceleration

Straight numerical resolution of the SP3 method in an iterative process has the disad-

vantage of slow convergence. For this reason, an Aitken acceleration routine as explained

by Fiorina et al. [97] was implemented. In addition to the Aitken acceleration routine,
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an Anderson acceleration [98] technique was also tested4. Both involve a prediction of

the next iteration solution based on several previous ones. Both techniques were able to

significantly improve the performance of the model as will be shown in Section 5.1.6.

4.3.2 Solid Mechanics

The main thermomechanics model required for the cases identified in Chapter 2 was

the linear thermoelasticity model presented in equation 3.99 (Section 3.2.2.1). A numerical

solver implementing this model already exists in the libraries of OpenFOAM under the

name solidDisplacementFoam. The details on this solver equations and the boundary

conditions can be found in the work of Jasak and Weller [60] and will not be reviewed

here.

The strategy used by solidDisplacementFoam is very similar to the algorithms discussed

in the previous sections: equation 3.99 is divided into implicit and explicit terms as shown

in equation 4.22. Then, this new equation is used to find the solution by an iterative process

until a convergence is attained by minimizing the residual error or until a maximum number

of iterations is achieved.

implicit︷ ︸︸ ︷
∂2
(
ρ ~D
)

∂t2
−∇ ·

[
(2µ+ λ)∇ ~D

]
=

∇
[
µ
(
∇ ~D

)T
+ λ I tr

(
∇ ~D

)
− (µ+ λ)∇ ~D

]
−∇

(
E

1− 2ν
αT

)
+ ρ~f︸ ︷︷ ︸

explicit

(4.22)

An interesting discussion can be found in the work of of Jasak and Weller [60] on the

performance obtained for solving solid mechanics problems using FVM methods (principal

method employed by OpenFOAM) in comparison to the Finite Element Method (FEM)

formulation more commonly used for these type of problems, as well as other numerical

considerations. From the considerations of Jasak and Weller’s work it can be concluded

that FEMmethods have not necessarily a better performance than the FVMs. For example,

the direct solvers used in the FEM are computationally more expensive than the iterative

FVM solvers. In addition, as non-linearities and explicit coupled terms appear, especially

when coupling with other physics, the FVM seems to be an interesting alternative to the

FEM. Finally, using a Finite Volume Method to discretize the solid mechanics equations

4It was implemented using the C++ liner algebra library Armadillo [99]
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has the advantage of keeping the same environment for the resolution of all the models in

the multi-physics tool reducing the complexity of the implementation.

4.3.2.1 Geometry

The linear thermoelasticity model used here is valid when the problem does not in-

volve volumes with moving boundaries. All equations in this model were derived from

the Reynolds Transport Theorem from Section 3.3.2 using a fixed Control Volume (i.e.

non-moving). Indeed, for very small deformations, which is the main hypothesis for the

linear elasticity equations, it can be shown that an approximately fixed, even when de-

formed, Control Volume can be used to discretize the equations as explained by Demirdžić

et Muzaferija [62].

To keep the errors introduced to a minimum, when studying a transient in systems

where the solid phase undergoes a thermal expansion as a result of a power excursion

such as in the Godiva experiments, two meshes were used in the multi-physics tool. A

fixed-volume mesh is used to solve for the solid displacements, temperatures and velocities

fields. For the neutronics, on the other hand, the equations are solved in a deformable mesh.

Therefore, the neutronics mesh expands or contracts according to the displacement field

calculated by the thermal-mechanics module. Input/Output fields used by the neutronics

calculations are thus interpolated from one mesh to the other taking into account the

volume expansion or contraction at each cell in order to conserve quantities. For example,

density is cell-wise modified with the cell volumes to conserve total mass in the deformable

mesh.

4.3.3 Thermal-Hydraulics

The third physics field solved in the multi-physics tool is the thermal-hydraulics domain

for the fluid phase existing in the nuclear system. Thermal-hydraulics is a vast field that can

cover very different fluid systems. In our studies, three different types were encountered:

laminar flow, turbulent flow and flow in porous medium. OpenFOAM contains many

numerical solvers that were developed for very different types of flow. In the case of

the laminar and turbulent flows, the already existing OpenFOAM solvers were therefore

implemented in the tool. For the case of the flow in a porous medium, the existing solvers

were not sufficiently adapted for the study of the Spent Fuel Pool and thus a new solver
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had to be developed and implemented in OpenFOAM.

This section provides an overview of the PIMPLE algorithm used by OpenFOAM to

solve the incompressible Navier-Stokes equations since very little information can be found

in the literature and also because this solver has to be coupled with the other algorithms

of the multi-physics tool. Then, the porous medium algorithm is discussed and at the end

a short discussion is provided on the multi-region capabilities of the tool. That is a key

feature of the tool that allows solving conjugated heat transfer (e.g. heat transfer and

exchange a flow and a solid phase). While this feature was not used in the cases presented

in this manuscript, it was implemented in the tool and will be necessary for future studies.

4.3.3.1 PIMPLE Algorithm

The incompressible Navier-Stokes Equations from Section 3.3.3 are not easy to solve

mainly due to their non-linearities given by the advection term. In addition, there is

no explicit equation to calculate the pressure. To overcome these problems, historically,

there are two algorithms to solve the Navier-Stokes equations: the Semi-Implicit Method

for Pressure Linked Equations (SIMPLE) algorithm for steady-state calculations and the

Pressure-Implicit with Splitting of Operators (PISO) algorithm for transient calculations.

In both algorithms (SIMPLE and PISO), the velocity field is obtained from the mo-

mentum equation 3.120 with a first guess of the pressure p. In addition, the velocity field

should satisfy the constrain imposed by the continuity equation 3.110. Normally, that is

not the case, and therefore a new guess of the pressure is necessary. This back and forth

between pressure guess and the continuity equation constrain can continue aimlessly. As

a consequence, a way to predict the next pressure guess is needed. This critical step is

accomplished by the particular formulation of the SIMPLE/PISO algorithms.

First, the momentum equations can be rewritten in a matrix shape as:

ρ
D~u

Dt
= −∇p+ µ∇2~u+ fb ⇒ MU = −∇p (4.23)

with ∇p the matrix form of the pressure gradient, M a discretized operator and U being

the velocity matrix.

Further, it can be splitted between a matrix holding only the diagonal elements ofM,
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to which we will refer as A, and a residual matrix H:

H =MU −AU (4.24)

To find an equation to estimate the pressure we take advantage of the continuity equa-

tion, which is independent of the others and, after some manipulation an expression for U

can be found by replacing equation 4.24 in equation 4.23.

MU = AU −H = −∇p ⇒ U = A−1H−A−1∇p (4.25)

Replacing this definition for U in the continuity equation we obtain our pressure cor-

rector:

∇
(
A−1∇p

)
= ∇

(
A−1H

)
(4.26)

Now, we have a momentum predictor and a pressure corrector. So the pressure-velocity

coupling algorithmic can be establishes as follows:

1. Solve the momentum predictor from equation 4.23 using a pressure initial guess or

the value from the previous iteration or time step.

2. Calculate the residual H from equation 4.24 with the new velocity field

3. Solve the pressure corrector from equation 4.26

4. Solve for other equations: turbulent quantities such as k−ε for example, or the energy

balance, or species transport.

5. Check residuals, i.e., to what degree the fields ~u and p satisfies the Navier-Stokes

equations

6. Check convergence

Up to this point, both SIMPLE and PISO algorithms are identical. The difference

relies on how the iterations are performed. For the SIMPLE algorithm, if it is not yet

converged, the whole iteration is restarted from the momentum predictor. These iterations

are referred to as outer iterations. For the PISO algorithm, the momentum predictor is

solved only once, i.e., only one outer iteration. Then, the pressure equation is run many

times by updating the velocity field ~u and, therefore, the residual H in what are called

inner iterations. Both algorithms can be observed in Figure 4.9.

The SIMPLE algorithm was developed by Spalding and Patankar [101][102] at the
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Start Time Step

Solve Momentum Predictor

Solve Pressure Correction

Correct Velocity

Solve Other Equations
(temperature, turbulent quantities)

Check Residuals

Converged

End Time Step

Update
p∗ = p, ~u∗ = ~u

φ∗ = φ

Yes

No

OUTER

INNER

Figure 4.9 – SIMPLE, PISO and PIMPLE Algorithms [100].

Imperial College for steady-state calculations, i.e., there is no time derivative. It can take

several thousand outer iterations to converge. This algorithm can be also used for transient

calculations by using the same procedure at each time step. However, the computational

cost of solving the momentum predictor involving many thousand iterations at each time

step is too high. This is mainly why the PISO algorithm was proposed by Issa in 1986 [103].

If the Courant number is inferior to one (Co < 1) a couple of inner iterations are normally

enough and the algorithm is stable for transient calculations. However, for detailed meshes

(for example, to observed vortex formation) the time step ∆t has to be reduced in order

to satisfy the Courant restriction.

When solving transient equations, the additional time derivative term adds a 1/∆t to

the diagonal. Because of this, with a lower time step the matrix becomes more diagonal

dominant and, therefore, more stable. In the case of the SIMPLE algorithm, this diagonal

dominant effect is achieved via under-relaxation techniques (for steady-state there is no

time derivative). There is extensive bibliography on these methods such as Moukalled et
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al. [64] and Ferziger and Perić [65].

The OpenFOAM developers chose to implement an hybrid algorithm called PIMPLE

[104][105]. PIMPLE results from the combination of the SIMPLE and PISO algorithm.

With PIMPLE, both outer and inner iterations are performed for each time step. By doing

this, Courant numbers can surpass the unity (Co > 1). That is the algorithm used in this

work to solve the Navier-Stokes equations in laminar flow (Figure 4.9).

In addition, the PIMPLE routine was implemented by the OpenFOAM developers

in a way to take into account turbulence if needed. The incompressible RANS or LES

additional equations for obtaining the coefficients of the Reynolds stress tensor (explained

in Section 3.3.5) can, therefore, be solved. Moreover, the presence of non-slip boundary

conditions presents a challenge in the accurate modeling of the near wall behaviour. Near

a wall, the high turbulent stress away from it reduces to values comparable to the viscous

stress. Then, if we want to accurately solve the near wall layer then a fine mesh is needed.

Low Reynolds turbulence models are capable of simulating this effect with a large number

of cells . With high Reynolds this mesh requirement is avoided by implementing wall

functions which reduces the computational cost. These functions are based on universal

flow profiles in the boundary layer along a wall [64]. However, they are not always valid

and, for this reason, many wall functions models exist. OpenFOAM provides a vast offer

of turbulent models (k − ε, k − ω, k − ω SST, ...) and wall functions. In Appendix A an

example for the Space Nuclear Reactor Design using the RANS turbulent model is shown.

4.3.3.2 Porous Medium

For relative complex geometries such as the core of a Pressurized Water Reactor or

a Spent Fuel Pool, the resolution of the Navier-Stokes equations in the coolant would

require a prohibitive large mesh to capture all the Fuel Assemblies details necessary for the

adequate resolution of the equations (grids, fuel rods, nozzles, inlet and outlet structures,

etc.). As we have seen in Section 3.3.7 an alternative approach is to homogenize the

geometry and replace the heterogeneous system by an homogeneous porous medium. The

numerical resolution of the equations of the latter can be performed using a coarse mesh

but will require the determination of the more or less complex porous medium properties.

The model presented in Section 3.3.7, based on the mass conservation equations 3.145,

the energy conservation 3.146, the Darcy’s equations 3.147 and closure equations 3.148-
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3.151 developed by Nuske et al. [76], was implemented in OpenFOAM. The approach

used the numerical approach presented by Horgue et al. [19]. As for the other thermal-

hydraulics models, the porous medium model was coupled to the neutronic models of the

multi-physics tool. However as discussed later, the coupling was only in one direction

since the studies for the Spent Fuel Pool using this porous medium model did not allow

to identify a credible scenario were the SFP reaches criticality and thus fission power is

generated. In this section, the general approach of this implementation is presented.

Even though, the model implemented by Horgue only considers incompressible monospecies

(one specie in each phase) and two-phase flow in porous medium, some of its features were

used in our porous medium model. Note that Nuske’s mass equations can be reduced to

this model in case of chemical equilibrium with no mass transfer between the phases and

negligible diffusion. The features from Horgue’s model that were used here are:

• The IMplicit Pressure Explicit Saturation (IMPES) method

• Center to face interpolation

• Boundary Conditions

Firstly, the pressure-velocity equations were solved using the IMPES method [19] since

the sequential nature of OpenFOAM, as seen before, forbids us from developing fully

implicit solvers for coupled systems. This method is similar to the SIMPLE algorithm

where the mass conservation equation is used to solve for the pressure. The difference

lies in the fact that the phases’ velocity fields are calculated straightforwardly from the

pressure fields through the generalized Darcy’s model (equations 3.147).

If we use Horgue’s model, the mass conservation equation for each α phase can be

written as:

φ
∂

∂t
(Sα) +∇ · Vα = qα (4.27)

while Darcy’s model rest the same.

If we replace the velocity field by Darcy’s model and sum both equations and include

the closure equations 3.148 and 3.151 we obtain the new system:

∇ ·
(
−kr,nK

µn
(∇pn − ρn~g)

)
+∇ ·

(
−kr,wK

µw
(∇pn − ρw~g −∇pc)

)
= qw + qn (4.28)

φ
∂

∂t
(Sw) +∇ · Vw = qw (4.29)
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This new system is then solved implicitly for the pressure, and the saturation is cal-

culated with the explicit value of the last velocity field. The process is iterated until

convergence updating the parameters at each step.

A similar system is obtained with the expanded model from this work. The temperature

equations are solved treating every term except for the temperatures fields as explicit. The

general algorithm can be observed in Figure 4.10.

Start Time Step

Solve Mass Equations

Solve Energy Equations

Update Properties

Center to Face Interpolation

Converged

End Time Step

yes

no

Figure 4.10 – Porous Medium Solver.

An important challenge in a porous medium approach is how to treat the interface with

a flow region where porosity is equal to one. For example, in the Spent Fuel Pool this would

be a region without a Fuel Assembly and filled with water. To treat this type of sharp

interfaces or also saturation fronts OpenFOAM’s specific approach was done in the

same way as Horgue for his model: all parameters that are not implicitly being solved are

interpolated from the center of the mesh cells to the faces of the mesh cells. By doing this,

smoother interfaces are formed and the solver becomes more stable. Fortunately, many

numerical schemes proposed by OpenFOAM are available at run time (upwind scheme,

harmonic average, TVD, etc.).

Lastly, pressure and velocity must be in accord to Darcy’s model at every point in
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the domain, including the boundary. As shown before, the pressure field rather than

the velocity field is solved and this implies applying correct boundary conditions for the

pressure field. In Horgue’s work it can be seen that the corresponding boundary condition

for a fixed velocity can be expressed as:

∇pn ·~n = ~n ·

[(
kr,nK

µn
+
kr,wK

µw

)−1(
Vfixed −

(
kr,nK

µn
ρn +

kr,wK

µw
ρw

)
~g +

kr,wK

µw
∇pc

)]
(4.30)

where Vfixed = Vn,fixed + Vw,fixed is the imposed velocity at the boundary.

For this work, the porous medium solver was used for an heterogeneous system formed

by the Spent Fuel Pool from Section 2. In the adopted coupling scheme, the materials

density and temperature fields are calculated by the porous medium model in OpenFOAM

and then transferred to the Serpent neutronics model to update the materials cross sections.

For now, only water density and temperature are updated internally in Serpent. The fields

are passed internally and when water material is sampled by Serpent, then the density

and temperature are changed accordingly. As we will see later all the analysis has been

done without fission power, i.e. only decay heat since a credible criticality scenario was

not found. For this reason, Serpent’s criticality mode (k-code) is enough. Adding the full

coupling (i.e. in the two senses) between the porous medium model and the neutronics

module to be able to model an hypothetical criticality accident would be straightforward

4.3.3.3 Multi-Region

One interesting capability of OpenFOAM is the possibility of defining multiple regions.

For example, if we want to simulate thermal exchange between a solid and a liquid (Con-

jugated Heat Transfer) it is possible to define two separated mesh regions and solve the

physics models independently at each region. During runtime, coupled solvers are linked

by the interface and boundary conditions.

For Monte Carlo, as we said, geometry definition has an independent input. However,

the same meshes can be used. Then, internally, all fields are transfer from OpenFOAM to

Serpent. In addition, the search algorithm was adapted to find the information necessary

(cell position of the desired variable: density, temperature, precursor) from OpenFOAM

taking into account the multiple regions.

While this feature was not used in the cases presented in this manuscript, it was
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implemented in the tool and tested with positive results. This feature will be necessary

to study systems containing for instance a coolant in contact to a fuel, a liquid fissile in

contact with a solid wall or a coupled neutron reflector region.

120 Chapter 4 Juan Antonio Blanco



Chapter 5

Results

This chapter presents the main results obtained from the multi-physics tool for the

three cases of study described in Chapter 2. The main objectives of the analysis of these

cases were to investigate the validity of the proposed models, to verify their numerical

implementation and to evaluate their performance. When possible, the tool predictions

were compared against either experimental data or other codes predictions. As discussed

in Chapter 3, the multi-physics tool has been developed from the coupling of two existing

codes: the CFD open-source code OpenFOAM and the neutronics Monte Carlo code Ser-

pent 2. A description of the equations and the numerical algorithms of the models of the

tool have been presented in Chapters 3 and 4, respectively.

As can be seen in Table 5.1, the three cases described in Chapter 2 were selected because

they allow to cover several of the key phenomena identified during criticality accidents.

These cases will be therefore very useful to understand the limitations of the models and

the codes. The table identifies the key phenomena for each case and the associated models.

In addition, as shown in the table, depending on the characteristics of the system being

investigated the model may change. For example, the flow model used for the Molten Salt

Cavity Benchmark case is the Incompressible Navier-Stokes with Boussinesq approximation

model while for the Spent Fuel Pool case we used a porous medium model.

The chapter is organized as follows: firstly, in Section 5.1 the results for the super-

prompt burst of the Godiva Experiment are presented. This case was selected since it

provides a very fast neutronics transient associated to a thermal expansion phenomenon in

a solid homogeneous medium. Secondly, in Section 5.2, the advection of a liquid fissile (and

of the delayed neutron precursors) is explored for the case of the CNRS Molten Salt Cavity
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Benchmark. This study case provides an example of a slow transient in a power reactor

based on a molten salt fuel (i.e. a liquid fissile homogeneous medium). Finally, Section 5.3

presents a heterogeneous Spent Fuel Pool system. This last study case allows investigating

the performance of the porous medium model well suited for complex geometries such as

the Fuel Assemblies.

Table 5.1 – Phenomena and solvers used in the analyzed cases.

Case Phenomena Solver

Godiva
Experiment

◦ Solid Homogeneous Medium

◦ Super-prompt Critical Transient

◦ Thermal Expansion

◦ Geometry Deformation

◦ Monte Carlo Quasi-Static Method
(Equations 3.67, 3.60c, 3.39a and 3.39b)

◦ Simplified PN

(Equations 3.7 and 3.78)

◦ Linear Thermoelasticity
(Equations 3.99 and 3.101)

Molten Salt
Cavity

Benchmark

◦ Liquid Homogeneous Medium

◦ Precursors Convection

◦ Laminar Flow

◦ Buoyancy

◦ Forced Convection

◦ Monte Carlo Quasi-Static Method
(Equations 3.67, 3.60c, 3.39a, 3.39b)

◦ Simplified PN

(Equations 3.7and 3.78)

◦ Precursors in liquid medium
(Equation 3.7)

◦ Incompressible Navier-Stokes with
Boussinesq Approximation
(Equations 3.110 and 3.126)

◦ Energy Equation (Equation 3.134)

Spent Fuel
Pools

◦ Solid-Liquid Heterogeneous Medium

◦ Recriticality

◦ Multi-phase multi-component
flow in porous medium
(Equations 3.145, 3.146 and 3.147)

◦ Monte Carlo (Equations 3.1 and 3.6)

5.1 Solid Homogeneous Medium: Godiva Experiment

In this section, the multi-physics tool is used to predict the LANL measured data

for the Godiva Experiment super-prompt 29.5 µs burst. This is, as we will see in this

section, a very fast transient characterized by a tight coupling between neutronics and

thermal expansion phenomena. This study case is particularly interesting to investigate

the performance of the Monte Carlo Quasi-Static Method.

The geometrical data, material properties and numerical parameters used in the simu-

lations of Godiva are given in Section 5.1.1. Since the power burst is induced by a reactivity
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insertion of just a few cents over prompt criticality, then the statistical uncertainties of

the Monte Carlo results have to be carefully investigated as illustrated in Section 5.1.2. In

addition, we show in Section 5.1.3 that to take full advantage of the Quasi-Static Method,

the point kinetic parameters used in the neutron flux amplitude equations of this method

have to be updated inside the flux shape calculations time step (during amplitude time

steps). The Monte Carlo Quasi-Static predictions are compared against those obtained

from a classic point kinetics model in Section 5.1.5 and also from the results of the de-

terministic SP1/SP3 models in Section 5.1.6. A final comparison between all the models

implemented in this work and a pure Monte Carlo transient calculation with Serpent’s

Dynamic mode by Aufiero et al. [37] is discussed in Section 5.1.7 ending with some remark

in Section 5.1.8.

