B. James and A. Hudgins, Chapter 1 -Failure analysis of oil and gas transmission pipelines A2 -Aliofkhazraei, Handb. Mater. Fail. Anal. with Case Stud. from Oil Gas Ind., Butterworth-Heinemann, pp.1-38, 2016.

V. S. Sastri, 5 -Corrosion processes and the use of corrosion inhibitors in managing corrosion in underground pipelines A2 -Orazem, Mark E, pp.127-165, 2014.

C. Chautard, J. E. Lartigue, M. Libert, F. Marsal, and L. D. Windt, An Integrated Experiment Coupling Iron/Argillite Interactions with Bacterial Activity, Procedia Chem, vol.7, pp.641-646, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00747917

M. Saheb, D. Neff, P. Dillmann, H. Matthiesen, and E. Foy, Long-term corrosion behaviour of lowcarbon steel in anoxic environment: Characterisation of archaeological artefacts, J. Nucl. Mater, vol.379, pp.118-123, 2008.

Y. Fors, F. Jalilehvand, E. D. Risberg, C. Björdal, E. Phillips et al., Sulfur and iron analyses of marine archaeological wood in shipwrecks from the Baltic Sea and Scandinavian waters, J. Archaeol. Sci, vol.39, pp.2521-2532, 2012.

H. T. Dinh, Iron corrosion by novel anaerobic microorganisms, Nature, vol.427, pp.829-832, 2004.

H. Li, E. Zhou, D. Zhang, D. Xu, J. Xia et al., Microbiologically influenced corrosion of 2707 hyper-duplex stainless steel by marine Pseudomonas aeruginosa biofilm, Sci. Rep, vol.6, 2016.

H. Venzlaff, D. Enning, J. Srinivasan, K. J. Mayrhofer, A. W. Hassel et al., Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria, Corros. Sci, vol.66, pp.88-96, 2013.

R. Jeffrey and R. E. Melchers, Bacteriological influence in the development of iron sulphide species in marine immersion environment, Corros Sci, vol.45, pp.693-714, 2003.

H. L. Ehrlich, Microbes and metals, Appl Microbiol. Biotechnol, vol.48, pp.687-692, 1997.

W. Lee, Z. Lewandowski, P. H. Nielsen, and W. A. Hamilton, Role of sulfate-reducing bacterie in corrosion of mild steels: a review, Biofouling, vol.8, pp.165-194, 1995.

S. Kakooei, M. C. Ismail, and B. , Ariwahj edi, Mechanisms of microbiologically influenced corrosion: a review, World Appl Sci. J, vol.17, p.524, 2012.

R. A. King and J. D. Miller, Corrosion by the sulphate-reducing bacteria, Nature, vol.233, pp.491-492, 1971.

M. L. Schlegel, C. Bata-llon, D. Blanc, E. Prêt, and . Foy, Anodic Activation of Iron Corrosion in Clay Media under Water Saturated Conditions at 90 °C: Characterization of the Corrosion Interface, Envir n. S i. Technol, vol.44, pp.1503-1508, 2010.

M. Saheb, D. Neff, J. Demory, E. Foy, and P. Dillmann, Characterisation of corrosion layers formed on fer ous archaeological artefacts buried in anoxic media, Corros. Eng. Sci. Technol, vol.45, pp.381-387, 2010.

F. King, Corrosion of carbon steel under anaerobic conditions in a repository for SF and HLW in Opalinus Clay, Integrity Corrosion Consulting Ltd, 2008.

V. Fe-l and M. Ward, Iron sulphides : Corrosion products on artifacts from waterlogged deposits, Met. 98 Conf. Met. Conserv., James and James, pp.111-115, 1998.

C. Rémazeilles, M. Saheb, D. Neff, E. Guilminot, K. Tran et al., Microbiologically influenced corrosion of archaeological artefacts: characterisation of iron(II) sulfides by Raman spectroscopy, J. Raman Spectrosc, vol.41, pp.1425-1433, 2010.

R. A. King and J. D. Miller, Corrosion of mild steel by iron sulfides, Br. Corros. J, vol.8, 1973.

D. W. Shoesmith, P. Taylor, M. G. Bailey, and D. G. Owen, The Formation of Ferrous Monosulfide Polymorphs during the Corrosion of Iron by Aqueous Hydrogen Sulfide at 21°C, J. Electrochem. Soc, vol.127, pp.1007-1015, 1980.

W. Sun and S. Ne?i?, A Mechanistic Model of Uniform Hydrogen Sulfide/Carbon Dioxide Corrosion of Mild Steel, Corrosion, vol.65, pp.291-307, 2009.

A. G. Wikjord, T. E. Rummery, F. E. Doern, and D. G. Owen, Corrosion and deposition during the exposure of carbon steel to hydrogen sulphide-water solutions, Corros. Sci, vol.20, pp.90101-90109, 1980.