5.1.1 Model

As shown in Section 2.1, the Godiva setup was modeled as an Oralloy sphere, although

the real geometry is not a perfect sphere but an ellipsoid. Present capabilities of the codes

allow us, if necessary, to solve the physics models (neutronics, thermal-mechanics and

thermal-hydraulics) in different meshes and then, map fields from one mesh to the other for

coupling purposes (i.e. variables transfer between models). For the Godiva experiment two

unstructured meshes were defined. One was used to solve the linear thermoelasticity model

described in Section 3.2. The other mesh was used for the neutronic model. The latter

mesh was allowed to expand following the solution from the thermal-mechanics model.

Even though they were defined independently, both meshes were identical tetrahedral

unstructured meshes (Figures 5.1(A) and 5.1(B) shows a cross-cut and a surface view of

the mesh) with approximately 7× 105 cells each.

Material and geometrical specifications for the simplified spherically-shaped Go-

diva were taken from NEA’s benchmark [106]. Uranium isotopes’ atomic fraction are

shown in Table 5.2. The continuous energy Nuclear data library ENDF/B-VII was used

to calculate the neutronics properties needed by the different models available in the multi-

physics tool. For the SP3 a three (3) energy groups cross sections scheme was adopted with

energy cuts at 0.49787 MeV and 2.2313 MeV1. The neutron macroscopic cross sections were

condensed and homogenized with Serpent 2 capabilities for energy group constants gener-
1Godiva has a fast spectrum and the subdivision into a thermal plus epithermal group and two fast

ones proved to be enough for this application (a posteriori) as it is shown in section 5.1.6.
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(A) Cross Section (B) External Surface

Figure 5.1 – Tetrahedral mesh for the Godiva experiment model (ca. 7× 105 elements).

ation, including the Legendre polynomial expansion of the scattering cross sections. The

Mechanical properties for Oralloy are specified in Table 5.3.

Table 5.2 – Uranium istopes atomic fraction [106].

Isotope Atomic Fraction
U-235 0.9377
U-238 0.0521
U-234 0.0102

Table 5.3 – Mechanical properties of uranium [37].

Property Value Units
Density (ρ) 18.74 g cm−3

Poisson’s ratio (ν) 0.23 -
Young’s modulus (E) 208 GPa

Thermal conductivity (k) 27.5 W m−1 K−1

Thermal expansion coefficient (α) 1.39x10−5 K−1

Specific heat capacity (c) 117.72 J kg−1K−1

The system initial conditions used in the simulations were set to an uniform 300 K

temperature field with zero initial displacement in the solid and no mechanical stresses.

In a similar manner as other numerical studies of the Godiva experiments [37][47], power

and flux were set to the fundamental mode with a total power of 1 MW and zero delayed

neutrons precursors. The main burst characteristics, the power peak and the total energy

(analyzed in this section), are not sensitive to them. Setting these initial assumptions are
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not obvious. The burst peak time depends, on the other hand, on these initial conditions

(in particular the power, i.e., the initial neutron count and distribution) which have been

adjusted in all these numerical studies to match the experimental data. Indeed, for other

experiments the absolute value of the burst peak time could be affected by some significant

uncertainties, since once the Oralloy rod is being inserted into the Godiva assembly the

initiation of the power burst is actually a random phenomenon and thus the peak time may

change for the same experiment setup. Modeling the burst initiation is out of the scope of

this analysis [107] and thus we adopt the same initial conditions as other aforementioned

numerical studies.

In the NEA work [106], the criticality benchmark for the Godiva Experiment reports

a radius of 8.74 cm for achieving criticality in the experiment. Using the data provided

in LANL report [8] and assuming that Godiva was a true sphere of radius 8.74 cm then

a mass of 52.25 kg would allow reaching criticality. However, as explained in Section 2.1

the Serpent calculations predict a slightly different critical radius (and mass) and thus the

system radius had to be slightly adjusted to obtain the desired reactivity. In our study,

the spherical system radius was set, by trial and error, to 8.81 cm to achieve a reactivity

corresponding to an approximate reactor period of 29.5 µs (which is the value reported

in LANL report [10]). Nevertheless, since this radius does not provide the exact reactor

period, the fission source was normalized (i.e. multiplied by a scalar factor) in order to

obtain the corresponding initial reactor period Tr. Mathematically, the normalization has

to satisfy at the initial time t0:
ρ (t0)− β (t0)

Λ (t0)
=

1

Tr
(5.1)

with the parameters defined as

H(t0) =
αnorm
k0

〈χp(E)

4π
(1− β) +

Gd∑
d=1

χd(E)

4π
βd

F φ(~r, ~Ω, E, t0)

∣∣∣∣ W0(~r, ~Ω, E)

〉
(5.2)

ρ(t0) =
1

H(t0)

〈(
− L − T + S

)
φ(~r, ~Ω, E, t0)

∣∣∣∣ W0(~r, ~Ω, E)

〉
+ 1 ≡ 1− 1

αnorm
(5.3)

Λ(t0) =
1

H(t0)

〈
1

v(E)
φ(~r, ~Ω, E, t0)

∣∣∣∣ W0(~r, ~Ω, E)

〉
≡ Λ0

k0

αnorm
(5.4)

where k0 is the initial critical multiplication factor (without normalization) and αnorm the

normalization factor we want to calculate. It can be seen that the effective delayed neutron

fraction from equation 3.62c remains the same since the normalization factor appear both
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in the numerator and the denominator.

Replacing equations 5.3 and 5.4 into 5.1 the normalization factor can be expressed as:

αnorm =
1

1− β

(
Λ0k0

Tr
+ 1

)
≡ 1

1− β

(
l

Tr
+ 1

)
(5.5)

where l is the neutron lifetime (mean lifetime for one neutron to disappear from the

reactor by an absorption or a leak).

As discussed in Chapters 3 and 4, the weight factor used for the normalisation of

the neutron shape function in the Monte Carlo Quasi-Static Method was set to unity

(W0(~r, ~Ω, E) = 1) since this choice simplifies the determination of the parameters of the

amplitude equation. On the contrary, the classical Point Kinetics (PK) formulation (i.e.

assuming that the flux shape does not change over the transient), has to be calculated

using the adjoint flux as the weighting function.

Concerning the boundary conditions, a vacuum Boundary Condition was imposed

for the flux and zero gradient for the precursors Boundary Condition (i.e., no loss of

precursors through the boundary). At the sphere surface, a fixed temperature Boundary

Condition of 300 K was also set with a free surface traction free condition (no stress) for

the displacements. At a glance, adiabatic conditions for temperature in the Godiva model

seem to be more appropriate, however, in the LANL report [8] it is stated that the "local"

temperature of the air near the surface was controlled with a stream of air controlled by

heating system.

As discussed in Chapter 4, the scheme for the coupling strategy consisted in an

explicit coupling: at each time step, the neutronics model equations (SP1/Diffusion, SP3

and the OF-PCQM) are solved to provide the fission power field to the thermal-mechanical

model. Then, the energy and displacement equations are resolved with the estimated

power. Before the next time step, the neutronics mesh is expanded following the calculated

displacement field from the thermal-mechanics module. Then, the Oralloy density field is

updated to verify the mass conservation in the deformable mesh. In the OF-PCQM the

precursors contributions were not taken into account since they can be neglected during

the transient, contrary to the SP3, which automatically includes them in the equations.

As it was explained in Chapter 4, the Quasi-Static Method requires two time steps: a

larger one for the neutron flux shape equations 3.66 and a smaller one for the amplitude
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equations 3.39a and 3.39b. In our calculations for Godiva, the amplitude time step was

set to 0.5 µs and as discussed in previous chapters it is the same time step used in the

other solvers, such as the solid mechanics solver, as shown in Figure 5.2. For the neutron

flux shape equations, different uniform and non-uniform time steps were used and it will

be discussed in this section. On the contrary for the SP3 model one unique time step was

used and set to 0.5 µs as for the thermal-mechanical model.

For modeling the Godiva experiments it is necessary to accurately take into account

the feedback effects of the system. Therefore, after density and temperature changes,

the neutron macroscopic cross sections have to be updated according to the new density

and temperature fields. On-the-fly Doppler broadening routines and S(α, β) interpolation

are available in Serpent. However, the hard neutron spectrum (no moderator) and the lack

of U-238 resonances due to the highly enriched Oralloy fuel reduce significantly this effect

in Godiva. Therefore, cross sections were updated only by the density (ρk) changes in the

domain and Doppler effects can be neglected.

Figure 5.2 – Time Step Scheme.

From the works of Patricot [47] and Prince [108] about the Quasi-Static Method, it

can be seen that, during the flux amplitude iterations, the point kinetic parameters used

in these equations have to be updated following the changes of the system properties

(density and temperature). This task is straightforward in a deterministic solver, where

the cross sections can be immediately updated at each energy group and then point kinetic

parameters (equations 3.62) of the amplitude equations can be recalculated considering

an interpolated flux. Along these lines, Prince and Ragusa [108] have developed a QSM

approach for deterministic methods with temperature feedback using an iterative Improved

Quasi-Static Method (IQM). In addition, their iterative IQM formulation has an important

advantage which is that the flux shape can be interpolated during the flux amplitude

iterations to increase the accuracy and then reduce the number of flux shape calculations.

Unfortunately, the same strategy can not be straightforward implemented in a Quasi-
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Static Method with a Monte Carlo code. For example, the update of the point kinetic

parameters of the amplitude equations would require saving and processing a large amount

of information. This is impractical from two points of view: first, the memory requirement

increases proportionally to the amount of neutrons sampled, and secondly, the time to

process this information is equivalent to re-running a Monte Carlo flux shape time step.

Indeed, recalculating the integrals 3.34b to 3.34f in Monte Carlo would demand access to

the continuum cross sections ENDF/B-VII (managed by Serpent). It would also require the

storage of all particles with the energy and angular dependencies included. If all neutron

particles are stored the time to sum particle by particle with the updated continuum

cross section would take as long as the Monte Carlo running time, let alone the memory

consumption that would be required.

Moreover, beside these problems the IQM approach would imply jumping back and

forth between non-contiguous time steps (recall that many amplitude steps will exist be-

tween two shape calculations) which OpenFOAM is not meant for. Implementing the close

loop required by the Improved Quasi-Static Method method for the amplitude iterations

between two flux shape calculations will then be a complex task for OpenFOAM, which has

been developed to run sequentially using an unique time step. Therefore, jumping forth

and back between shape time steps would be expensive from a memory point of view and

complex to implement (all discretizations should be set to the initial state at the beginning

of the shape time step including thermal expansion, which should be reverted).

Based on these observations, it was concluded that while the IQM can definitely in-

crease the accuracy and speed of the Quasi-Static Method for deterministic codes, its

implementation in OpenFOAM for the Monte Carlo Quasi-Static Method using Serpent is

not practical. As discussed in Chapter 4 an alternative method has been explored here.

It is interesting to note that very recently Kooreman and Griesheimer [109] have pro-

posed an alternative method to update these coefficients that could be implemented in a

Monte Carlo based Quasi-Static Method. In their work, a spatially dependant tempera-

ture feedback coefficient was calculated during the shape calculation. Then, the system

reactivity was updated during amplitude iterations to take into account the temperature

feedback. This approach is very interesting but has some drawbacks when used for com-

plex systems as those found in criticality accidents. Indeed, implementing this approach

would require many different coefficients to be determined to be able to take into account
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temperature, density, thermal expansion and, eventually, precursors transport (liquid fuel

in the Section 5.2) effects at eventually different positions of the system. This was judged

not optimal.

In this work, an alternative more general approach was therefore taken. This approach

is based on storing at the end of the flux shape calculation a reduced number of key

neutronics variables that allow later to extrapolate during the amplitude iterations all the

necessary point kinetic parameters. The stored variables are the reaction rates and the

neutron fluxes. Then, while the amplitude equations were being solved, density feedback

(and any other feedback) can be implemented by modifying the reaction rates and neutron

current fields saved during the shape calculation according to the change of the density

ρk(t) = ρ(t)/ρ0. For example, the multiplication factor is calculated as:

k(t) =

∫
νΣf (~r) φ(~r) ρmk (~r, t) dV∫

Σa(~r) φ(~r) ρmk (~r, t) dV +
∫
∇ ·
(
~J(~r) ρnk (~r, t)

)
dV

(5.6)

where m and n are set to 1.5 and 0 respectively. Similarly, the other integrals for the

amplitude parameters are updated (equations 3.62). In the cases studied in this work

the Doppler effect was not important. But, if needed, the reaction rates tallies can be

calculated at two different (but close) temperatures in the same shape calculation and

interpolation similar to the one applied for the SPN method in equation 4.18 could be

applied, for example.

As we will see, this more general method provides sufficient accuracy although, contrary

to the Quasi-Static Method for deterministic codes, it does not allow to extrapolate the flux

shape during the amplitude iteration. Other alternative methods to perform the update of

the amplitude equations by extrapolating the information obtained in the previous shape

calculation could be considered (such as hybrid approaches) but were not implemented and

they will be left for future improvements.

5.1.2 Statistical Tolerance

For our analysis we have chosen the Godiva experiment corresponding to the 29.5 µs

burst. According to the LANL Godiva report [8] the super-prompt reactivity of this partic-

ular burst experiment was ∼ 3.3 cents (¢). Considering a delayed neutron fraction of ∼ 640

pcm, this reactivity corresponds to ∼ 21 pcm over prompt critical. As a consequence, accu-
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rate prediction of the transient requires very small errors on the estimation of the system

reactivity: an error of 1 pcm already introduces ∼ 5% of fluctuation.

We can see from Figure 5.3 that, setting 200000 neutron histories per batch, we obtained

in our Serpent simulations standard deviations (i.e. 65%) of 4 pcm, 2 pcm and 1 pcm

for 2500 batches, 7500 batches and 17500 batches respectively. This means that 3.5 × 109

particles are required in only one shape time step if we want to obtain an standard deviation

(σ) of 1 pcm.

(A)

(B)

Figure 5.3 – Monte Carlo convergence error vs batches for : (A) Initial reactivity and
(B) Standard Deviation.

In Figures 5.4(A) and 5.4(B) power and reactivity versus time are shown compared

to the LANL model. At the beginning of the transient, an accurate estimation of the

reactivity mean value is needed in order to have a good normalization of the fission source
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and to avoid systematic errors or biases afterwards. For this reason, the batches were set

to 25000 for the initial shape calculation.

Then, to test to what degree the uncertainties arising from the statistical error of the

Monte Carlo method affects the simulation, a comparison between 2500 and 7500 batches

was done. The calculations were performed without updating the reactivity (and the

other parameters) inside the flux shape time step at each amplitude time step (i.e. the

resolution of the amplitude equations). As we can see in Figure 5.4(B) a small variation

in the reactivity values can have indeed a significant impact in the predicted burst power

as shown in Figure 5.4(A).

(A)

(B)

Figure 5.4 – (A) Power and (B) Reactivity as a function of time for 2500 (blue line) and
7500 (red line) batches with no reactivity extrapolation.

As expected the best agreement on the burst parameters (peak and time) is obtained
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for the 7500 batches simulation. Nevertheless, the 2500 batches simulation still provides a

good approximation for the transient. While the reactivity for the simulation with 2500

batches has a larger dispersion as shown in Figure 5.4(B), one can conclude that if the mean

value is close to the experiment the reactivity fluctuations will be smoothed by performing

sufficient Monte Carlo flux shape calculations. In other words, one could expect that a

higher reactivity uncertainty can be compensated by performing more often the flux shape

calculations, i.e. an optimal value for the number of batches should be chosen together

with the size of the shape time step.

5.1.3 Update of the Point Kinetic parameters of the Flux Amplitude

Equations

So far, results are good and everything suggests that improving the results can be

achieved by increasing the accuracy of the Monte Carlo statistics, i.e., more neutron histo-

ries, or increasing the frequency of the flux shape calculations. Still, during the transient

the neutron flux shape does not change quick enough to justify this unnecessary consump-

tion of resources that Monte Carlo represents. At least, not during the plateau at the

beginning and the end of the transient.

In an effort to reduce the amount of flux shape time steps, the point kinetic parameters

of the amplitude equations were updated during the amplitude iterations using the pro-

posed extrapolation method illustrated by equation 5.6 for the reactivity. This operation

demands more memory usage since reaction rates, neutron density and neutron current

fields have to be saved at the end of the flux shape calculation and then used to modify

the parameters according to the density change. Once again, the absence of resonances

(93% U-235) and the hard spectrum makes the Doppler effect negligible for this transient.

In Figures 5.5(A) and 5.5(B) the predicted power and reactivity are presented either

with or without the proposed extrapolation method for a very large (100 µs) fixed time step

in the shape calculations. As can be seen in the figures, if the point kinetics parameters are

not extrapolated (i.e. not updated) a large overestimation of the power peak is obtained. A

much better, not yet accurate, power evolution is obtained with the proposed extrapolation

methodology although the shape time steps is very large (100 µs) thus making only six flux

shape calculations.
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(A)

(B)

Figure 5.5 – (A) Power and (B) reactivity distribution with and without extrapolation,
and uniform time stepping.

5.1.4 OpenFoam predictor-corrector Quasi-statics method (OF-PCQM)

Combining the results of the two previous sections the simulation was further improved

by using an adaptive time step for the shape calculations together with the extrapolation

of the point kinetics parameters during the amplitude iterations. Results were highly

improved as it can be seen in Figure 5.6(A) for the non-uniform prediction. Note that the

time steps have been refined around the burst peak. Indeed, the flux shape was recalculated

at 0, 100, 185, 200, 210, 220, 240, 270 and 300 µs. After 300 µs some flux shape calculations

were made but they can be neglected and the same result will be obtained.

The change of the flux shape in the peak of the burst is significant and, therefore, there
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is an impact on the reactivity, which can not be corrected solely by the density. This is

observed in Figure 5.6(B), which is now similar to recalculating as frequent as the case

where the parameters did not were recalculated. From now on we will refer to the Monte

Carlo Quasi-Static Method developed here as Monte Carlo QS or OF-PCQM (OpenFOAM

Predictor-Corrector Quasi-statics method).

(A)

(B)

Figure 5.6 – (A) Power and (B) reactivity distribution with uniform and non-uniform
time stepping.

Finally, Figure 5.7 shows the 2D power, displacement, temperature and relative density

(ρk) fields at the crosscut at the center of the sphere near the power peak time. As can

be seen, the system has spherical symmetry and thus it could be modeled in 1D. This was

not done since one of the objectives of the present work was to demonstrate the flexibility

of the developed tool.
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(A) (B)

(C) (D)

Figure 5.7 – (A) Power, (B) Displacement, (C) Temperature and (D) Relative Density
fields for the OF-PCQM with non-uniform time stepping at t = 230µs.

5.1.5 Point Kinetics

In this section, we will compare the results obtained from the OF-PCQM with those

of the classic Point Kinetics (PK) model. As a reminder the PK model assumes that

the neutron flux of the system can be approximated by the fundamental mode and that

the fundamental model does not change during the transient, i.e. only flux amplitude is

allowed to change. The goal of this comparison is to show the importance of the flux shape

change during the transient.

The OF-PCQM model developed here can be used to predict the results of a PK model

by making three modifications: (i) only one flux shape is allowed at the beginning of the

transient, (ii) the point kinetics parameters of the amplitude equations are not updated

(i.e.extrapolated) during the transient and (iii) the point kinetics parameters are calculated

using the adjoint of the fundamental model flux as weight function.
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Table 5.4 shows the Serpent-OpenFOAM unweighted (i.e. W0

(
~r, ~Ω, E

)
= 1) and

adjoint-weighted (via Iteration Fission Probability) point kinetic parameters calculated

in this work and compared them to the TRIPOLI 4 parameters using the Iteration Fission

Probability method by Truchet et al. [110] for the initial Godiva sphere. As can be seen,

a good agreement exist between Serpent 2 and TRIPOLI. It is also important to remark

that the difference between the unweighted and adjoint-weighted is significant.

Table 5.4 – Unweighted and Adjoint-weighted Serpent’s kinetic parameters comparison
with Truchet et al. [110] calculations with TRIPOLI4 using the Iterated Fission Probability
method.

Unweighted
(Serpent 2)

Unweighted
(Truchet et al.)

Adjoint-
Weighted
(Serpent 2)

Adjoint-
Weighted

(Truchet et al.)
Generation Time

Λ (10−9s)
6.27 6.25 5.71 5.69

Delayed Fraction
β (pcm)

640 641 650 649

In Figure 5.8(A) the power variation predicted by the PK models (using the unweighted

and adjoint-weighted point kinetics parameters from Table 5.4) during the transient is

compared to the OF-PCQM showing a clear difference between recalculating the shape or

not. It is worth that the calculations for the PK models were done with the OF-PCQM

using the three approximations explained at the beginning of this section. It is also very

interesting to note that the differences between the reactivities predicted by these models

are more subtle as shown in Figure 5.8(B). Moreover the differences observed in the initial

reactivities of these three models is due to the initial normalization 5.5 required to obtain

the system period of 29.5 µs. A smaller generation time Λ implies then a smaller reactivity.

Note that both, the unweighted and adjoint-weighted power transients, are very similar.

The unweighted one is slightly higher but still far from the experimental peak value. The

main difference relies in that the unity weight adds all contributions to the parameters

uniformly whereas the adjoint case uses the importance function, thus, giving more weight

to the sphere center. On the other hand, as can be seen in Figure 5.7(D), in the borders

the Oralloy density (main feedback mechanism) is still close to its initial value but it is

lower at the center of the Godiva sphere.
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(A)

(B)

Figure 5.8 – (A) Power and (B) reactivity distribution with unweighted and adjoint-
weighted parameters in comparison to the OF-PCQM non-uniform time stepping.

5.1.6 Simplified P3

In this section, we present the results for the Godiva transient obtained from the

Simplified P3 model2 developed in Chapter 3. We do not present the results of the SP1

model (i.e. diffusion model) since Godiva is a too small system to be accurate modeled by

it. The Simplified P3 calculations were performed using a 3 energy groups scheme since

it gives a good agreement in comparison to the LANL model although it tends to slightly

overestimate the power. Results of the comparison are shown in Figure 5.9.

2The SP1 steady-state multiplication factor was not better than the SP3 model. For this reason,
transient studies were not performed for the SP1 case. Nonetheless, it should be evaluated if a similar
transient response to SP3 is achieved in spite of the poor prediction in the steady-state keff .
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Figure 5.9 – Simplified P3 Power transient for the Godiva Experiment model.

From the results of Figure 5.9, one can conclude that the Simplified P3 provides an

excellent accuracy while having relatively lower computational cost in comparison to the

OF-PCQM. However, the prediction of the initial state (reactivity) from this method is

far from the accuracy given by Monte Carlo and from the experimental expected radius

to achieve criticality as it can be seen in Table 5.5. In this table, the multiplication factor

calculated with Serpent 2 with JEFF-3.1.1 and ENDF/B-VII for the Godiva benchmark

radius of 8.74 cm and the one used in this work (8.81 cm) are shown. A bias of around

2500 pcm can be observed for the SP3 model with respect to Serpent. For comparison

purposes, the table also reports the multiplication factor obtained by Patricot [47] using

SP3 implemented in CAST3M code. This independent SP3 model uses a 9-groups scheme

condensed with JEFF-3.1.1. Once the effects of the difference on the radius and libraries

has been taken into account, a close agreement between the two Simplified P3 models is

found. This led to think that the SP3 method has some inherent bias when modeling this

type of systems. As already discussed, another challenge of the SP3 method similar to

many other deterministic methods is also the determination of the neutron macroscopic

cross section for very heterogeneous systems.

It is interesting at this point to note that, while using SP3, it was observed that the

number of convergence iterations in a single time step penalized the total simulation time

(as pointed out by Fiorina et al. [97]). In Figure 5.10 we can see that if no acceleration

methods are used the solver needs over 120 iterations per time step. Nonetheless, if the

acceleration methods presented in Section 4.3.1.3.3 are used, the amount of iterations can
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Table 5.5 – Reactivities calculated with Serpent 2 and the 3-group SP3 at initial time
(temperature and density constant) based on ENDF/B-VII compared to calculations per-
formed by Patricot with the code CAST3M with a 9-groups scheme based on JEFF-3.1.1.

Method
SP3

(Results
Patricot)

Monte Carlo
(Serpent 2)

Monte Carlo
(Serpent 2)

Monte Carlo
(Serpent 2)

SP3

(OpenFOAM)

Nuclear Data Library JEFF-3.1.1 ENDF/B-VII ENDF/B-VII
Sphere Radius [cm] 8.74 8.74 8.81

Reactivity (ρ)
with delayed neutrons [pcm]

3515 -364 -15 694 3225

Reactivity (ρ)
without delayed neutrons [pcm]

- -1029 -669 38 2600

be rapidly decreased. For this transient, the Anderson Acceleration method [98] with

m = 10 was used, where m is the amount of previous iterations solutions used to estimate

the next one. Both, Aitken and Anderson Accelerations methods embody no physical

assumptions. They are extrapolations based on the previous tendency of the system. An

effort to use an acceleration that takes into account the physics was done by Fiorina et al.

[111] using a reduced order acceleration.

Figure 5.10 – Acceleration methods tested in the SP3 solver: Aitken method and An-
derson method with m = 2, 5, 10 and 20.

5.1.7 Models Comparison

To complete the analysis, in this section we compare the three previous models: (i)

the Monte Carlo Quasi-Static Method with extrapolation with a non-uniform shape time

stepping, (ii) the Point Kinetics model and (iii) the Simplified P3 against the LANL ex-
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perimental data and the transient Monte Carlo with Serpent Dynamic mode from Aufiero

et al. [37]. Results are presented in Figure 5.11.

It can be seen from the figure that the Point Kinetics model is the least accurate but it is

a fair approximation given its simplicity. Using a feedback coefficient previously calculated,

the PK model could be improved as it is in fact done in the LANL semi-empirical model.

However, this would imply previous knowledge of the system. Then, the Simplified P3 and

the Monte Carlo Quasi-Static Method are in good agreement with LANL and Aufiero et

al. [37].

Figure 5.11 – Godiva Prompt Critical Burst comparison between: LANL Model, LANL
Experimental values, Dynamic MC by Aufiero et al., Point Kinetics, Monte Carlo Quasi-
Static Method and Simplified P3.

One of the objectives of this study case was to evaluate the performance of these

different methods. In Table 5.6 a comparison between the key burst parameters is reported

regarding: the peak power and the energy released in the system. We can see that all of

them are consistent in comparison to the reference LANL model and to the experimental

data.

Table 5.7 shows the computational effort of the SP3 and the Monte Carlo Quasi-Static

Method. First, the 2500 and 7500 batches are less demanding in terms of time and memory

but precision and smoothness is not as good as for the extrapolated case. However, the

latter needs more histories. This is because an smoother distribution in the mesh is needed

to perform mathematical operations on it (such as calculating a flux gradient to estimate
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Table 5.6 – Power Peak and Total Energy deposited in the system for the LANL Model,
Monte Carlo Quasi-Static Method (OF-PCQM), the Simplified P3 and the Dynamic Monte
Carlo (Aufiero et al. [37]).

Power Peak
(x10−1GW)

Energy
(x101kJ)

LANL Model 8.7 10.2
OF-PCQM 8.9 9.5

SP3 8.8 10.9
Dynamic MC 9.0 10.0

the leaks). Moreover, less statistical error on the reactivity avoids biases on the solution.

The Simplified P3 time evolution is similar to the OF-PCQM extrapolation case. The

main issue with this method is the lack of predictability for the reactivity at the beginning

of the transient. In the steady-state the value was more than 3500 pcm off (see [47]) in

comparison to Monte Carlo calculations for the same radius. For this reason, the fission

source had to be normalized at the beginning of the simulation to achieve the desired

reactor period/ initial reactivity. Lastly, in the work by Aufiero et al. [37] the reported

calculation time is 11 hours in an 8 cores Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz for a

total of 2000 time steps (10−3 s). This result is less than what we obtain with Monte Carlo

Quasi-Static Method. It is understandable if we compared the amount of particles needed.

For Aufiero et al. it is 1.25 × 107 particles while in this work is almost 104 times more.

Nevertheless, OF-PCQM demands much less memory and it can be easily implemented

with any Monte Carlo criticality code with an external coupling scheme.

Table 5.7 – Computational Cost for cases calculated in an Intel(R) Xeon(R) Gold 5118
CPU @ 2.30GHz using 24 CPUs.

Case Shape
Steps

Batches per
Shape Step

Histories
per batch

Total Histories
Simulated (x1010)

Computational
Time (hours)

Serpent 2
Memory
(MB)

2500 50 1st 25000,
then 2500

200000 2.95 54 2705

7500 50 1st 25000,
then 7500

200000 7.85 144 2706

Non-Uniform
Extrapol

9 50000 200000 9.00 165 2718

SP3
Every
Step

- - - 15 -

At this point, it is worth mentioning that we have not focused the effort on optimizing

the computational cost of the Monte Carlo Quasi-Static Method and several important im-

provements could be made. The value reported in the table is then a conservative estimate.

If a strategy similar to Aufiero et al. [37] is adopted a reduction on the computational cost
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could be obtained. In Aufiero’s work, the Monte Carlo code does not read the unstructured

mesh to form the geometry, it rather defines a sphere bigger than the initial radius and

assign a zero density to the excess volume. As it expands, the density value is updated

internally from the mesh-based variables on-the-fly in the tracking routine. In this work,

to keep the tool as general as possible, the multi-physics solver geometry is updated via

the unstructured mesh and the Monte Carlo geometry is divided in cells assigned with

individual materials even if it is the same. The time penalisation of this should be studied.

Figure 5.12 displays the mean temperature, reactivity and total thermal expansion

values during the transient. As it can be seen, the SP3 reactivity value is slightly higher

than Monte Carlo during the peak and, therefore, temperature differs about 2.5 K due to

the wider power burst. The sphere expansion follows the same tendency. Initial and final

reactivities are similar.

Finally, Figure 5.13 shows the flux radial shape calculated from the two methods devel-

oped in this work: the Monte Carlo Quasi-Static Method and the SP3. It can be observed

that the SP3 overpredicts the flux value near the borders of the sphere. This illustrates

why the Marshak boundaries conditions should be considered as an approximation. Even

thought the curves are slightly similar, the offset produces an overestimation of the mul-

tiplication factor and without a proper normalization of the fission source the 29.5 µs

transient would not be obtained.

5.1.8 Final Remarks on the Godiva Study Case

A good agreement between the Monte Carlo Quasi-Static Method, the Simplified P3

methods, LANL experimental data, LANL model and Dynamic Monte Carlo was observed.

It was found that the Monte Carlo Quasi-Static Method is accurate enough for a fast

transient even using its adiabatic approximation. Ott concludes in [42] that the adiabatic

approximation predicts well enough the reactivity value but there is up to a 30% error on

the flux shape. From the results presented in this section, we can conclude that it is correct

to state that when solving the eigenvalue problem of equation 3.66 the real problem is not

being solved but a similar one is and thus an error may be introduced. Moreover, this

analysis is true for our system but the overall error is very small. Indeed, Ott used in his

analysis a system with a 90$/s reactivity insertion. In the Godiva Experiment the prompt

reactivity is just a few cents, so, even if this introduces an error, it has a negligible impact

142 Chapter 5 Juan Antonio Blanco



Neutronic, thermohydraulic and thermomechanical coupling for the modeling of nuclear systems

(A)

(B)

Figure 5.12 – (A) Temperature and Thermal Expansion, and (B) Reactivity for the
Monte Carlo Quasi-Static Method and Simplified P3.

on the flux shape. Moreover, we have seen from the comparison with SP3 in Figure 5.13

that the shapes obtained with both methods are very similar.

The main advantage of the OF-PCQM lies in its simplicity. If no extrapolation is

used (Figure 5.4(A)), any Monte Carlo code can be coupled externally with a thermal-

hydraulics/thermal-mechanics code given that the power distribution and amplitude pa-

rameters integrals from equation 3.62 can be tallied and information on the density and

temperature can be passed to the Monte Carlo code. This is the case of Serpent 2, thus

resulting in a less invasive implementation. If mesh-wise distributions can be saved, then,

shape time steps can be enlarged (less shape recalculations) by implementing the param-

eters extrapolation. In this work, it was done internally because it is faster: read/write of
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Figure 5.13 – Normalized flux comparison at the peak between Monte Carlo Quasi-Static
Method and Simplified P3.

external files is avoided and search algorithms are quicker.

Another advantage of the proposed method is that a Monte Carlo provides flexibility in

geometry capabilities modeling. In particular, Serpent is adapted to read the unstructured

mesh and fields used by OpenFOAM. On the other hand, the Quasi-Static Method permits

different time scales to be modeled without wasting computational effort in recalculating

the full transport equation at every step. Then, the ratio between both time steps (shape

and amplitude) can be adjusted. An adaptive time stepping can be implemented as in

the code QX1 developed by Argonne National Laboratory [112]. Time control routines

based on the QX1 code were implemented in OpenFOAM and discussed in Appendix B

but due to the lack of time it was not tested in any of the cases presented in this work. Its

adaptive capabilities are available but still to be tested. Finally, when comparing the OF-

PCQM against the Dynamic Monte Carlo, one has to take into account that the memory

consumption of the OF-PCQM is much less than Monte Carlo in dynamic mode. This is

explained by the fact that criticality calculations during the shape steps are independent

between each other and very few parameters are saved and the rest can be freed from

memory.

Concerning the SP3 method, it failed to accurately predict initial reactivity. However,

once the fission source was normalized to the desired reactivity insertion, this method is

capable of following the transient and has a lower computational cost. Note that the SPN

method reduces the amount of equations from (N+1)2 in PN to (2N+1)/2 in SPN. For this
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reason, it is considered a fast deterministic method. In this work, an Anderson acceleration

[98] was used to improve the convergence rate of the fixed-point iterations. As we seen, the

computational cost of SP3 is significantly lower than the OF-PCQM. However, the first

has been optimized by using an acceleration technique. As earlier discussed, there is a lot

of room for decreasing the computational cost of the OF-PCQM.

As a final remark, the initial state was considered as the fundamental mode at a power

of 1 MW. It does not affect the results because the neutron generation time is very short

( 10−9s) and when the feedback begins to affect the transient many generations have already

passed (time step of 0.5µs). This is also why the adiabatic method works fine: there is

enough time for the approximate fundamental mode of the flux to be established with the

system temperature and density at that time. In other words, the fundamental mode is

established faster than the systems changes.

5.2 Liquid Homogeneous Medium: Molten Salt Cavity Bench-

mark

In this section we will present the results obtained for the second study case: the Molten

Salt Cavity Benchmark. This benchmark was designed [12] to study the performance of the

different couplings of a multi-physics model. It is based on a simple 2D system containing

a molten fuel salt with strong coupling between neutronics and thermal-hydraulics phe-

nomena. For our purposes, this case will let us study the performance of the multi-physics

models with respect to other phenomena such as the precursors convection, laminar flow,

buoyancy effects and forced convection to mention the most important ones. Then, the

Molten Salt Cavity Benchmark is divided in various phases. A summary on the conditions

for each step in each phase is presented in Table 5.8.

In the first part of this section, the steady-state results of Phase 0 and Phase 1 of

the benchmark corresponding to the single physics (steps 0.1, 0.2 and 0.3) and the coupled

problem (steps 1.1, 1.3, 1.5 and 1.7) for a thermal power of 1 GW and a top wall velocity

of 0 ms−1 and 0.5 ms−1 are presented. The second part of this section is devoted to the

transient analysis due to an oscillatory volumetric heat exchange coefficient (Phase 2).

Considering the system as a black box, the gain and phase change from the heat exchange

to the power was analyzed.
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Table 5.8 – CNRS Molten Salt Cavity Benchmark summary of the steps involved
[12][113][14].

Phase Step Velocity Temperature Power/Fission Rate Objective

0
0.1 Top-wall forced convection

Ux = 0.5 m s−1 N/A N/A Hydraulics Stand-Alone
Calculations

0.2 Null Velocity Field
~v = ~0

Uniform 900 K Calculated
Normalized to 1GW

Neutronics Stand-Alone
Calculations

0.3 Fixed from
Step 0.1

Calculated
hsink = 106 WK−1m−3

Fixed from
Step 0.2

Temperature Stand-Alone
Calculations

1

1.1 Fixed from
Step 0.1

Uniform 900 K Calculated
Normalized to 1GW

Neutronics-Circulating Fuel
Coupling (Precursors Transport)

1.2 Fixed from
Step 0.1

Calculated
hsink = 106 WK−1m−3

Calculated
Normalized to 1GW

Thermal-hydraulics-
Neutronics Coupling
(Precursors transport

+ density reactivity feedback)

1.3
Calculated without
Forced Convection

Ux = 0 m s−1

Calculated
hsink = 106 WK−1m−3

Calculated
Normalized to 1 GW

Full-coupling:
Precursors Transport
Density Feedback

Buoyancy

1.4
Calculated with

Forced Convection
Ux = 0.5 m s−1

Calculated
hsink = 106 WK−1m−3

Calculated
Normalized to 1 GW

Full-coupling

2 2.1 Calculated
Ux = 0.5 m s−1

Calculated
Oscillating Heat Sink

h(t) = hsink(1 + sin(2πt/T ))

hsink = 106 WK−1m−3

T = 1.25, 2.5, 5, 10, 20, 40, 80s

Calculated Full-coupling
Step 1.4 is the Initial Condition

Both the steady and the transient calculations were performed using the SP1/SP3 and

Serpent-OpenFOAM coupled models such as the OF-PCQM presented in the previous

section. The results obtained for the cavity benchmark with SP1/SP3 were included in the

work published by Tiberga et al. [14], obtaining good agreement among the partners of

the project. In the cited work the results from members of European project SAMOFAR

were compared. In addition, the SP3 model was also developed in Python using FiPy [114],

which is a Finite Volume Method PDE solver library in Python developed by the National

Institute of Standards and Technology (NIST) in the USA.

The OpenFOAM models used for the results of this section have a 200×200 structured

mesh (Figure 5.14) refined progressively towards the walls while the FiPy model uses a

115x115 structured mesh regular inside the cavity and refined near the walls.

Material and geometrical data was obtained from [12][113] in agreement with

Tiberga et al. [14]. The salt composition is presented in Table 5.9 and its properties

in Table 5.10. JEFF-3.1.1 nuclear data library was used for the Monte Carlo calculations.

For the multi-group SP3 calculations a 6 energy-groups macroscopic cross sections were

taken from the cited bibliography that were condensed from JEFF-3.1 with energy cuts at

7.485× 10−4, 5.531× 10−3, 2.479× 10−2, 4.979× 10−1 and 2.231 MeV.

Concerning the boundary conditions, vacuum Boundary Conditions were used for

the SP1/SP3 and Monte Carlo models. The system walls were considered as adiabatic, i.e.
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Figure 5.14 – Quarter of the 200x200 Structured Mesh for the lid-driven cavity.

∇T · ~n = ~0 with no-slip velocity conditions (~v = 0) at the walls. The upper wall velocity

was set to either 0 m s−1 or 0.5 m s−1 depending on the benchmark step (see Table 5.8).

Note that in this system the delayed neutron precursors can not leave the geometry, i.e.,

∇Cd · ~n = ~0 and thus we verify the hypothesis of the neutronics models.

Table 5.9 – LiF-BeF2-UF4 composition.

Isotope Li-6 Li-7 Be-9 F-19 U-235
Atomic Fraction [%] 2.11488 26.0836 14.0992 56.3969 1.30545

Table 5.10 – Salt properties.

Density (ρ) 2.0 g cm−3

Kinematic Viscosity (ν) 0.025 m2s−1

Volumetric Heat Capacity (C) 6.15x106 J K−1m−3

Prandtl Number (Pr) 3.075x105

Schmidt Number (Sc) 2.0x108

Thermal Expansion Coefficient (α) 2.0x10−4 K−1

5.2.1 Steady-State

Single Physics

As explained in Section 2.2, Step 0.1 consisted in the fluid mechanics stand-alone

calculations. Figures 5.15(A), 5.15(B) and 5.15(C) show the speed, x-Velocity and y-

Velocity inside the 2D cavity with a forced convection set by a 0.5 ms−1 imposed at the

top wall. In Figures 5.15(D) and 5.15(E) a good agreement between FiPy and OpenFOAM

is observed.
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(A)

(B) (C)

(D) (E)

Figure 5.15 – Step 0.1: Velocity (A) Magnitude, (B) Y-component, (C) X-component,
(D) Y-component along AA’ and (E) X-component along BB’ calculated in FiPy and
OpenFOAM.

In Step 0.2 the neutronics stand-alone calculations for the SP1, SP3 and Monte Carlo

were compared. The fission rate distributions in Figure 5.16(B) show excellent consistency

among all models. The SP1 model is not plotted since it overlaps with the SP3-OpenFOAM

model. However, the reactivity obtained is reported in Table 5.11 along with the other
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models also demonstrating an excellent agreement. One can note that as the system

is relatively large, SP1 provides very good results. Difference between the SP3 model

implemented in FiPy compared to the SP3-OpenFOAM could be due to the mesh size and

implementation of the Marshak Boundary Conditions (equations 3.81).

(A) (B)

Figure 5.16 – Step 0.2: Fission Rate (A) inside the cavity and (B) along AA’ for SP3 (in
FiPy and OpenFOAM) and Serpent-OpenFOAM internal coupling models.

Table 5.11 – Step 0.2: Reactivity values comparison for the neutronics models (SP3 in
FiPy, SP1 and SP3 in OpenFOAM and Serpent-OpenFOAM internal coupling).

Model Reactivity ρ [pcm]
Serpent-OpenFOAM 402
SP1-OpenFOAM 411
SP3-OpenFOAM 354

SP3-FiPy 405

Step 0.3 is the last of the single physics calculations. It can be observed from Figures

5.17(A) and 5.17(B) the results from the different models practically overlaps each other.

There is less than 5 K temperature difference between the models. When the advection

of enthalpy due to the circulating fuel is not present, the temperature distribution should

resemble the power distribution proportional to the fission rate distribution from Figure

5.16. However, the advective phenomena distorts the temperature field.

Coupled Physics

The first coupled scenario step 1.1 assess the changes in the criticality calculations

considering the fuel motion set by the velocity field from step 0.1. The circulating fuel

transports the precursors away from where the fission took place and distorts the distribu-

tion. Then, the delayed neutrons are born in a position different from where the precursor
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(A) (B)

(C)

Figure 5.17 – Step 0.3: Temperature (A) along AA’, (B) along BB’ and (C) inside
the cavity for SP3 (in FiPy and OpenFOAM) and Serpent-OpenFOAM internal coupling
models.

was born, thus, affecting the reactivity of the system. This results in a lower reactivity

as observed in step 0.2 once again in Table 5.12. It seems that, on average, neutrons are

taken away from the center to borders, this is, from zones with bigger importance to zones

with lower importance.

Table 5.12 – Step 1.1: Reactivity values comparison for the neutronics models (SP3 in
FiPy, SP1 and SP3 in OpenFOAM and Serpent-OpenFOAM internal coupling) against
neutronics stand-alone results from Step 0.2.

Reactivity ρ [pcm]
Model Step 0.2 Step 1.1 Difference

Serpent-OpenFOAM 402 338 -65
Diffusion/SP1-OpenFOAM 411 349 -63

SP3-OpenFOAM 354 291 -63
SP3-FiPy 405 345 -60
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Once again, the resemblance between models for the delayed neutron source in Figures

5.18(A) and 5.18(B) is good. Nonetheless, the SP3-OpenFOAM reactivity is once again

60 pcm smaller than the SP3-FiPy. However, the cause of this difference seems to be

systematic as the change of reactivity from step 0.2 to step 1.1 is similar for all models. This

issue is not observed in the FiPy model, pointing to a possible implementation difference

of the Marshak Boundary Conditions in OpenFOAM.

(A) (B)

(C)

Figure 5.18 – Step 1.1: Delayed Neutron Source (A) along AA’, (B) along BB’ and
(C) inside the cavity for SP3 (in FiPy and OpenFOAM) and Serpent-OpenFOAM internal
coupling models.

In the next step the neutronics - thermal-hydraulics coupling was tested (Step 1.2).

In addition to the circulating fuel, density feedback was considered due to the power

generation in the cavity. Heat is evacuated through a volumetric sink with a convection

coefficient (hsink) as explained before. Temperature and fission rate difference over the line
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AA’ (crosscut showed in Figure 2.3(A)) respect to Step 0.2 ([Σfφ]step1.2 − [Σfφ]step0.2) can

be observed in Figure 5.19. The fission rate in this step is shifted to the right in comparison

to step 0.2, where the fuel is at lower temperature and, therefore, a higher density. There

is a very good agreement between all models.

The fission rate difference for the Serpent-OpenFOAM coupling has a noise around the

mean value due to the stochastic nature of this method and the small mesh size (∼ 1cm).

The tallies volumes (i.e. each cell) are small and the amount of scores arriving to each

cell would need to be increased in order to reduce the noise in the distribution or the cell

size increased with the accuracy cost it implies. However, Figures 5.19(D) and 5.19(F) are

the difference calculated between two stochastic distributions and since the sampling is

random this function is not necessarily smooth, nevertheless, the fission distribution alone

(and therefore the power) is smooth enough as we can see in Figure 5.16.

The reactivity for the Step 1.2 is shown in Table 5.13. The SP3-OpenFOAM bias of

∼60 pcm is still consistent to previous steps. On the other hand, the difference between

steps 1.2 and 1.1 are consistent among all methods.

Table 5.13 – Step 1.2: Reactivity values comparison for the neutronics models (SP3 in
FiPy, SP1 and SP3 in OpenFOAM and Serpent-OpenFOAM internal coupling) against
neutronics in presence of a circulating fuel from Step 1.1.

Reactivity ρ [pcm]
Model Step 1.1 Step 1.2 Difference

Serpent-OpenFOAM 338 -803 -1141
Diffusion/SP1-OpenFOAM 349 -803 -1152

SP3-OpenFOAM 291 -862 -1153
SP3-FiPy 345 -795 -1140

Step 1.3 tests the full coupling without forced convection, i.e. the velocity at the top

wall is zero (Ux = 0). Buoyancy effects observed in this step of the benchmark were cal-

culated via the Boussinesq approximation. In Figures 5.20 and 5.21, the velocity, temper-

ature and delayed neutron precursors concentration show a very good agreement between

all models. Table 5.14 shows similar reactivity variations between them. At this point,

we can conclude that the coupling between neutronics and thermal-hydraulics phenomena

works well.

Finally, results for the step 1.4 are presented in Figure 5.22: the temperature, velocity,

fission rate and precursors fields are shown. There, the combined effect of precursors

transport, buoyancy, forced convection, and density feedback effects perturb the system.
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(A) (B)

(C) (D)

(E) (F)

Figure 5.19 – Step 1.2: Temperature (A) inside the cavity, (C) along AA’ and (E) along
BB’. Fission rate difference respect to Step 0.2 ([Σfφ]step1.2 − [Σfφ]step0.2) (B) inside the
cavity, (D) along AA’ and (F) along BB’ for SP3 (in FiPy and OpenFOAM) and Serpent-
OpenFOAM internal coupling models.
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(A) (B)

(C) (D)

(E) (F)

Figure 5.20 – Step 1.3: Velocity (A) Magnitude, (C) Y-component, (E) X-component,
(D) Y-component along AA’, (D) Y-component along BB’ and protect(D) X-component
along AA’ calculated in FiPy and OpenFOAM for SP3 (in FiPy and OpenFOAM) and
Serpent-OpenFOAM internal coupling models.
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(A) (B)

(C) (D)

(E) (F)

Figure 5.21 – Step 1.3: Temperature (A) inside the cavity, (C) along AA’ and (E) along
BB’. Delayed neutron source (B) inside the cavity, (D) along AA’ and (F) along BB’ for
SP3 (in FiPy and OpenFOAM) and Serpent-OpenFOAM internal coupling models.
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Table 5.14 – Step 1.3: Reactivity values comparison for the neutronics models (SP3 in
FiPy, SP1 and SP3 in OpenFOAM and Serpent-OpenFOAM internal coupling) against
neutronics calculations from Step 0.2.

Reactivity ρ [pcm]
Model Step 0.2 Step 1.3 Difference

Serpent-OpenFOAM 402 -800 -1202
Diffusion/SP1-OpenFOAM 411 -809 -1220

SP3-OpenFOAM 354 -867 -1221
SP3-FiPy 405 -803 -1208

The curves along the AA’ and BB’ are not shown here but all methods coincides as in

previous steps. They are shown together with the results from the other three models in

Appendix C.

From the velocity fields the effects of the forced convection given by the 0.5 m s−1

speed set at the top and the buoyancy effects combined effects can be observed. Now, the

advection impacts directly on the temperature distribution. Even more important is its

effect on the precursors field. Normally, in solid fuels, where there is no fuel circulation,

the precursors concentration is proportional to the fission source. In this case, we observed

from the bottom figures the advection effect on the precursors concentration. Depending

on the family half-life the effects become more or less important, the higher the half-life

the more time before the delayed neutron is emitted and, therefore, the precursors are

advected further from its source.

Another important result is the coupling impact on the reactivity. From Table 5.15

we can see ∼ −1200 pcm worth change in the reactivity between the neutronics stand-

alone calculations (so no fuel convection and constant temperature) and the full coupling

situation. Also, the comparison between neutronics models shows very similar results for

the three methods. SP3-OpenFOAM has the biggest difference as observed before (∼60

pcm).

Table 5.15 – Step 1.4: Reactivity values comparison for the neutronics models (SP3 in
FiPy, SP1 and SP3 in OpenFOAM and Serpent-OpenFOAM internal coupling) against
neutronics calculations from Step 0.2.

Reactivity ρ [pcm]
Model Step 0.2 Step 1.4 Difference

Serpent-OpenFOAM 402 -798 -1200
Diffusion/SP1-OpenFOAM 411 -794 -1205

SP3-OpenFOAM 354 -855 -1205
SP3-FiPy 405 -787 -1192
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(A) (B)

(C) (D)

(E) (F)

Figure 5.22 – Step 1.4: (A) Fission Rate, (B) Velocity Magnitude, (C) Temperature
and (D) - (F) Precursors fields at Steady-State for SP3 (in FiPy and OpenFOAM) and
Serpent-OpenFOAM internal coupling models.
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5.2.2 Transient

As discussed in Chapter 2 the goal of the transient calculations of the Molten Salt

Cavity Benchmark was to determine the transfer function of the tool. Then, by comparing

the transfer functions of different tools one can evaluate if the time responses of the tools

are equivalent for small perturbations and thus if the coupling are equivalent.

The transient calculations for Phase 2 (Figure 5.23) were performed by setting the heat

exchange coefficient to hsink(t) = hsink,0(1 + Asin(2πt/Tp)) where A is the amplitude of the

perturbation and Tp its period. In our analysis, A was set to 0.1 (i.e. 10% change) in order

to minimize the effects on the non-linear phenomena and be able to use this linear analysis

tool. The value of Tp was set to 1.25s, 2.5s, 5s, 10s, 20s, 40s and 80s. The gain and the

phase shift were calculated as Gain = 10(Pmax/Pref − 1) and θ = 360◦∆t/Tp, where Pmax is

the maximum power, Pref is 1 GW and ∆t = tPmax− thmax is the difference between the peak

time of the heat exchange coefficient and the peak time of the power.

Figure 5.23 – Scheme of the integral power, heat exchange and mean temperature gain
transient evolution.

In Figure 5.24, both gain and phase change are presented. As we can see, for long

periods the transient is slow, i.e., the system has time to follow the perturbation, and, as

expected, gain is close to unity and there is little phase change. This means that a 10%

change in the heat exchange coefficient will translate into a 10% change in the power. On

the contrary, for smaller periods (higher frequencies) the system has little time to adjust.
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Therefore, a perturbation at one time will impact later in the transient. For example,

precursors with long half-life will emit delayed neutrons at a time where the perturbation

has once again changed, with no time to reach the equilibrium. In addition, as expected,

as the frequency of the perturbation increases the system becomes less sensitive, thus, any

periodic perturbation (alternating signs, i.e., ±10 %) will compensate and the system will

remain close to the 1 GW mean value.

As can be seen in Figure 5.24 the results of the three neutronics models agree very well.

Even though the Monte Carlo adiabatic Quasi-Static Method predictions are systematically

slightly below the other two models results. Further studies in the numerical convergence of

all the methods should be done to verify is this deviation can be attributed to the Monte

Carlo adiabatic Quasi-Static Method model and what the origin of this error is. For

example, one source of error in the Quasi-Static Method is that the adiabatic approach

implemented by equation 3.67 considers that the delayed neutron source is constantly

in equilibrium with the fission source when calculating the flux shape function. This

assumption can be approximately true when the period is large and the system has time to

adjust but it introduces more error as long as the period becomes shorter. As we discussed

in Chapter 3 this approximation can be easily removed. Also, since the adiabatic method

supposes that both the time derivative of the flux shape and the flux amplitude can be

neglected thus introducing a small error. The flux shape does not change much though

but the fluctuations in the precursors’ distribution shape has an impact in the kinetic

parameters’ calculations3. It is important to highlight that the agreement between the

three methods is a numerical confirmation that the terms from Section 3.1.2.3 are indeed

either zero or at least negligible.

As for performance, diffusion and SP3 methods were calculated with OpenFOAM do-

main decomposition parallel strategy with 20 processors. For the Serpent-based cases in

OpenFOAM 1 processor were used for temperature and velocity resolution and data man-

agement and 24 processors for Monte Carlo with 10000 batches with 20000 histories each.

20 uniformly distributed flux shape steps were performed per cycle (each whole period

time) for the Quasi-Static Method. In Table 5.16, the calculation time per cycle is shown.

3The point kinetics’ parameters update inside the shape time step (as with the density in the Godiva
model) is needed. The density feedback update inside the shape time step (as for Godiva) was considered
but it was not enough to give a smooth reactivity like in the Godiva Experiment. In Appendix C, the
transient evolution of the integral power, reactivity and mean temperature are presented showing this
behaviour.
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(A)

(B)

Figure 5.24 – (A) Gain and (B) Phase change vs frequency for the diffusion/SP1 and
SP3 models in OpenFOAM and the Monte Carlo Quasi-Static Method with Serpent-
OpenFOAM (OF-PCQM) model.
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An Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz was used. We can see that the addi-

tional cost of Monte Carlo is 3 times the one from diffusion and SP3. The latter is slightly

larger than diffusion. In all cases a Courant number of 0.8 was fixed giving a time step

of approximately 0.012 s. These results show that the practical application of the Monte

Carlo method through a Quasi-Static Method approach is feasible and provide very good

results. It is important to recall that the analysis of some of the nuclear systems of interest

for criticality studies could be very challenging with SP1 or SP3 methods and in those case

a Monte Carlo method will offer significant advantages. Using the Dynamic Monte Carlo

method discussed in the previous section for this study case would be very challenging (if

feasible) from a computational point of view (memory and CPU time).

Table 5.16 – Computational cost of the transient simulation per cycle of the perturbation
(time to complete one perturbation period time Tp) for the neutronics models SP1 and SP3

in OpenFOAM and the Monte Carlo Quasi-Static Method with Serpent-OpenFOAM (OF-
PCQM).

Model Average Execution
Time (s) per Cycle

Diffusion/SP1-OpenFOAM 6
SP3-OpenFOAM 8

Serpent-OpenFOAM (OF-PCQM) 21

5.2.3 Final Remarks on the Molten Salt Cavity Study Case

Comparison between the numeric performances of the Monte Carlo Quasi-Static Method,

Simplified P3 and diffusion methods for a liquid nuclear fuel (molten salt) system has been

presented. The numerical results obtained for a study case show that the three models

provide similar results for transient calculations in a nuclear system similar to a Molten

Salt Fast Reactor. Also, the computational cost of the Monte Carlo implemented through a

Quasi-Static Method appears to be very reasonable. Moreover, as discussed in the previous

study case, the performance of the Monte Carlo Quasi-Static Method can be improved in

the future by optimizing the number of flux shape calculations and the amplitude param-

eters update due to the precursors shape change. Finally, it was found that as expected

the use of a constant weight function for the Quasi-Static Method normalization did not

introduce errors while allowing a significantly decrease the complexity of the delayed neu-

trons precursors equations as one could expected in a liquid fuel. This is a very important

result and confirm the conclusions of the Chapter 3.
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5.3 Heterogeneous Medium: Spent Fuel Pools

In this section, we analyze the last study case: the Spent Fuel Pool. This case lets us

study the performance of the multi-physics models regarding to phenomena encountered in

an heterogeneous multi-phase porous medium. This type of model is very useful to reduce

the geometrical complexity of large systems. The section is divided in four parts. In the

first part, some remarks on the model and the coupling strategy are made. In the second

part (Section 5.3.2) the results of a sensitivity analysis performed with the Monte Carlo

neutronics model are discussed. The main objective of this study was to gain a better

insight on the mechanisms acting during these accidents. In particular, the effects of the

following key parameters on the pool reactivity were studied: water level, water density

and boron concentration, cladding absorption and fuel burn-up. The third part (Section

5.3.3) is devoted to presenting the results from a first application case of the porous medium

model described in Section 3.3.7. In this study case, a drainage of the fuel assembly rack

was assumed, as a result of a sudden drop of the pool water level from the full level to 2.5 m

measured from the base of the active Fuel Assembly length. For the purpose of evaluating

the performance of the numerical model it is also supposed that this occurs in a short

period of time. Moreover, due to the Fuel Assemblies decay heat the coolant temperature

rises and a difference between the rack water level H and the pool water level h appears

as a result of the coolant densities variations (water density becomes smaller in the rack

with respect to the pool and if there is not a close circuit between the rack and the pool,

the level of the rack H will be higher than that of the pool h). The system water level

in the rack, its temperature and the multiplication factor were analysed until the onset of

boiling. Finally, general remarks about this case are made. The results of this work were

published in the 11th International Conference on Nuclear Criticality Safety (ICNC) 2019

[115].

5.3.1 Model

For the criticality analysis of the Spent Fuel Pool a detailed model of the racks in the

Spent Fuel Pool 4 was developed in the Monte Carlo code Serpent. In the next subsections

a description of the assembly and the rack is given along with the coupling strategy chosen.
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5.3.1.1 Assembly

The fuel inventory of the pool at the moment of the accident was taken from [15].

Among the various fuel types the STEP3-B (see Table 5.17) was chosen in this work since

they have the highest decay heat (favouring a fast evaporation and thus a larger difference

of water level between the racks and the pool). This type of Fuel Assemblies had different

levels of burn-up. All the geometrical details as well as isotopic composition for different

burn-up degrees are given in the work of [116], which discusses the results of an OECD-

NEA Benchmark for a BWR Spent Fuel Pool. Figure 5.25 displays the model used in the

OECD-NEA Benchmark and the one developed in Serpent for this study. Note that the

OECD-NEA benchmark model is a 2D model (i.e. using a unit Fuel Assembly model)

while in our case the thermal-hydraulics calculations requires the use of a 3D model. This

3D model was built considering an active length of 3.7084 m [16]. As in the benchmark,

the top handle, bottom nozzle, upper and lower tie-plate and spacers were not modelled

but could be added in the model. However, they are not expected to significantly change

the results.

Table 5.17 – Fuel composition and decay heat in SFP 4 FAs [15].

Fuel Type Assembly
Configuration

Number of Fuel
Assemblies

Discharge
Data

Cooling
Duration as
of March 11,
2011 (yrs)

Average
Assembly Decay
Heat as of March
11, 2011 (W)

STEP3-B 9x9

1
87
100
548

October 2, 2006
March 28, 2008

September 29, 2009
November 30, 2010

4.4
3
1.5
0.3

472.5
676.9
1267
3416

STEP3-B
Fresh Fuel

9x9 204 - - 0

5.3.1.2 Rack

The rack walls were modelled by considering that each Fuel Assembly was placed inside

a square stainless steel (SS304) envelope (15.1 cm outer side and 0.25 cm thickness ([117])

as displayed in Figure 5.26(A). The upper end of the walls was set equal to the upper active

length of the fuel rods while the lower end was set equal to the elevation corresponding to

8 cm below the active length of the fuel rods. Figure 5.26(B) shows the Serpent model for

one Fuel Assembly with the rack steel walls in red. More details could be added but for the

purpose of the present study it was judged that the current level of details was sufficient

for this preliminary work. The FAs are placed in a 3×10 arrangement inside the rack with
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(A) (B)

Figure 5.25 – STEP3-B BWR Assembly Model: (A) OECD-NEA Benchmark 2D model.
(B) Serpent 3D model used in this work.

dimensions 160.85 cm by 54.5 cm as detailed in [118]. FAs have pitches of 15.95 cm and

18.6 cm [117] along the two horizontal directions. For the rack and using symmetry, a 3x5

system surrounded by a 5 cm water gap4 was modelled with reflective conditions on the

outer sides and void conditions at top and bottom limits. The full Serpent model for the

rack (walls in red) and the Fuel Assemblies is presented in Figure 5.27.

(A) (B)

Figure 5.26 – STEP3-B BWR and steel walls of the rack: (A) Fuel assembly inside a
rack cell. (B) Serpent 3D model used in this work.

4Estimated from Unit 4-SFP dimension and racks inside [16]
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Figure 5.27 – Full 3x5 Rack Model with the Fuel Assemblies.

5.3.1.3 Coupling Strategy

As explained in Section 4.3.3.2, the porous medium equations from Section 3.3.7 were

implemented in OpenFOAM to be able to model wit less computational cost the Spent

Fuel Pool thermal-hydraulics phenomena in comparison to a Navier-Stokes approach. To

summarize, the thermal-hydraulics model and the neutronics model in Serpent from the

previous Section were coupled as shown in Figure 5.28. In the adopted coupling scheme,

the materials density and temperature fields are calculated by the porous medium model

implemented in OpenFOAM and then sent to the Serpent neutronics model to update the

materials cross sections. For now, only the water density and temperature are updated

internally in Serpent. The dashed red line in Figure 5.28 indicates that the power field

due to fission rate will only be possible if criticality is reached. If not, only the decay heat

will contribute to the porous medium power source term and the coupling between the

thermal-hydraulics model and the neutronics model will be weak.

Figure 5.28 – Neutronic – Thermal Hydraulics coupling scheme.
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It is reminded that even though the whole system of thermal-hydaulics equations for a

multi-phase multi-component porous medium was implemented, some simplifications were

introduced in Section 3.3.7.5, such as Henry’s and Raoult’s laws (equations 3.155 and

3.156) and thermal equilibrium between the phases, i.e. Ts = Tw = Tn = T because of the

low power density (decay heat). In case of recriticality, this should be modified and a two

or three temperatures model should be implemented.

5.3.2 Sensitivity Analysis

As expressed before, boron concentration, burn-up, water level and density in the rack

and pool and stainless-steel effect were analyzed. Table 5.18 summarizes the parameters

that were studied and their values. Different combinations of these values were considered.

As displayed in Figure 5.29, H denotes the height of the water in the rack while h denotes

the water level of the pool outside the racks. For the initial sensitivity cases these two

levels were considered to be the same (H = h) and both function of time. As explained

in Section 5.3.1 the isotopic composition of the Fuel Assemblies were taken from [116].

As can be seen in Figure 5.29, to simplify the sensitivity calculations, the fluid phase was

approximated as having two different regions: (a) the lower part of the rack (below H = h)

filled with pure liquid pure water (ρ = 1000 kg m−3) and (b) the upper part of the rack

(above H = h) composed by a mixture of water and air (with density varying from 0 to

1000 kg/m3). The parameters used in this study are reported in Table 5.18.

Table 5.18 – Parameters studied and values undertaken by them.

Parameter Values
Water Level H=h [m] 0, 0.9271, 1.8542, 2.7813, 3.7084

Water/Air Mixture [kg/m3] 0, 100, 200, 250, 300, 400, 500, 750, 1000
Burn-up [MWd/kgU] 0, 12, 50
Boron Concentration 0, 1000, 2000

Firstly, the predicted multiplication factor (keff ) value of the Spent Fuel Pool as a

function of the water level (the water level in rack and in the pool are the same, i.e.

H = h) is presented in Figure 5.30. To identify the effect of each of the factors discussed

earlier, the results correspond to the case were the water-air mixture density was set to

zero (i.e. vacuum), the pool was filled only with fresh fuels (zero burn-up) and there

was no boron in the coolant (note that one of the criterion of the US Nuclear Regulatory

Commission for this type of analysis is keff being less than 1.0 for Spent Fuel Pool filled
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(A) (B)

Figure 5.29 – (A) Axial cross section of the rack-pool system. (B) Two fluid regions are
considered: a lower region filled with water (dark blue) and the upper region filled with a
water-air mixture right (light blue).

with unborated water). The zero level on the horizontal axis of the figure corresponds to

the beginning of the assemblies active length while the upper limit corresponds to the top

of the active fuel length (3.7084 m). As one could expect the figure shows that as the water

level decrease so does keff .

A different trend is observed if one assumes that the liquid water level decreases and

the space left on the top of the pool and the rack is filled with a water-air mixture. Figure

5.31 extends the analysis of Figure 5.30 by considering the densities reported in Table

5.18 for the water-air mixture added above the liquid water level. To increase the Spent

Fuel Pool reactivity, assemblies with an averaged burn-up of 12 MWd/kg were considered

for this study. The "Void" case is similar to the one studied in Figure 5.30 but with an

irradiated Fuel Assembly. As can be seen on the left of Figure 5.31, as the top water-air

mixture density increases, the variation of the keff with the water level changes. At first,

the reactivity decreases with the water level reduction but for mixture densities beyond 100

kg/m3 the trends are different. Eventually, the maximum increase of the pool reactivity

is reached when a water-air mixture of about 250 kg/m3 is used to fill the top of the pool

and the rack. For mixture densities higher or equal to 250 kg/m3 we observe the same
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Figure 5.30 – keff as a function of the water level in the rack-pool system. The mixture
zone is void. The SFP is filled with fresh Fuel Assemblies. Boron concentration was set to
zero.

dependency but the maximum peak decreases. Finally, the yellow curve gives a reference

of the keff when the pool is full of water (1000 kg/m3 implies liquid water above). From

these results we can conclude that in the case of a LOCA, the presence of a mixture of

water and air resulting from the water boiling could result in an augmentation of the keff

as the level of the Spent Fuel Pool decreases (although the density values of the mixture

are not necessary realistic). This is opposed to the case of a simple drainage (no mixture)

where the reactivity decreases as the water level decreases.

This overall behaviour confirms that as discussed in Chapter 2 the Spent Fuel Pool is

over-moderated. This is confirmed by the results displayed on Figure 5.32 which shows

the reactivity keff of the Spent Fuel Pool in function of the water-air mixture density

at different liquid water levels (H = h). Once again, the composition corresponds to a

burn-up of 12 MWd/kg and there is no boron. Each of the curves from Figure 5.31 are,

in fact, the cuts of Figure 5.32 for a given density. Two observations can be made from

Figure 5.32. First, we can see that the maximum reactivity corresponds, as observed

before, to 250 kg/m3 which is the point where the system passes from under-moderated

to over-moderated regions. This means that, in the case of a LOCA/LOFA accident, if

the vapor-air mixed density is on the left of 250 kg/m3 limit, any increase of the coolant

temperature and thus a decrease in density will diminish the keff . On the other hand,

if the mixture is cooled-down due to, for example, the spray of water to cool down the
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(A)

(B)

Figure 5.31 – Multiplication factor keff as a function of the water level in the rack-pool
system. The mixture zone density varies from 0− 1000kg/m3. The FAs have a burn-up 12
MWd/kg. Boron concentration was set to zero.

rack the effect will be the opposite. On the right of the 250 kg/m3 limit, the contrary is

observed. Secondly, at 100 kg/m3 there is an inversion of the curves. This could be linked

to the fact that at this point the mean free path of the neutron is so big that moderation

is by no means more important than absorption and leakage: decreasing the water level

will quickly decrease the pool reactivity.

Figures 5.33, 5.34 and 5.35 present the effects of the burn-up level, the stainless-steel

used in the rack structure and the boron concentration in the water. We can see that the
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Figure 5.32 – Multiplication Factor keff as a function of the mixture density in the rack-
pool system. The water level varies from 0-3.7084 m. The FAs have a fuel burn-up of 12
MWd/kgU−1. Boron concentration was set to zero.

highest reactivity is obtained for the irradiated Fuel Assemblies having the lowest burn-up

(12 MWd/kgU−1). The difference of approximately 10000 pcm with respect to the fresh

fuel is possible due to conversion of 238U to 239Pu. Nevertheless, it should be noted that

the fresh Fuel Assembly has a heterogeneous composition with different enrichment and

gadolinium concentrations per pin as discussed in Section 5.3.1, while uniform fuel pins

composition are used to model the other burn-ups. The effect of the stainless-steel cladding

in the rack is shown in Figure 5.34. As can be seen the presence of steel is very important

to keep the pool system subcritical. Its weight is of roughly 11000 pcm. Note that as

expected the presence of boron shifts the keff vs mixture density curves down and to the

left. The increase of absorption explains the reduction of up to nearly 30000 pcm for 2000

ppm of boron. In addition, the moderation to absorption ratio variation changes the peak

and therefore the point at which the system moves from under to over-moderated regions.

The effect of the difference between the water levels inside the fuel rack (H) and the

pool (h) is shown in Figure 5.36. This difference between the water levels would occur

as a result of the density differences between the water in the pool and inside the racks

(where heating from the assemblies is important and thus causes a decrease of the coolant

density). Figure 5.36 shows the predicted value of keff as a function of the water level in

the racks and for different levels of the pool water. It was considered that the Spent Fuel

Pool was filled with fresh Fuel Assemblies (zero burn-up), zero boron concentration in the
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(A) (B)

Figure 5.33 – Multiplication factor keff as a function of the water level (A) with a fixed
water-air mixture density value of 250 kg/m3 and (B) water level set to 1.8542 m. The
FAs have a burn-up of 0, 12 and 50 MWd/kg respectively. Boron concentration was set to
zero.

(A) (B)

Figure 5.34 – Multiplication factor keff as a function of the water level (A) with a fixed
water-air mixture density of 250 kg/m3 and (B) liquid water level set to 1.8542 m with and
without the SS304 rack. Boron concentration was set to zero.

(A) (B)

Figure 5.35 – Multiplication factor keff as a function of the water level (A) with a fixed
water-air mixture density of 250 kg/m3 and (B) liquid water level was set to 1.8542 m.
The FAs have a burn-up 12 MWd/kg. The following boron concentrations were used: 0,
1000 and 2000 ppm.
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coolant and the water-air mixture (above the water level) was set to zero (void).

Figure 5.36 – Multiplication Factor keff as a function of the rack water level (H) for
different pool water levels (h). The SFP is filled with fresh Fuel Assemblies, the boron
concentration is zero and the water-air mixture is zero.

Although the values used in the analysis in Figure 5.36 are not necessarily realistic,

they allow to understand the full range of variation of keff resulting from this effect. As can

be seen, as the pool level decreases, the reactivity increases. This is explained by the fact

that, as the pool level decrease, the degree of neutronic coupling between the racks makes

the keff increase (i.e. neutrons leaked from one rack system can now reached another since

water absorption no longer exist between them).

To summarize the important remarks that can be made from the results of the sensi-

tivity analysis:

• Different water levels between the pool and the racks can lead to an increase of

reactivity.

• The Spent Fuel Pool is over-moderated and thus replacing the water in the racks by

a mixture of liquid water and air (or steam) can lead to an increase of the reactivity.

• Steel in the rack has a significant contribution to keep the Spent Fuel Pool subcritical.

• No credible scenario was identified where the pool could return to criticality (and

thus fission power generated in the Fuel Assembly) although important reductions of

the criticality margins may occur during the accident.

As discussed in Section 2.3, the variation of the water level between the racks and

the pool requires the use of a relatively complex thermal-hydraulics model, which in our
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case was done by using a porous medium approach. A strong coupling between the two

models (neutronics and thermal-hydraulics) was also adopted to allow for the possibility

of studying scenarios where a criticality accident occurs in the Spent Fuel Pool. However,

in the next study we consider only the effects of the decay heat since we could not identify

a credible scenario with a criticality accident.

5.3.3 Coupled Model for Transient Analysis

This section presents an example of a coupled calculation using the multi-phase multi-

components porous medium model described in Chapter 3. For this first application case,

the following assumptions were made: there are two immiscible components air and water,

each one has only one phase, gas (n) and liquid (w) respectively. Thermal equilibrium

conditions between all phases and components is considered (this is correct if no return

to criticality). The energy equations were reduced accordingly to only one temperature

(thermal equilibrium). Water properties were taken from [119] while the air is considered

an ideal gas with hw = 1005(T − 273.15)J/kg and uα = hα − pα/ρα. The porosity is set to

φ = 0.57 and the permeability K = 2.11e− 61/m2 according to the BWR fuel geometry. For

the solid phase (fuel rods), a density of 9087.2 kg/m3, a heat capacity of 300 J/(kgK) and

a conductivity of 8.5 W/(mK) were used.

An arrangement of 3x10 Fuel Assemblies in a rack was modelled using the dimensions

reported in Section 5.3.1. The rack was considered as closed and therefore there are no

exchanges between the pool and the Fuel Assemblies (except from the bottom part of the

rack). As for the Boundary Conditions, the system is considered isolated on the lateral

sides (Neumann condition), the pressure was set equal to the atmospheric pressure at the

top of the rack and to 25 kPa (∼2.5 m hydraulic head) greater at the bottom of the rack.

The saturations of the components are set to SW = 1 at the bottom and Sw = 0 at the top

(contact with liquid water and pure air respectively) and T=300 K at both ends.

For this particular simulation (and to test the numerical resolution) it is considered

that the pool level decreases instantaneously to 2.5 m at the beginning of the transient

while the water in the rack has an initial level of 3.32 m of water at 300 K as we can see

from Figure 5.37. The system is then let to change overtime until the level reaches the

equilibrium with the pool level (equivalent to 25 kPa, about 2.5 m) after 7.47 s. Then

due to the decay heat from the Fuel Assemblies (considered 3416 W [15]) the temperature
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slowly rises (Figure 5.38) and the water expands (density diminishes).

(A)

(B)

Figure 5.37 – Water level inside the rack as a function of time.

The reactivity changes observed in Figure 5.38 are due to various mechanisms: (a) the

initial decrease of the rack level (to equate to the pool level), (b) the variation of water

density as the coolant heats-up and (c) the increase of the water level in the rack as a

result of the thermal expansion. Note that the thermal expansion leads to an increase in

the reactivity but it does not reach its original value. As already discussed, the increase

in reactivity is due to, in part, the fact that as the water expands it enters a zone with a
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(A)

(B)

Figure 5.38 – (A) Temperature increase and (B) Reactivity change as a function of time.

higher view factor with the other racks (H increases but h remains the same). Globally

speaking the results are consistent with by hand calculations (for instance the equilibrium

water level) and the overall coupling shows a good numerical performance although the

initial conditions of the problem are quite stiff.

5.3.4 Final Remarks on the Spent Fuel Pool Study Case

An adequate numerical model for Spent Fuel Pools accidents requires coupled neutron-

ics and thermohydraulics calculations to study all potential scenarios, including the event
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of a criticality accident. The thermal-hydraulics model is necessary to correctly predict the

water levels in the pool and in the racks and should include phenomena such as convective

and conductive heat transfer, change from water to air natural convection, boiling and

two-phase flow and hydrogen production and combustion from zirconium–steam reaction.

The neutronics model should be able to accurate predict the Spent Fuel Pool reactivity

and the phenomena associated to a hypothetical criticality accident. In this work, a tool

using multi-physics coupling was presented to asses this type of accidents. In the tool, a

porous medium model of the Spent Fuel Pool has been developed using OpenFOAM code

to solve the thermal-hydraulics equations and couple to a neutronics model based on the

Monte Carlo code Serpent. The model was then used to perform a sensitivity analysis on

various Spent Fuel Pools parameters using the Spent Fuel Pool of Fukushima Daiichi NPP

Unit 4 as a reference.

It was observed from this study that criticality is never achieved even though some

parts of the assembly lacks modelling (i.e. spacers, grids). The sensitivity analysis lets us

nevertheless identify the mechanisms that could eventually lead to an increase of the Spent

Fuel Pool reactivity. Moreover, it was found that under certain conditions the margin to

criticality could be significantly reduced: certain levels of burn-up, vapor or void fraction

as the fuel pool drains, decrease of soluble boron, among others.

Finally, the multi-physics approach has been used to perform a first calculation of an

accident without reaching criticality. Further testing using the full extent of the model

is needed for studying the system in the approach to criticality and in the case of a re-

criticality. Additionally, this should be tested coupling the porous medium model to a

Navier-Stokes multi-phase model outside the rack system and representing, this way, the

whole pool system. A general overview on how this could be possible to implement is

shown in Appendix D.
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Conclusions

This research has been developed in the framework of the current industry and academia

efforts to develop more accurate and flexible numerical tools for nuclear energy application.

The work performed during this PhD has allowed developing a new multi-physics and

multi-scale numerical tool for the study of criticality accidents. A criticality accident can

be defined as an uncontrolled nuclear chain reaction event that occurs in a nuclear system.

These accidents can occur in very diverse nuclear systems such as in a fuel factory, during

transportation of nuclear materials, in research or power reactors, etc. Therefore developing

a suitable numerical tool that can deal with the large spectrum of geometries, materials,

coupled phenomena and time scales encountered in a criticality accident is not straight-

forward. The proposed tool is based on the open-source code OpenFOAM (open-source

C++ Library for CFD), and Serpent 2 (Monte Carlo particle transport code). The tool

contains various models that have been developed and implemented during this PhD that

allow studying different neutronics, thermohydraulics and thermomechanics phenomena

and their coupling. The tool uses detailed mechanistic models to reduce the number of

approximations and thus obtain Best Estimate predictions.

In order to investigate the accuracy of the numerical models a set of experiments/

benchmarks were identified in the early stages of the PhD as discussed in Chapter 2. While

these experiments/ benchmarks are not exhaustive and more comparisons are needed for

a full validation of the tool, they have proven to be very useful for improving the precision

of the models. They also provide many (but not all) of the phenomena that one could

expect to find in criticality accidents. The selection of these experiments/benchmarks was

based on a Phenomena Identification and Ranking Table (PIRT) analysis carried-out at
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the beginning of the PhD. It allowed identifying the following key phenomena in these

accidents. Most of these key phenomena (but not all) have been studied in this work and

the mathematical models have been presented in Chapter 3. They include:

• Transient neutron transport including super-prompt criticality conditions

• Precursors transport in solid and liquid medium

• Incompressible Navier-Stokes

• Laminar and turbulent flow conditions

• Buoyancy with Boussinesq approximation

• Linear thermoelasticity

• Thermal Expansion with geometry deformation

• Multi-phase multi-component flow in porous medium

Other phenomena will have to be added in the future in order to be able to capture

additional scenarios or systems involved in criticality accidents. One can mention: boiling,

radiolysis, pressure and acoustic waves, etc. Thank to the strategy used for the development

of the tool, these models can be added in a more or less straightforward way.

Once the theoretical models were developed, the next task of the work consisted in

their numerical implementation. The details on the algorithms used for the numerical

implementation of these models were discussed in Chapter 4. Although the numerical im-

plementation was performed using OpenFOAM and Serpent codes, the proposed coupling

algorithms are quite independent of these codes and could be used with other codes. The

choice of using the state-of-the-art codes (OpenFOAM and Serpent 2) was made because

these codes have large communities of users and developers that continue to maintain and

innovate in these codes. In addition, OpenFOAM is open-source. In this regards, it is in-

teresting to note the recent initiative of the International Atomic Energy Agency (IAEA)

to create the Open-source Nuclear Code for Reactor Analysis (ONCORE) [120] working

group whose objective is to develop the future open-source safety codes. One of the codes

used by this working group is OpenFOAM.

In order to perform a first validation and verification of the models and algorithms

developed in this PhD, a set of comparisons among the tool predictions and experimental

data or independent codes results were done. The results from the comparisons were pre-

sented in Chapter 5. Among the various models developed in this work, the Monte Carlo

Quasi-Static Method is probably the most original among them, and opens very interesting
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perspectives for the analysis of criticality accidents. The alternative deterministic method

Simplified PN for the resolution of the neutron transient transport equation was also devel-

oped and implemented in the multi-physics tool. The analysis of the results presented in

Chapter 5 includes the study of the performance of the Monte Carlo Quasi-Static Method

along with a deterministic Simplified PN method including accuracy and computational

cost. Different time and size scales cases ranging from centimeters (Godiva) to meters

(hypothetical Spent Fuel Pool accident) with various coupling phenomena (thermal ex-

pansion, convection and buoyancy) were explored. The multi-physics tool was also used

to perform a benchmark against independent codes on a liquid fuel system (CNRS Molten

Salt Cavity Benchmark) in the framework of an European project (SAMOFAR) dealing

with the safety studies of the Molten Salt Reactors. Finally, Chapter 5 presented a first

approach with a coupled porous medium model to study hypothetical criticality accidents

in Spent Fuel Pool. While the comparisons presented in Chapter 5 are not exhaustive and

more studies should be performed, the very good agreement found in these exercises shows

that the accuracy and the numerical performance of the multi-physics multi-scale tool are

adequate. These results do not preclude the possibility of further improvements of some

of the models as we will discuss later in this chapter.

As mentioned earlier, one of the novel models developed in this work is the Monte Carlo

Quasi-Static Method. As discussed in Chapter 4, this model has been implemented using

an internal coupling between Serpent 2 and OpenFOAM for the Adiabatic formulation. We

have shown in Chapter 5 that the Adiabatic formulation is able to follow transients with

different time scales and amplitudes within a reasonable computational time as illustrated

by the analysis of the simulation of the small sphere-shaped Godiva Experiment prompt

burst fast transient and the Molten Salt Cavity Benchmark. Some key remarks can be

made for the Monte Carlo Quasi-Static Method presented in Chapter 3 and from the

results of Chapter 5:

• As expected, the proposed use of a normalized constant weight function for this

method does not seem to impact the accuracy of the predictions for the flux, reaction

rates and power distributions. This choice significantly simplifies the Monte Carlo

Quasi-Static Method equations at the expense of losing the usual meaning of the

point kinetic parameters used to solve the flux amplitude equations. This does not

appear to be a significant drawback and, if needed, importance or any other weight
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function can be calculated a posteriori alongside with the point kinetic parameters.

• The analysis of Godiva results (Chapter 5) showed that it is necessary to recalculate

the point kinetic equations parameters used to determine the flux amplitude function

(n(t)) during the flux shape function (φ(~r,Ω, E, t)) time step. This allows to signifi-

cantly reduce the number of neutron shape function calculations (shape time steps)

with the Monte Carlo code. In the present work, the following point kinetic parame-

ters were updated during the flux amplitude iterations: the reactivity (ρ), the delayed

neutron concentration (c̄d) and the generation time (Λ). The use of a constant weight

function allows to use the physical delayed neutron fraction (βd). These point kinet-

ics parameters were updated during the amplitude iterations based on the neutron

fluxes and materials density variations. Other effects affecting the macroscopic cross

sections such as the temperature feedback should be implemented in future work

along with the precursors shape feedback inside the flux shape time step (i.e. at each

amplitude time step), especially in the reactivity. These improvements will allow to

further reduce the amount of flux shape calculations. For example, for the Molten

Salt Cavity Benchmark, the density update was not enough for obtaining a smooth

reactivity and power curves (see Appendix C) in comparison to those obtained for

Godiva. Nonetheless, cavity’s results were sufficiently accurate.

• It is interesting to note that some authors have suggested using feedback coefficients

pre-calculated before the transient as a method to update the reactivity during the

flux amplitude iterations [108]. We have found in our studies that the estimation

of the reactivity based on the neutron flux and macroscopic cross section variations

proposed here is more accurate and effective. In addition, we do not need to know

the system feedback a priori.

• As discussed earlier, the multi-physics coupling was implemented internally. Beside

improving the speed of data exchange (no read and write of external files), the inter-

nal coupling allows both Serpent and OpenFOAM to access all the internal variables

fields during runtime. The operations to update the fields can then be treated inter-

nally with OpenFOAM routines (direct memory access). This is particularly helpful

for some fields such as the flux, the reaction rates, the neutron current and the neu-

tron density that can then be stored and used by OpenFOAM to update (as discussed

in the previous point) the point kinetics parameters during the amplitude function
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iterations.

• The statistical tolerance of the analyzed system needs to be assessed beforehand. For

a fast transient like Godiva, involving an initial reactivity of a few pcm (or cents)

over the prompt criticality, a very little standard deviation of the reactivity factor

(∼2-4 pcm) will have a significant impact on the transient. For that case, there are

two viable options:

– Increasing significantly the number of neutron histories, while making the flux

shape time steps longer and correctly updating the point kinetic parameters of

the flux amplitude equations inside the shape step: this option penalizes the

calculation time as reported in Table 5.7 but it results in a smoother time-wise

solution and more accurate fields spatial distributions (better statistics gathered

at each cell of the mesh).

– Reducing the simulated neutron number while increasing the number of shape

time steps: doing so, the randomness of the sampling will compensate the peaks

and valleys obtained in the reactivity curve after each shape calculation due to

Monte Carlo stochastic nature. The disadvantage of this option is that depend-

ing on the cell size of the mesh, the volumetric fields (flux, power, etc) might

not be smooth enough and instabilities on the coupling or lower accuracy in the

coupled phenomena could occur. This said, this approach takes into account

the changes on the flux shape more often -but with higher statistical error.

• It is important to remark that the Adiabatic formulation of the Quasi-Static Method

proposed in this work can easily be implemented with any Monte Carlo criticality

code to calculate transients and should be seen as complementary with the precise

but resource-consuming Dynamic Monte Carlo approaches [37]. Moreover, while we

have chosen to use an internal coupling for Serpent and OpenFOAM for the reasons

discussed earlier, an external coupling is also possible. Indeed, as long as the power

distribution and amplitude parameters’ integrals from equations 3.62 can be scored

(tallied) and the density and temperature updated in Monte Carlo at the beginning

of each flux shape calculation, the implementation can be done externally. This is

the case of Monte Carlo codes such as Serpent 2 which, in addition, can update the

geometry at each criticality calculation.

• From the results obtained in Section 5.1, one might think that a Dynamic Monte
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Carlo is a better option due to the reduced number of particles simulated. However,

the memory requirements are significantly higher than the criticality source mode

used in this work. This additional cost means that only very short transients with

simple geometries and few isotopes and materials can be simulated with standard

computers. On the contrary, the Quasi-Static Adiabatic Method has the standard

limitations of the k-eigenvalue method. Moreover, the additional time required by

the Quasi-Static Method can be decreased with further parallelization, allowing a

single routine to solve slow and fast transients.

• In comparison to a deterministic method, the Monte Carlo Quasi-Static Method has

the advantage of having very few approximations concerning the transport problem.

Additionally, multi-group deterministic methods require to homogenize and condense

the neutron cross sections that will have to be updated if the spectrum, flux shape

or composition of the materials change. The Monte Carlo codes have the advantage

of using continuous energy cross sections libraries and the numerical simulations are

continuous in spatial and direction coordinates as well.

• It should be noted that, when numerically solving the Adiabatic formulation of the

Quasi-Static Method proposed here, a k-eigenvalue problem is being solved and thus

not the actual system. This approximation implies that the nuclear system is at

each instant close to the fundamental mode although the fundamental mode shape

itself could significantly change over the transient. To consider high order modes the

flux shape derivative should not be neglected in the flux shape equation. In most

applications related to criticality accidents, this approximation does not introduce a

significant error. Other less standard applications such as modeling of Accelerator-

Driven Systems (ADS) reactors would require the use of a better formulation than

the Adiabatic.

• Regarding the limits of the accuracy of the Adiabatic formulation of the Quasi-Static

Method, the development of the method presented in Section 3.1.2 indicates that very

large rate of variation of the neutron flux during the transient could lead to inaccurate

modeling results. This may result from neglecting the shape and amplitude time

derivatives in the flux shape equation 3.60a. Moreover, although the flux shape time

step could be reduced, an error associated to the methodology will still be present.

However, as studied by Ott et al. in [42], in the case of an event with very high flux
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shape deformations caused by a 90 $ / s reactivity insertion the predictions obtained

from the Adiabatic approach are less than 30 % error in some parts of the neutron

flux and less than 15 % for the original quasi-static approach (which does not make

any assumption of the amplitude change rate, i.e. dn/dt 6= 0). Note that this high

reactivity insertion scenario is a rather unrealistic configuration.

• As discussed in Chapter 3 an approximation was introduced in the modeling of

the delayed neutron precursors in the adiabatic approach: as shown in equation

3.67 the delayed neutrons position are sampled from the precursors concentration.

However, for simplicity this equation assumes that the number of emitted delayed

neutrons is
∫
βνΣfφdV and not

∑
d

∫
λdCddV/n(t). This approximation does not cause

a significant error neither in Godiva experiments nor for the Cavity Benchmark as

showed in Chapter 5. However, in other scenarios this approximation should be

eliminated by modifying the value of β in the Monte Carlo algorithm that samples

the neutrons. This is a straightforward task but requires further modifying the source

code (one of the objectives of this work was to be as minimally invasive as possible

in the modification of the codes). In the present state, the error caused by this

approximation should be less that the one of the classic Adiabatic approach but

higher than the original quasi-static approach in transient calculations.

• An improvement in the current methodology could be obtained by adding the dn/dt

term as an effective cross section in the flux shape calculations and by correcting

the amplitude of the delayed neutrons emission thanks to their sampling on effective

β values rather than standard β values. Moreover, the flux shape time derivative

(∂φ/∂t) could also be taken into account. Nevertheless, as discussed below the ac-

curacy obtained thanks to this improvement is probably not worth the increased

complexity of the algorithms. Two solutions could be envisioned to include the effect

of the flux shape time derivative (∂φ/∂t) in the flux shape equation:

– Discretization of the term ∂φ ∂t with an Euler scheme and rearrangement of it

in such a way that it could be included as an external source (see Ott et al.

[42]). This solution would require the use of the dynamic source mode with the

neutron population control as explained in 3.1.1.4. This solution will however

introduce a significant complexity.

– The second option is to use transient Monte Carlo as done by Aufiero et al. for
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Godiva [37] for the flux shape calculation. In addition to the memory issues,

the problem of this solution relies on the neutrons scoring process: it is likely

that if the time steps were too large, neutrons will either all die out before the

end of the step (subcritical system) or diverge (supercritical system). For this

reason, transient calculations should be used together with a small time binning

(or Monte Carlo "time step") in order to renormalized the neutron source size

to a statistically adequate one.

As an alternative method to calculate the neutron flux during the criticality accident, a

SP1 and SP3 methods were implemented to solve the neutron transient transport equation.

It was shown in Chapter 5 that these methods are able to simulate both fast and slow

transients such as the Godiva Experiment and the Cavity Benchmark. However, they

required the calculation of homogenized and condensed neutron cross sections which can

be challenging if the system is very heterogeneous or the geometry change as results of the

accident. Moreover in the case of Godiva, the SP1/ SP3 methods failed to provide good

initial reactivity estimate (∼ 2500 pcm). More studies should be performed in order to

determine whether the source of this error comes from: i) the need of using a higher order

(>3) Legendre Polynomial to accurate modeling of a high flux anisotropy (due to highly

absorbing medium for example), ii) the Marshak boundary conditions approximation or

(iii) other SPN model simplifications such as the within-group approximation explained

in Section 3.1.3. Indeed, this last approximation was implemented since it simplifies the

equations but it has been mainly used for Light Water Reactor calculations. It is worth

to note that the computational cost of the SPN method specially by using acceleration

techniques is nevertheless significantly lower than the Monte Carlo. Moreover, as has been

shown in Chapter 5 once the fission source was normalized, Godiva’s power burst was

correctly reproduced.

On a different physics, the linear thermoelasticity model used to predict the thermal

expansion in Godiva seems to be accurate enough. As discussed in Chapter 5 similar results

to those of Aufiero et al. [37] were obtained with our tool. OpenFOAM capabilities to

perform geometry changes and solve models and map fields between different meshes were

key to the development of the thermal-mechanics module. In addition, OpenFOAM can

handle dynamic meshing during runtime and the unofficial OpenFOAM extended version

includes models for more complex solid mechanics phenomena like plasticity developed by
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Cardiff et al. [121].

Concerning the thermohydraulics models, two types were investigated: (i) CFD models

solving the laminar Navier-Stoke equation and (ii) porous medium models. RANS models

for turbulent flow were also used but are not reported here. The laminar flow model was

used for the Molten Salt Cavity Benchmark. This benchmark defined by the CNRS to

test multi-physics models for Molten Salt Reactors enabled the investigating of various

neutronics and thermohydraulics coupled phenomena (e.g. the precursors transport or

the fuel salt density feedbacks). The benchmark was carried-out in the framework of the

European H2020 project SAMOFAR (2014-2019) that included various leading European

universities and laboratories. For this particular benchmark, we used the incompressible

laminar Navier-Stokes model with the Boussinesq approximation already implemented in

OpenFOAM. The comparison of the results obtained by our multi-physics tool with those

produced by the partners of the European project SAMOFAR (see for example Tiberga et

al. [14]) and also in comparison to a FiPy model gives excellent agreement. This exercise

illustrates some of the advantages of using OpenFOAM for the multi-physics tool: the tool

can be easily modified to change from a laminar to a turbulent flow solver. In addition,

the availability of separate solvers with many models already implemented for compressible

and incompressible flow makes future improvements of this multi-physics solver easier.

The last case studied in this work concerned a Loss of Coolant Accident in the Spent

Fuel Pool of a BWR which allows testing another thermohydraulics model implemented

in the tool. The Spent Fuel Pool has the particularity of being a strongly heterogeneous

medium (BWR fuel assemblies immersed in a coolant) having solid, liquid and gas phases

with potential different averaged temperatures and where water coolant could undergo

phase change (pool coolant boiling). This case requires the implementation of a thermo-

hydraulics model coupled to a transient neutronics one that allow calculating the system

reactivity and eventual fission power if criticality conditions are reached. The Fuel As-

semblies geometry complexity (top and bottom nozzles, grids, fuel rods, etc.) and large

number of Fuel Assemblies make it impractical to solve the laminar or turbulent Navier-

Stokes equations using a CFD mesh. A rather more practical method was instead the

implementation of a porous medium approach. In this approach, the differential conser-

vation equations (continuity, Navier-stokes and Energy equations) of the heterogeneous

system (fuel, coolant and pool structures) are homogenized. The equations for the result-
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ing homogeneous medium can then be integrated using a very coarse mesh. This approach

shifts the complexity related to the heterogeneous geometry and the microscopic phenom-

ena existing at the microscopic level to the determination of the equivalent homogeneous

porous medium properties. In our work, we implemented a multi-phase multi-component

porous medium model in OpenFOAM coupled to the other multi-physics modules. This

porous medium model was then used to investigate a hypothetical Spent Fuel Pool recriti-

cality accident. While, a broad sensitivity analysis on different potential scenarios for this

accident did not allow to identify any credible scenario leading to a recriticality accident

in the Spent Fuel Pool, this study demonstrated some of the capabilities and potentialities

of the porous model used.

Note that OpenFOAM already has a porous medium model but only for single-phase

flow [122]. This original OpenFOAM porous medium model uses the Navier-Stokes equa-

tions with a Darcy-Forchheimer source term. The added Darcy-Forchheimer term allows

taking into account the pressure drop in the porous medium region. This term contains two

parts: the classis Darcy’s Law (viscous forces in the porous medium) and the Forchheimer

term that allows to take into account inertial forces in the pore (e.g. turbulence). Never-

theless this model does not allow to study all the phenomena existing in the Spent Fuel

Pool which involves multi-phase flow (e.g. water as vapor or liquid) and different chemical

species (e.g. water, air, boron). In addition, local non-equilibrium conditions between the

solid and fluid phases will occur when significant heat generation (e.g. fission energy if

recriticality) exists requiring different temperatures for porous medium phase (solid, liquid

and gaz) and non-equilibrium mass transfer (e.g. Henry and Raoult’s law do not apply).

Therefore, the more comprehensive porous medium model described in Section 4.3.3.2 was

implemented. This model is based on the work of Horgue et al. [19]. This model was not

fully used in this work because of the lack of some required input data and also some con-

vergence issues. These issues together with potential solutions are discussed in Appendix

D together with future work related to the possible multi-region coupling between Open-

FOAM’s Navier-Stokes Volume of Fluid (VOF) multi-phase model and the multi-phase

multi-component porous medium with the interface conditions between regions.

Finally we can summarize the main prospects for improvement of the multi-physics

tool: (i) implementation of the precursors transport and temperature feedback inside the

flux shape time step; (ii) addition of the Original Quasi-Static Method terms to improve
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the Monte Carlo QSM; (iii) relaxation of some of the approximations of the Simplified PN

Method to improve accuracy on the steady-state; (iv) inclusion of more advanced Solid

Mechanics methods;(v) further testing of the new capabilities in the porous medium model

with sufficient data; (vi) inclusion of the VOF method in a multi-region coupling for the

Spent Fuel Pool case; and (vii) optimization of the solver routines, specially, of the cell

search algorithm which penalizes greatly the Monte Carlo routines.

Future works should also enhance and complete this work with the addition of other

phenomena such as: radiolysis, pressure waves and free liquid surface, in order to cover a

larger spectrum of nuclear systems and hazards.
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Appendix A

RANS Methods Calculations

In this Appendix, the discussion from Sections 3.3.5 and 4.3.3.1 the multi-physics tool

was extended to include the case of turbulence modeling. Indeed, the multi-physics tool

can be used to study other reactor concepts. For example the turbulence flow model

was employed for the particular case of the evaluation of a Space Nuclear Reactor Design

tutorial. This tutorial was developed by the Reactors Physics Group from the LPSC. Only

the k − ε and k − ω SST models are discussed in this appendix since the objective here

is merely to mention the turbulence modeling capabilities of the multi-physics tool has

already been implemented using the OpenFOAM environment. This is not an extensive

analysis neither on the turbulence models nor on the Space Nuclear Reactor Design tutorial.

In Section A.1 the k− ε and k−ω SST models are briefly explained and in Section A.2

the application case is set as a general example.

A.1 RANS methods

As stated in Section 3.3.5, when the Boussinesq hypothesis is used, the RANS problem

consisting in the determining the Reynolds Stress Tensor τR is reduced to the calculation of

the turbulent eddy viscosity µt and the turbulent kinetic energy k. In addition, to solve the

flow energy balance equation, the turbulent thermal diffusivity must also be calculated.

The Boussinesq hypothesis used in this approach assumes that µt is an isotropic scalar

quantity, which is not strictly true [123]. One of the common methods to calculate the

turbulent eddy viscosity µt and the turbulent kinetic energy k is to use a Reynolds Stress

Transport Model. The discussion of the basis of this type of approach is out of the scope
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of this manuscript but can be found in [123].

Among the various RANS models using the Boussinesq hypothesis the Spalart-Allmaras,

k−ε and k−ω models can be named. In this work, k−ε and the k−ω SST were used based

on previous sensitivity studies and will be then described in the rest of this appendix.

The k− ε model of Jones and Launder [124] is the most popular and considered as the

standard k − ε model. The turbulent viscosity and thermal diffusivity are defined as:

µt = ρCµ
k2

ε
(A.1)

kt =
cpµt
Prt

(A.2)

where ρ is the density, cp is the specific heat capacity at constant pressure, Prt is the

turbulent Prandtl, k is the turbulent kinetic energy defined in Section 3.3.5 and ε is the

rate of dissipation of turbulence kinetic energy per unit mass due to viscous stresses defined

as:

ε =
1

2

µ

ρ

{
∇~u′ + (∇~u′)T

}
:
{
∇~u′ + (∇~u′)T

}
(A.3)

where µ is the molecular viscosity coefficient and : is the double dot product.

To solve for k and ε and then be able to close the RANS equations, these quantities

are calculated from the following transport equations:

∂

∂t
(ρk) +∇ ·

(
ρ~uk

)
= ∇ · (µeff,k∇k) + Pk − ρε (A.4)

∂

∂t
(ρε) +∇ ·

(
ρ~uε
)

= ∇ · (µeff,ε∇ε) + Cε1
ε

k
Pk − Cε2ρ

ε2

k
(A.5)

where

µeff,k = µ+
µt
σk

(A.6)

µeff,ε = µ+
µt
σε

(A.7)

Pk = τR : ∇~u (A.8)

with Pk being the production of turbulent energy. The dimensionless coefficients Cε1, Cε2,

Cµ, σk, σε and Prt are defined in Table A.1.

The k − ε model assumes a fully turbulent free shear flows, then, it is valid only for

high enough Reynolds numbers such as the molecular viscosity is negligible. It cannot
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Table A.1 – Standard values for the k − epsilon model.

Coefficient Cε1 Cε2 Cµ σk σε Prt

Value 1.44 1.92 0.09 1.0 1.3 0.9

be integrated up to the wall where the destruction-of-dissipation term is singular, and

thus a fine grid along with wall functions (discussed in Section 4.3.3.1) is needed to yield

reasonable solutions for this model.

To overcome the limitation of the ε model near the wall, first Kolmogorov [125] and,

then, Wilcox [126, 127] transported the turbulent kinetic energy k and the specific turbulent

dissipation ω defined as:

ω =
ε

β∗k
(A.9)

to yield the well-known k − ω model. Even though, it performs better near wall with

segregated flow, it shows some sensitivity for the free stream ω specified values. Then, the

solution highly depends on this arbitrary specification.

Menter [128] combined the k − ε and k − ω formulation to construct a new model that

behaves like the k − ω near the wall and like the k − ε in the free-stream. It is known as

k − ω SST model which consists in a system of two equations that have to be solved for k

and ω as follows:

∂

∂t
(ρk) +∇ ·

(
ρ~uk

)
= ∇ · (µeff,k∇k) + P̃k − β∗ρkω (A.10)

∂

∂t
(ρω) +∇ ·

(
ρ~uω

)
= ∇ · (µeff,ω∇ω) + C̃α

ω

k
Pk − C̃βρω2 + 2(1− F1)σω2

ρ

ω
∇k · ∇ω (A.11)

where F1 is a blending function affecting also all the coefficients in the model as:

Φ̃ = F1Φ1 + (1− F1)Φ2 (A.12)

with F1 defined as:

F1 = tanh
(
γ4

1

)
(A.13)

γ1 = Min

(
Max

( √
k

β∗ω (d⊥)
,

500ν

(d⊥)
2
ω

)
,

4ρσω2k

CDkω (d⊥)
2

)
(A.14)

CDkω = Max

(
2ρσω2

1

ω
∇k · ∇ω, 10−10

)
(A.15)
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and the turbulent viscosity is bounded :

µt =
ρa1k

Max
(
a1ω,

√
2
√
St · StF2

) (A.16)

F2 = tanh(γ2
2) (A.17)

γ2 = Max

2

√
k

β∗ω (d⊥) , 500ν

(d⊥)
2
ω

 (A.18)

St =
1

2

(
∇~u+

(
∇~u
)T) (A.19)

Additionally, the production of turbulence kinetic energy Pk is modified in the k-

equation A.10 by:

P̃k = Min (Pk, c1ε) (A.20)

Finally, the turbulent thermal conductivity and the effective turbulent viscosities are

calculated as:

kt =
µt
Prt

(A.21)

µeff,k = µ+
µt
σ̃k

(A.22)

µeff,ω = µ+
µt
σ̃ω

(A.23)

The coefficients normally used in the k − ω SST model are shown in Table A.2. A

detailed description on the actual implementation of a very similar set of equations but

based in Menter [128] can be found in [129]. In the same way, slightly changes on the

coefficients used in the k− ε model and the walls conditions for both models can be found

also in [129]. More details on turbulent modeling can be found in Moukalled et al. [64] and

for the case of turbulent molten salt flows a significant amount of work has been performed

in the thesis work of Mauricio Tano Retamales [18] at LPSC.

Table A.2 – Standard values for the k − ω SST model.

Coefficient Cα1 Cβ1 σk1 σω1 β∗ c1

Value 0.5532 0.075 2 2 0.09 10
Coefficient Cα2 Cβ2 σk2 σω2 Prt a1

Value 0.4403 0.0828 1 1.186 0.9 0.31
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A.2 Space Nuclear Reactor Design Tutorial

The same strategy that has been presented for the Molten Salt Cavity Benchmark

explained in Section 2.2 and whose results have been shown in Section 5.2, has been used

to develop a tutorial for a multi-physics design tool for q Nuclear Electric Propulsion

(NEP) engine based on a Molten Salt Reactor concept. This work takes advantage of

the experienced gained by the Reactor Physics Group of the LPSC on numerical and

experimental modeling of molten salts.The multi-physics tool used in this PhD work was

also used for the development of a tutorial for space reactors.

The geometrical model of this tutorial is not meant to be realistic but, as said before,

to covered as much of the relevant phenomena as possible: laminar/turbulent flow, Con-

jugated Heat Transfer, neutronics, phase change (solidification/fusion), and radiative heat

transfer, for example. In Figure A.1(A) the 3D simplified geometry is shown consisting in

the core cavity, the Heat Exchanger (HX), the pumps and the reflector. The core cavity

has a diameter of 0.5 m and height of ca. 1 m and the pipe diameter is 0.1 m. The reflector

is made of Beryllium and the working fluid is FLiNaK molten salt with U-235.

(A) (B)

Figure A.1 – (A) Simplified geometry of the Space Nuclear Reactor Design tutorial and
(B) Speed field calculated with the turbulence k−ω SST model plot on the x-z mid plane.
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The main steps in the tutorial [71] are shown in Table A.3 and a comparison for the

Step 1 fixing the momentum source (pumps) using the k − ε and k − ω SST turbulence

models is presented in Figure A.2. The speed field of the k − ω SST is observed in Figure

A.1(B).

Table A.3 – Steps for the Space Nuclear Reactor Design tutorial.

Step Physics Flow Type Time

1 Hydraulics Stand-Alone Laminar
Turbulent

Steady-State
Transient

2 Thermal-Hydraulics
(Imposed Power Field)

Laminar
Turbulent

Steady-State
Transient

3 Conjugated Heat Transfer Laminar
Turbulent

Steady-State
Transient

4 Neutronics Coupling
(Full Coupling)

Laminar
Turbulent

Steady-State
Transient

5 Phase Change Laminar
Turbulent

Transient

Figure A.2 – Z-component of the velocity field for the horizontal line marked in Figure
A.1(B) with the k − ε and k − ω SST turbulence models (Source: [130]).

This tutorial was presented at the ANS Annual Meeting 2020 [71] and the results

presented here were performed by Richard [130] using the multi-physics tool developed in

this work and in the thesis work of Mauricio Tano Retamales [18].
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Time Control routines

In Section 5.1.8 it was pointed out that an adaptive time step strategy could optimize

the simulation by determining the necessary flux shape and amplitude time steps as well as

their respective sizes. Motivated by this, a time control C++ Class was implemented

in OpenFOAM based on the ideas of the QX1 code [112] from the Argonne National

Laboratory and adding some new features.

As discussed in this manuscript, due to the sequential nature of OpenFOAM the time

step size value is determined in a predictive way. This is, the amplitude time step size is

determined for the following time step, and a flag is set to determine (also before the end

of the step) if the shape calculation has to be performed. Different criteria has been set

for the user to adapt the time step. The overall strategy is described in this Appendix.

Remembering the algorithms described in Section 4.3.1.2 and the time step scheme

from Figure B.1 the criteria used for choosing each time step can be enumerated.

Figure B.1 – Time Step Scheme.

For determining the amplitude time step two (2) options are available:

1. Logarithmic fitting: the last three calculated amplitude values are saved and a
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logarithmic fitting of the constants (a, b, c) of the following equation are obtained:

log n(t) = a+ bt+ ct2 (B.1)

Then, the allowed error is set via the user-set constant εn as:

10−
1
εn ≤

n
(
tni+1

)
n (tni )

≤ 10
1
εn (B.2)

Thus, the following estimation of the next amplitude time step is obtained:

δtni+1 =
log 10

εn
|b+ 2ctni |

−1 (B.3)

2. Linear fitting: Using the same reasoning as before but with a linear extrapolation

the fitting can be expressed as:

n(t) =
dn(t0)

dt
[t− t0] + n(t0) (B.4)

Then, the amplitude value is allowed a relative change of εl also set by the user:

δn =

∣∣∣∣∆nn
∣∣∣∣ ≤ εl (B.5)

The amplitude time step is predicted by:

δtni+1 = εl

∣∣∣∣dn/dtn

∣∣∣∣−1

(B.6)

The user can choose either one of this options in the adaptive mode or set a fixed value

for the amplitude time step.

For determining the flux shape time step five (5) options are available:

1. Shape Variation: A strategy similar to the linear fitting of the amplitude equation

is done. The shape field of the last two shape time steps are saved. Then a cell-wise

linear fitting is performed and the j-th cell coefficient dj and ej are calculated for

each cell to form the following equation:

φj(t) = djt+ ej ∀j ∈ V (B.7)
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where φj is the j-th cell value of the shape function and V the total volume of the

domain. The error criteria is set through the user-defined constant εφ as:

maxj

∣∣∣∣φj(tBi+1)− φj(tBi )

φj(tBi+1)

∣∣∣∣ ≤ εφ (B.8)

This way, the shape time step is determined with the values of dj and ej for the cell

j that maximizes equation B.8:

∆tBi+1 =
εφ

1− εφ

(
tBi +

ej
dj

)
(B.9)

2. Delayed Neutrons Variation: The precursors variation between shape time steps

is treated the same way as for the shape. Then, the shape field φ(~r, t) is replaced by

the delayed neutron source field (
∑
d λdCd(~r, t)) and the user-defined constant for the

error is now εd.

3. Reactivity Variation: The local reactivity field is calculated as:

ρj =
(νΣfφ)j

(Σaφ+∇ · ~J)j
∀j ∈ V (B.10)

where (νΣfφ)j, (Σaφ)j and (∇· ~J)j are the j-th cell value of the fission rate, absorption

rate and divergence of the neutron current respectively, and V is the total volume of

the domain. Then, the same procedure as for the shape variation is done replacing

the shape field φ(~r, t) by the local reactivity field ρ(~r, t) and the user-defined constant

for the error is now ερ.

4. Amplitude Test: This test uses the same logarithmic fitting as for the amplitude

time step criteria number 1 but in equation B.2 it replaces the amplitude time value

tni by the last registered shape function time value tBi , and the next amplitude time

value tni+1 by the next shape time value tBi+1 to be estimated. This way the new shape

time step size is estimated similarly to equation B.3 but replacing εn by the user

defined constant εB as:

∆tBi+1 =
log 10

εB

∣∣b+ 2ctBi
∣∣−1 (B.11)

5. Inverse Period: the inverse period value (αr = 1/Tr) is calculated as the time
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derivative of expression B.1:

α(t) =
d log n(t)

dt

=
1

n(t)

dn(t)

dt

= b+ 2ct (B.12)

Then the error criteria to be satisfied requires setting the user-defined value εα shown

in the following equation:

∣∣α(tBi+1)− α(tBi )
∣∣ ≤ εα (B.13)

The shape time step is, therefore, calculated as:

∆tBi+1 =
∣∣∣εα
2c

∣∣∣ (B.14)

Each of these criteria can be turn on and off separately. If more than one is selected, the

time control class chooses the minimum time step among them. All of these estimations of

the shape time step are evaluated at each amplitude time step since parameters a, b and c

in equation B.1 are always being updated with the last three amplitude values.

In addition, limiters on the values of the time steps can be set, either relative or

absolute. Relative limiters forbids any of the steps to be higher than the double of its last

value or smaller than half its last value. The absolute limiter is set directly by the user,

who indicates the maximum and minimum values tolerated for the amplitude and shape

time steps.

The values of the amplitude and shape time steps can be set to fixed values (this is

the option by default). The shape time step size can be set non-uniform by a list of values

given at the input (like in the case of Godiva from Section 5.1).

In the listing B.1 an example of the user-interface for the time control is shown. One

additional feature that should be considered is the Courant number time control (δt =

Co∆x/ |~u|) already implemented in OpenFOAM for fluid mechanics where δx is the mesh

size. This value is calculated in all the domain for each mesh and the minimum is chosen.

This way, the minimum between the amplitude time step and the Courant time step should

be prioritized.
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Listing B.1 – Time Control User Input example

1/* --------------------------------*- C++ -*----------------------------------*\

2| ========= | |

3| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4| \\ / O peration | Version: 5.x |

5| \\ / A nd | Web: www.OpenFOAM.org |

6| \\/ M anipulation | |

7\*---------------------------------------------------------------------------*/

8FoamFile

9{

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object timeParameters;

15}

16// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18/* ************* FIXED STEP ************ */

19fixedStep no;

20// Shape Step Value (s)

21formStep 100.e-6;

22// Amplitude Step Value (s)

23amplitudeStep 0.5e-6;

24

25/* ************* TABLE STEP ************ */

26formTable yes;

27// Table Values

28timeTable (

29 100.e-6

30 185.e-6

31 195.e-6

32 205.e-6

33 210.e-6

34 220.e-6

35 230.e-6

36 245.e-6

37 270.e-6

38 300.e-6

39 );

40// amplitude value for table

41amplitudeTable 0.5e-6;

42

43/* ********** AMPLITUDE CONTROL ******** */

44// logarithmic OR lineal
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45ampStepControl logarithmic;

46// Logaritmic amplitude time step estimation parameter

47epsilonLogAmp 10.;

48// Lineal amplitude time step estimation parameter (maximum relative error)

49relErrAmp 1.e-1;

50

51/* *********** SHAPE CONTROL ************ */

52// Shape Function Change Test

53shapeFunct yes;

54relErrForm 0.02;

55// Prec Function Change Test

56precFunct yes;

57relErrPrec 1.;

58// React Function Change Test

59reactFunct yes;

60relErrReact 0.001;

61// Amplitude Function Test

62ampTest yes;

63relErrAmpForm 1.;

64// Inverse Period Test

65invPeriodTest yes;

66inversePeriodParameter 1.e+6;

67// Tolerance in the case amplitude arrives too close to the shape step

68// value and the resulting amplitude step is nearly 0.

69matchTolerance 1.e-12;

70

71/* ************ LIMITERS *************** */

72// Limits Amplitude and Shape Steps to either half of double from its previous value

73relativeLimiter yes;

74// Limits Amplitude and Shape Steps to max or min values set

75maxMinLimiter no;

76deltaAmpMax 1000;

77deltaAmpMin 1;

78deltaFormMax 1;

79deltaFormMin 0.1;

80

81// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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Appendix C

Cavity Additional Results

In this Appendix the full results discussed in Section 5.2.1 for the Step 1.4 of the Molten

Salt Cavity Benchmark are presented followed by a comparison of the transient evolution

between the SP3 and the OF-PCQM for a perturbation period of 40 s are discused (Section

C.2).

C.1 Steady-State: Step 1.4 Results

In Section 5.2.1 the steady-state results for the MSCB were presented and the 2D

contour map results for the Step 1.4 were shown. The mentioned comparison along the

AA’ (x-axis) and BB’ (y-axis) are presented in this Appendix in Figure 2.3(A). Moreover,

Figure C.2 shows the x- and y-components contour maps and the their values along AA’

and BB’, respectively. The AA’ and BB’ plots for the fission rate, temperature and delayed

neutrons source are in Figure C.2. All curves still shows a correct agreement between the

methods.

C.2 Transient Results

As stated in Section 5.2.2 and Chapter 6 an important source of error is the correct

update of the kinetic parameters (equations 3.62) inside the flux shape time step, also

studied in Prince et al. [108] and Patricot et al. [47].

During the cavity transient, the flux shape does not change much but the distortion

of the precursors’ distribution shape have an impact on the kinetic parameters during the

amplitude calculations. These changes on the precursors distribution are taken into account
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(A) (B)

(C) (D)

(E) (F)

Figure C.1 – Step 1.4: Velocity (A) X-Component, (C) Y-component, (E) X-component
along AA’, (D) Y-component along AA’, (D) X-component along BB’ and protect(D)
Y-component along AA’ calculated in FiPy and OpenFOAM for SP3 (in FiPy and Open-
FOAM) and Serpent-OpenFOAM internal coupling models.
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(A)

(B) (C)

(D) (E)

Figure C.2 – Step 1.4: (A) Fission Rate, (B) Temperature along AA’, (C) Temperature
along BB’, (D) Delayed Neutron Source along AA’, (E) Delayed Neutron Source along
BB’ calculated in FiPy and OpenFOAM for SP3 (in FiPy and OpenFOAM) and Serpent-
OpenFOAM internal coupling models.
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for the flux shape calculations but not for the PK parameters update during the amplitude

calculations. Thus, a non-smooth evolution is predicted for the reactivity as can bee seen

on Figure C.3. Density correction is also needed, and it was indeed taken into account by

saving all fields cell-wise as explained in Section 4.3.1.2.3 and correcting reaction rates by

the relative density ρk defined in equation 4.4 and recalculating the kinetic parameters.

Nonetheless, this has not been enough to correct this step-wise reactivity. Then, it should

be considered adding such precursor shape update inside the amplitude time step.

Eventually, Doppler correction on the reactivity would also be needed but as explained

in section 2.2 the benchmark was designed to avoid doing so. Temperature effect can

be activated in the solver to account for it during the shape calculations. However, as

explained in Section 5.1.1, accounting for it during the amplitude time step has some

complexity.

Finally, it should be noted that the stochastic nature of Monte Carlo simulations explain

the fluctuations of the reactivity and could be improved by increasing the number of

neutron histories simulated.
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(A)

(B)

Figure C.3 – Power relative change during the transient evolution comparison for the
neutronics models (SP3 in OpenFOAM and Serpent-OpenFOAMMonte Carlo Quasi-Static
Method with internal coupling) and heat exchange coefficient relative change for a period
of T = 40 s.
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Appendix D

Navier-Stokes and Porous Medium

coupling

It was mentioned in Section 3.3.7 that the porous medium model implemented in this

work is a multi-phase multi-component one. However, in Section 5.3 thermal and species

equilibrium conditions were set and it was not exploited to is maximum performance for a

couple of motives that will be enumerated in Section D.1.

In addition, a more comprehensive model to study the Spent Fuel Pool from Chapter 5

should include a multi-phase Navier-Stokes model for the free stream (i.e. the water in the

pool outside the racks) as mentioned in the perspectives of Chapter 6. For this purpose,

already existing algorithms in OpenFOAM can be added to the multi-physics tool. This

models are briefly introduced in Section D.2.1 and the interface conditions necessary to

coupled the phenomena between the porous medium model (inside the racks) and the free

stream (outside the racks) are shown in Section D.2.2.

D.1 Porous Medium Model

The most crucial aspect to use a porous medium model to its full extent is the in-

put data. The complexity in geometrical modeling, mesh refinement and computational

cost from solving Navier Stokes in a FA (heterogeneous system) can be reduced when a

REV is used to homogenise the equations. However this approach only switch the prob-

lem complexity from the geometry description (mesh) to the determination of the porous

medium equations. As a consequence, the link between microscopic phenomena is often
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done through parameters that are empirically (or pseudo-empirically) correlated to macro-

scopic variables. For instance, the dimensionless quantities defined in Table 3.1 for mass

and heat transfer are normally based on pseudo-empirical correlations as functions of the

main variables (velocity, temperature, pressure). These correlations are not unique since

they depend on the amount of phases, the phase material, geometry, type of flow, variables

values range, among others. For this reason, depending on the type of problem a different

correlation is needed (if it even exists). As discussed in Section 3.3.7.1 the relationship

between the macroscopic and microscopic diffusion coefficient has to take into account the

presence of different phases and the porous structure of the system, the model presented in

that section is for soil studies and it should be studied its application to other systems. The

non-equilibrium of mass requires the knowledge of the equilibrium concentration for each

species in each phase, which can be obtained from equilibrium relations such as Henry’s

and Raoult’s law but a more thourough option would be to account for the equilibrium

of chemical potential taking into account different phase pressures (due to capillarity) and

temperatures (due to heat generation). This latter equilibrium discussion also applies

to all thermodynamics properties that are needed no be closed with corresponding state

relationships. For the relative permeability and capilarity calculations some models are

needed, being the most known of them the Brooks & Corey model and the Van Genuchten

model as explained in Section 3.3.7.5, however this were derived for soils and not nec-

essarily applicable to Spent Fuel Pools. Finally, the information on the interfacial areas

between phases is needed to be estimated as function of the saturation or by proposing

more complex models based on lattice Boltzmann for example.

Once all of these considerations are taking into account, the model consists in a thirteen

(13) equations system with thirteen (13) unknowns (2 saturations, 4 species concentrations,

2 velocities, 3 temperatures and 2 pressures fields) for a three phase (solid, wetting, non-

wetting) and two species per phase (H2O and Air). Thus, the numerical stability in such

a system (which can also be compressible) is not trivial. Specially, the treatment of sharp

interfaces requires very robust discretization schemes for the jumps present in all properties

of the system. Just as Horgue [19] did, all parameters are interpolated from the centers to

the face in order to smooth the sharp edges. Additionally, the IMPES method needs to be

tested and evaluate its performance in the mass and thermal non-equilibrium case.

In the case of a recriticality accident in the SFP, boiling and evaporation will be
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important to asses the neutronical coupling between racks, as it was studied statically with

the Air-Vapor mixture in Section 5.3.2. Then, the non-equilibrium model will address this

aspect of the transient phenomena . In addition, when a significant heat generation, such

as fission power, is present in the system, temperatures are no longer in equilibrium and

multiple energy balances are required setting a temperature for each phase.

D.2 Spent Fuel Pool comprehensive transient

A more comprehensive model to treat the phenomena in a SFP accident will require

the interaction with the pool system. This is, everything outside the rack, to which we

will refer to as the free stream. Outside the rack, the complexity in the geometry does not

exist anymore and we can once again based our analysis in the Navier-Stokes equations.

For this purpose we would need to consider mainly two aspects: the type of flow we want

to model and the coupling conditions with the porous medium model at the interface. The

first aspect will be addressed in Section D.2.1 and the latter in Section D.2.2.

D.2.1 Multi-phase models

During a LOCA/LOFA different situations can be encountered with one or more multi-

phase flow patterns. For simplicity, we are going to analyse the case of a two-phase flow,

but this behaviour can be extended to more phases. The flow pattern depends on the

properties of the phases, the fraction of the phases (volume % of the phase in the domain

of interest) present and the flow condition. If one of the phases is present in much larger

amount than the other (i.e. the fraction is a lot larger) it can be considered as a background

phase with the other phase dispersed in it, for example if the gas phase is the dominant

one there will be droplets dispersed in it, and opposite, if the liquid phase is dominant,

bubbles will be dispersed in it. This is called a dispersed flow as it can be observed

in Figure D.1. If the fraction difference is not large between the phases, then significant

interfacial areas will be formed between them producing, depending on the shear stress

rate, transient or separated two-phase flow. More on two-phase flow can be found in Levy

[131].

As stated in Adorni et al. [15] there can be considered four different scenarios which

may affect the FAs during a SFP LOCA/LOFA: completely covered, partly uncovered
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(A) Transient

(B) Separated

(C) Dispersed

Figure D.1 – Two Phase Flow (Source: Picture by Rudolf Hellmuth, distributed under
a CC BY-SA 4.0 license).

but intact, partly covered and damaged, and completely uncovered as shown in Figures

D.2(A) to D.2(D). For modeling the event of fuel damaged in Figure D.2(C) we would

need more complex fuel performance models which are not the purpose of this Appendix

but nonetheless important for serious accidents. The attention will be focused in the

hydraulics mainly. In the other situations, the existence of a moving free surface (uncover

of assemblies) marks the need for a segregated flow modeling and the presence of boiling

and evaporation shows the appearance of a dispersed phase in it. Both in the presence of

gravity and, therefore, natural convection. The production of hydrogen due to the clad -

vapor interaction could eventually be evaluated, being hydrogen concentration in air an

important factor in safety.

The computational modeling of multi-phase flows is not unique and a wide variety

of models exists. A major classification can be done between an Eulerian-Eulerian

approach or an Eulerian-Lagrangian approach [132].

In the Eulerian-Eulerian approach the phases are considered as interpenetrating con-

tinua and the concept of volume fraction is introduced which adds up to one (1) at each
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(A) (B) (C) (D)

Figure D.2 – Thermal-hydraulics conditions in different scenarios of an SFP LO-
CA/LOFA (Source: [15]).

point of the space. Conservation equations are derived for each phases closed by empirical

information (drag laws for example). This approach can account for both segregated and

dispersed flow. One particular case in this Eulerian multi-phase approach is the Volume of

Fluid (VOF) model. In the VOF model it is never allowed to have both phases present in

a cell at the same time. Then, the momentum equations are collapsed to only one, a new

term due to surface tension at the interface between phases is added and fluid properties

are redefined as functions of the volume fractions. The sharp gradients at the interface are

accounted for by adequate discretization of the advection term for capturing the interface

such as compressive interface captruing (CICSAM) or piece-wise interface con-

struction (PLIC), or by the rewritten the Eulerian two-phase form of the phase fraction

equation as done by Rusche [133].

In the Eulerian-Lagrangian approach one of the phases is considered as a continuous

and the second one as dispersed. In this case, each individual particle of the dispersed phase

is track in what is called a Lagrangian Particle Tracking method. Some approaches

will model parcels of particles because of computational cost. The continuous phase is

modeled with conservation balance equations and additional terms are added to account

for the interactions with the particles of the dispersed phase. In general, this approach is

opted when the mesh refinement of the Eulerian-Eulerian approach mesh can no longer

follow the individual bubbles or droplets present.

In OpenFOAM a wide range of multi-phase solvers following both approaches exists.

However, choosing the correct one is not trivial. Perhaps, the most comprehensive solver
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is the reactingMultiphaseEulerFoam [134] following an Eulerian-Eulerian approach known

as Euler multi-phase model. It is capable of solving any number of phases with a common

pressure and separate properties. In addition, it can represent multiple species and in-phase

reaction (useful for hydrogen production modeling or radiolysis) as well as momentum, heat

and mass transfer. Moreover, since its implementation is based on the work of Rusche

[133] previously mentioned, it can account for sharp interfaces and as a consequence model

both segregated flow (for example free surfaces) and dispersed flow (for example bubbles).

However, this type of approach is computationally expensive since it has to model all

conservation balance equations for each phase. Then, the VOF model is preferred up to

a certain droplet/bubble size under which the surface tension and the particle interaction

between them is no longer correctly considered. If the dispersed fraction becomes too

small it should be evaluated if an Eulerian-Lagrangian approach is more convenient. In

[135] both Eulerian-Eulerian and Eulerian-Lagrangian approaches are used in the same

domain, so a combination of methods is eventually possible. Further explanation on the

Euler multi-phase model can be found in Rusche [133], Capelli [136] and Orungati [137].

Other aspects to consider is the distribution of the droplet/bubble (if mono-dispersed

or not) and the modeling of drag, lift, virtual mass and mass transfer phenomena. Many

modeling features for this exists in OpenFOAM, however, it is not guarantee to fit the Spent

Fuel Pool accident modeling. Nonetheless, OpenFOAM is specially useful for tailoring

existing solvers to the user (with some programming knowledge) needs.

D.2.2 Navier-Stokes - Porous Medium Interface Conditions

Normally, the Navier-Stokes and the porous medium models for one phase are modeled

as one equation with a Darcy-Forchheimer [138] term that is turn on or off depending at

which place of the domain is being solved. This way, under a single mesh a porous zone is

defined and solve with the strategy previously mentioned. However, as more phenomena

are involved in the model (such as multiple phases, natural convection, species transport,

chemical reactions, boiling/evaporation, CHT, among others) these modification on the

Navier-Stokes equations are far from trivial. In addition, the mesh refinement ant the

space and time resolution schemes can be very different at each domain (porous or free

fluid). For these reason, it would be better to have the models as independent as possible.

Fortunately, OpenFOAM allows the definition of the multiple subdomains or regions, i.e.,
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the system to be modeled can be split in independent mesh domains with independent

models. Then, they will be linked at their interfaces. To this purpose, interfacial condi-

tions at the boundaries of the regions have to be defined, these are known as baffles in

openfoam and some examples of how to implement them are available at the OpenFOAM

package.

Now, the problem resides in defining which mathematical expressions links both models.

Depending on the multi-phase model used in the pool system, the coupling conditions differ

mathematically. Nonetheless, in general mechanical, compositional and thermal conditions

needs to be imposed. An example of such conditions, based on a REV averaging local

thermodynamic equilibrium and continuity of fluxes conditions is shown in the work of

Grüninger [139] for a two-phase two-component porous medium coupled to a free flow

Navier-Stokes model only in the non-wetting (gas) phase. This is not the case presented in

this work but it highlights the main key points to be considered in the coupling conditions.

First, the mechanical coupling condition are the mass conservation across the interface

or continuity of the total mass fluxes

(ρnVn)
NS · ~n = (ρnVn + ρWVW )

PM · ~n (D.1)

and the continuity of normal stress

~n ·
(
ρnVnV

T
n − µn∇Vn

)NS · ~n+ pNSn = pPMn (D.2)

As said before, this formulation considers that the free flow is only in the gas phase and

water vaporises when it reaches it from the porous medium. A more convenient formulation

for our case would be continuity of mass fluxes and normal stresses for each phase, i.e.

(ραVα)
NS · ~α = (ραVα)

PM · ~n (D.3)

~n ·
(
τα
)NS · ~n+ pNSα = pPMα (D.4)

where τα is the (viscous and Reynolds) stress tensor for the α phase. It should be noted

that the difference in the models will led to a pressure jump at the interface.

The tangential momenta should be evaluated as well. It was usually used no-slip con-

ditions (Figure D.3(A)) at the interface, which simplifies the coupling. However, Beavers
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and Joseph [140] concluded that using the following expression is more accurate due to the

creeping of the free flow into the porous medium:

(
γBJ

(
V NSα − V̂ PMα

)
−
√
k∇V NSα ~n

)
· ~ti = 0 (D.5)

where V̂ PM is the seepage velocity, γBJ is an experimental slip parameter. In addition,

Saffman [141] simplifies this condition arguing that the seepage velocity in comparison to

the free flow velocity is small and can be neglected reducing it to:

(
γBJV

NS
α −

√
k∇V NSα ~n

)
· ~ti = 0 (D.6)

(A) (B) (C)

Figure D.3 – Tangential momentum condition: (A) No-Slip, (B) Beavers-Joseph and (C)
Beavers-Joseph-Saffman. Source: [139]

In Figure D.3 this approaches are compared. Other approaches to do this exists and

are briefly discussed in [139]. It is remarked that the analysis in the cited work is done for

soil and its extrapolation to fuel assemblies should be evaluated.

The compositional coupling consists in the continuity of mass or molar fractions and the

continuity of component fluxes. For the mass local equilibrium assumption in Grüninger

[139] they can be written as:

xk,NSα = xk,PMα (D.7)(
ραx

k
αVα + jkα

)NS · ~n =
(
ραx

k
αVα + jkα

)PM · ~n (D.8)

recalling that jkα is the diffusive flux of the α phase for the k component. In our case, the

continuity of mass fraction and component fluxes is also needed but taking into account
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the non-equilibrium terms.

Similarly, the thermal coupling in [139] (with local thermal equilibrium assumption)

consists in the continuity of temperature and heat fluxes:

TNS = TPM (D.9)(
ρnhnVn + h

H2O
n j

H2O
n + hAirn jAirn − λn∇T

)NS
· ~n = (ρnhnVn + ρwhwVw − λPM∇T )

PM · ~n

(D.10)

which for our case of non-equilibrium should be assured the continuity of temperatures

(Tα) and heat fluxes for each phase.

This interfacial coupling is by no meas exhaustive, and it should be adapted to the

chosen model for the multi-phase free flow (Section D.2.1) and the thermal and mass non-

equilibrium in the porous medium model presented in Section 4.3.3.2. Other works treating

this coupling are in [142][143][144]. In addition, DuMux [145][146] is a vast porous medium

open-source code including free-flow coupling, although, not extensive, that can be used

to verified models.
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Nomenclature

Section 2.1

Ḟ Fission Rate

ρ0 Initial Super-Prompt Reactivity

tm Burst Fission Rate Peak Time

Tr Reactor Period

Section 2.2

ρ Density

Σ Macroscopic Cross Section

hsink Volumetric Heat Removal Coefficient

q
′′′ Volumetric Heat Sink

T Temperature

Tp Perturbation Period

Tref Reference Temperature

Ux Density

Section 3.1

c̄d W -weighted Precursor Family d Concentration

β Total Delayed Neutron Fraction

βd Delayed Neutron Fraction for Precursor Family d

βeffd W -weighted Delayed Neutron Fraction for Precursor Family d

χd Delayed Neutron Emission Spectrum Fraction for Precursor Family d

χgd Delayed Neutron Emission Spectrum Fraction for Precursor Family d for the Energy

Group g

χp Prompt Neutron Emission Spectrum Fraction

χgp Prompt Neutron Emission Spectrum Fraction for the Energy Group g

δgg′ Kronecker Delta
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Λ W -weighted Generation Time

λd Decay Constant for Precursor Family d

λs Monier’s W -weighted Constant Correction

F Fission Operator

L Transport Operator

S Scattering Operator

T Removal Operator

µ Cosine of the Direction Angle θ in the Lab System

ν Average Number of Neutrons Emitted per Fission

ν Fission Macroscopic Cross Section

φ Neutron Angular Flux Shape Function

φ+ Adjoint Neutron Angular Flux Shape Function

Φn Multi-group Neutron Angular Flux Matrix of order n in the Legendre Polynomial

Expansion

φn Neutron Flux Coefficient of order n in the Legendre Polynomial Expansion of the

Angular Flux

ψ Neutron Angular Flux

Ψ− Inward Angular Flux

ψg Neutron Angular Flux for the Energy Group g

ρ W -weighted Reactivity

Σ Macroscopic Cross Section

Σa Absorption Macroscopic Cross Section

Σf Fission Macroscopic Cross Section

Σgf Total Macroscopic Cross Section for the Energy Group g

Σm Scattering Macroscopic Cross Section Coefficient of order m in the Legendre Poly-

nomial Expansion of the Scattering Macroscopic Cross Section

Σn Multi-group Removal Cross Section Matrix of order n in the Legendre Polynomial

Expansion

Σs Scattering Macroscopic Cross Section

Σgg
′

s Scattering Macroscopic Cross Section from Energy Group g′ to g

Σgtot Total Macroscopic Cross Section for the Energy Group g

Σt Total Macroscopic Cross Section
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~Ω Direction Cosines

~n Normal Vector

~r Spatial Coordinates

~u Fluid Velocity

Cd,max Maximum Precursors Concentration Value for Precursor Family d

Cd Precursor’s Family d

D Diffusion Coefficient of order 1 in the Legendre Polynomial Expansion

Dd Molecular Diffusion Coefficient for Precursor Family d

E Energy

F Multi-group Neutron Fission Source Matrix

f Physical Parameter

Gd Number of Precursor Families

H W -weighted Fission Source

I1/v Multi-group Neutron Inverse Speed Matrix

keff Effective Multiplication Factor

kn Multiplication Factor for cycle n+ 1

li Length of the Track of the i-th Simulated Neutron

n Neutron Angular Flux Amplitude Function

Ng Number of Energy Groups

Pn Legendre Polynomial of order n

R Flux Integral for a Physical Parameter f

Sd Multi-group Delayed Neutron Source Matrix

t Time

t0 Initial Time

v Neutron Speed

W Weight Function

W0 Time-independent Weight Function

wi Weight of the i-th Simulated Neutron

Xd Multi-group Delayed Neutron Emission Spectrum Fraction for Precursor Family d

Matrix

Section 3.2

α Thermal Expansion Coefficient
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εi Normal Strain in i-direction

γij Shearing Strain Normal to the i-direction and Parallel to the j-direction

µ, λ Lamé’s Coefficients

ν Poisson’s Ratio

ε Strain Tensor

σ Stress Tensor

ρ Density

σi Normal Stress in i-direction

τij Tangencial Stress Normal to the i-direction and Parallel to the j-direction

~D Displacement Vector

~f Body Forces

~n Normal Vector

~r Spatial Coordinates

~t Applied Traction

E Young’s Modulus

G Module of Elasticity in Shear or Modulus of Rigidity

I Identity Matrix

p External Pressure

t Time

T0 Initial/Reference Temperature

Section 3.3

β Coefficient of Volume Expansion

η̇kwn→α Mass Flux between Phases

Q̇ Rate of Heat Addition

q̇R Turbulent Heat Flux

q̇S Rate of Heat Source or Sink per Unit Surface

q̇V Rate of Heat Source or Sink per Unit Volume

Ẇ Rate of Work Extraction

Ẇb Rate of Work done by Body Forces

Ẇs Rate of Work done by Surface Forces

D
Dt Material or Lagrangian Derivative

ĥ Specific Enthalpy
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V̂ Specific Volume

λ Bulk Viscosity Coefficient

λα Heat Conductivity of the α Phase

µ Molecular Viscosity Coefficient

µα Dynamic Viscosity of the α Phase

µt Turbulent Eddy Viscosity

ν Kinematic Viscosity or Momentum Diffusivity

σ Stress Tensor

τ Deviatoric or Viscous Stress Tensor

τ
R Reynolds Stress Tensor

I Identity Matrix

φ Porosity

ρ Density

ρ0 Initial/Reference Density

ρα Density of the α Phase

ρkα Density of the Species k in the α Phase

τ Tortuosity

~g Gravity Vector

~n Normal Vector

~r Spatial Coordinates

~u Fluid Velocity

~ur Relative Velocity

~us Velocity of the Deforming Control Surface

~w Angular Velocity

aij Average Interfacial Surface Between i and j Phases

B Property of the Fluid

b Intensive Value of B

c Specific Heat Capacity of the Solid Phase

cp Specific Heat Capacity at Constant Pressure

Dk Diffusion of the k Species

Dk
α,pm Macroscale Diffusion Coefficient of the Species k in the α Phase

E Energy
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e Specific Energy

f Body or Surface Force

fb Body Force

fs Surface Force

Hk Henry’s Law Coefficient of the k Species

hα Specific Enthalpy of the α Phase

hkα Specific Enthalpy of the Species k in the α Phase

jkα Macroscale Diffusion of the Species k in the α Phase

K Permeability

k Thermal Conductivity

kr,α Relative Permeability of the α Phase

kt Turbulent Thermal Diffusivity

L Characteristic Length

m Mass

n Non-Wetting Phase

p Pressure

pα Pressure of the α Phase

pc Capillary Pressure

qenergyα Power Source of the α Phase

qkα Mass Source of the Species k in the α Phase

Sα Saturation of Phase α

T Temperature

T0 Initial/Reference Temperature

Tα Temperature of the α Phase

U Characteristic Velocity

uα Specific Internal Energy of the α Phase

V Volume

V (t) Deformable Control Volume

Vα Velocity of the α Phase

w Wetting Phase

xkα,equil Equilibrium Mass Fraction of the Species k in the α Phase

xkα Mass Fraction of the Species k in the α Phase
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Section 4.3.1

c̄d W -weighted Precursor Family d Concentration

β Total Delayed Neutron Fraction

βd Delayed Neutron Fraction for Precursor Family d

βeffd W -weighted Delayed Neutron Fraction for Precursor Family d

χgd Delayed Neutron Emission Spectrum Fraction for Precursor Family d for the Energy

Group g

χgp Prompt Neutron Emission Spectrum Fraction for the Energy Group g

∆t Flux Shape Time Step

δt Amplitude/Point Kinetics Time Step

∆ Mesh Cell Inverse Center-Face Distance Parallel to ~n at the Boundary

ε Fission Energy

Λ W -weighted Generation Time

λl Decay Constant for Precursor Family l

F Fission Operator

ν Average Number of Neutrons Emitted per Fission

ωi Weight of the i-th Neutron Simulated

φ Neutron Angular Flux Shape Function

φgn Neutron Flux Coefficient of order n in the Legendre Polynomial Expansion of the

Angular Flux for Energy Group g

ψ Neutron Angular Flux

ρ W -weighted Reactivity

ρ Density

ρ0 Initial/Reference Density

Σ Macroscopic Cross Section

Σgn Remotion Macroscopic Cross Section Coefficient of order n in the Legendre Poly-

nomial Expansion of the Scattering Macroscopic Cross Section for Energy Group

g

Σgsn Scattering Macroscopic Cross Section Coefficient of order n in the Legendre Poly-

nomial Expansion of the Scattering Macroscopic Cross Section for Energy Group

g

Σf Fission Macroscopic Cross Section
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Σgf Total Macroscopic Cross Section for the Energy Group g

Σref Initial/Reference Macroscopic Cross Section

Σr r-Reaction Macroscopic Cross Section

Σgg
′

s Scattering Macroscopic Cross Section from Energy Group g′ to g

Σt Total Macroscopic Cross Section

Σgt Total Macroscopic Cross Section for the Energy Group g

~Ω Direction Cosines

~J Neutron Current

~n Normal Vector

~r, ~r0 Spatial Coordinates

~ri Spatial Coordinates for the i-th Neutron Simulated

~rj Spatial Coordinates for the j-th Mesh Cell

~u Fluid Velocity

Cd, Cd0
, Cl Precursors Distribution for Family d, d0, l respectively

Dd Molecular Diffusion Coefficient for Precursor Family d

E Energy

Ei Energy of the i-th Neutron Simulated

f Physical Parameter

F g Prompt Fission Source for the Energy Group g

F g Prompt Fission Source

kj Multiplication Factor of the j-th Iteration

kneut External Iterations Counter for Neutronics

N Neutron Density

n Neutron Angular Flux Amplitude Function

P Volumetric Power

R Flux Integral for a Physical Parameter f

Sgd Delayed Neutron Source for Precursor Family df or the Energy Group g

Sgn n-th Order Scattering Source for the Energy Group g

T Temperature

t0 Initial Time

Tref Initial/Reference Temperature

Ugn Neutron Flux Coefficient of order n in the Legendre Polynomial Expansion of the
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Angular Flux with Change of Coordinates for Energy Group g

v Neutron Speed

vg Neutron Speed for Energy Group g

Vj Volume of j-th Mesh Cell

W0 Time-independent Weight Function

Section 4.3.2

α Thermal Expansion Coefficient

µ, λ Lamé’s Coefficients

ν Poisson’s Ratio

ρ Density

~D Displacement Vector

~f Body Forces

~r Spatial Coordinates

E Young’s Modulus

I Identity Matrix

T Temperature

t Time

Section 4.3.3

D
Dt Material or Lagrangian Derivative

µ Molecular Viscosity Coefficient

µα Dynamic Viscosity of the α Phase

φ Porosity

ρ Density

ρα Density of the α Phase

~g Gravity Vector

~n Normal Vector

~u Fluid Velocity

fb Body Force

K Permeability

kr,α Relative Permeability of the α Phase

n Non-Wetting Phase

p Pressure
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pα Pressure of the α Phase

pc Capillary Pressure

qα Mass Source of the α Phase

Sα Saturation of Phase α

t Time

Vα,fixed Imposed Velocity at the Boundary for the α Phase

Vα Velocity of the α Phase

Vfixed Imposed Velocity at the Boundary

w Wetting Phase

Section 5.1

α Thermal Expansion Coefficient

αnorm Normalization Factor

β W -weighted Delayed Neutron Fraction

βd Delayed Neutron Fraction for Precursor Family d

χd Delayed Neutron Emission Spectrum Fraction for Precursor Family d

χp Prompt Neutron Emission Spectrum Fraction

Λ W -weighted Generation Time

F Fission Operator

L Transport Operator

S Scattering Operator

T Removal Operator

ν Poisson’s Ratio

φ Neutron Angular Flux Shape Function

ρ W -weighted Reactivity

ρ Density

σ Standard Deviation

~Ω Direction Cosines

~J Neutron Current

~r Spatial Coordinates

c Specific Heat Capacity

E Energy

E Young’s Modulus
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Gd Number of Precursor Families

H W -weighted Fission Source

k Multiplication Factor

k Thermal Conductivity

k0 Initial Multiplication Factor

n Neutron Angular Flux Amplitude Function

T Temperature

t Time

t0 Initial Time

Tr Reactor Period

W0 Time-independent Weight Function

Section 5.2

α Thermal Expansion Coefficient

ν Kinematic Viscosity

φ Neutron Angular Flux Shape Function

ρ Density

ρ Reactivity

Σf Fission Macroscopic Cross Section

Θ Phase Shift

~n Normal Vector

~v Fluid Velocity Field

A Perturbation Amplitude

C Volumetric Heat Capacity

Cd Precursors Distribution for Family d

hsink Volumetric Heat Removal Coefficient

Pref Initial/Reference Power

T Temperature

Tp Perturbation Period

Ux Top Lid Tangential Velocity

Section 5.3

φ Porosity

ρ Density
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ρα Density of the α Phase

H Rack Water Level

h Pool Water Level

hα Specific Enthalpy of the α Phase

K Permeability

keff Multiplication Factor

n Non-Wetting Phase

pα Pressure of the α Phase

Sα Saturation of Phase α

T Temperature

Tα Temperature of the α Phase

uα Specific Internal Energy of the α Phase

w Wetting Phase

Chapter 6

β Total Delayed Neutron Fraction

λd Decay Constant for Precursor Family d

ν Average Number of Neutrons Emitted per Fission

φ Neutron Angular Flux Shape Function

Σf Fission Macroscopic Cross Section

Cd Precursors Distribution for Family d

n Neutron Angular Flux Amplitude Function

t Time
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