Y. Zheng, B. Brown, and S. Ne?i?, Electrochemical Study and Modeling of H2S Corrosion of Mild Steel, Corrosion, vol.70, pp.351-365, 2013.

R. W. Revie, Corrosion and corrosion control: an introduction to corrosion science and engineering, 2008.

H. A. Videla, Prevention and control of biocorrosion, Int. Biodeterior. Biodegrad, vol.49, pp.53-60, 2002.

G. Muyzer and A. J. Stams, The ecology and biotechnology of sulphate-reducing bacteria, Nat. Rev. Microbiol, vol.6, pp.441-454, 2008.

J. R. Postgate, The Sulphate-Reducing Bacteria, CUP Archive, 1979.

D. Rickard and G. W. Luther, Chemistry of Iron Sulfides, vol.107, pp.514-562, 2007.

L. G. Benning, R. T. Wilkin, and H. L. Barnes, Reaction pathways in the Fe-S system below 100°C, vol.167, pp.198-207, 2000.

N. G. Harmandas and P. G. Koutsoukos, The formation of iron(II) sulfides in queou solutions, J. Cryst. Growth, vol.167, pp.257-263, 1996.

S. Hunger and L. G. Benning, Greigite : a true intermediate on the polysulfide pathway to pyrite, Geochem. Trans, pp.1-20, 2007.

M. A. Schoonen and H. L. Barnes, Reactions forming pyrite and marcasi e from solution: I. Nucleation of FeS2 below 100°C, vol.55, pp.1495-1504, 1991.

I. B. Butler and D. Rickard, Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide, Geochim. Cosmochim. Acta, vol.64, pp.2665-2672, 2000.

M. Langumier, R. Sabot, R. Obame-ndong, S. Jeannin, P. Sablé et al., Formation of Fe(III)-containing mackinawite from hydroxysulphate green rust by sulphate reducing bacteria, Corros. Sci, vol.51, pp.2694-2702, 2009.

B. W. Sherar, I. M. Power, P. G. Keech, S. Mitlin, G. Southam et al., Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion, Corros. Sci, vol.5, pp.955-960, 2011.

C. Kendall and E. A. Caldwell, Fundamentals of Isotope Geochemistry, pp.51-86

B. Brunner and S. M. Bernasconi, A revised isotope fractionation model for dissimilatory sulfate reduction in ulfate reducing bacteria, Geochim. Cosmochim. Acta, vol.69, pp.4759-4771, 2005.

C. E. Rees, A steady-state model for sulphur isotope fractionation in bacterial reduction pr cesse, Geochim. Cosmochim. Acta, vol.37, pp.90052-90057, 1973.

D. E. Canfield, Biogeochemistry of sulfur isotopes, Rev. Mineral. Geochemistry, vol.43, pp.607-636, 2001.

M. S. Sim, T. Bosak, and S. Ono, Large Sulfur Isotope Fractionation Does Not Require Disproportionation, Science (80-. ), vol.333, pp.74-77, 2011.

D. E. Canfield, Isotope fractionation by natural populations of sulfate-reducing bacteria, Geochim. Cosmochim. Acta, vol.65, issue.00, pp.584-590, 2001.

M. C. Stam, P. R. Mason, C. Pallud, and P. Van-cappellen, Sulfate reducing activity and sulfur isotope fractionation by natural microbial communities in sediments of a hypersaline soda lake, Chem. Geol, vol.278, pp.23-30, 2010.

J. Kleikemper, M. H. Schroth, S. M. Bernasconi, B. Brunner, and J. Zeyer, Sulfur isotope fractionation during growth of sulfate-reducing bacteria on various carbon sources, Geochim. Cosmochim. Acta, vol.68, pp.4891-4904, 2004.

H. G. Thode, J. Monster, and H. B. Dunford, Sulphur isotope geochemistry, Geochim. Cosmochim. Acta, vol.25, pp.90074-90080, 1961.

G. Antler, A. Turchyn, V. Rennie, B. Herut, and O. Sivan, Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment, Geochim. Cosmochim. Acta, vol.118, pp.98-117, 2013.

M. C. Stam, P. R. Mason, A. M. Laverman, C. Pallud, and P. Van-cappellen, 34S/32S fractionation by sulfate-reducing microbial communities in estuarine sediments, Geochim. Cosmochim. Acta, vol.75, pp.3903-3914, 2011.

C. Lerouge, S. Grangeon, E. C. Gaucher, C. Tournassat, P. Agrinier et al., Mineralogical and isotopic record of biotic and abiotic diagenesis of the Callovian-Oxfordian clayey formation of Bure (Franc ), Geochim. Cosmochim. Acta, 2011.

B. Little, P. Wagner, and J. Jones-meehan, Sulfur isotope fractionation by sulfat red cing bacteria in corrosion products, Biofouling, vol.6, pp.279-288, 1993.

S. Grousset, M. Bayle, A. Dauzeres, D. Crusset, V. Deydier et al., Study of iron sulphides in long-term iron corrosi n processes: Characterisations of archaeological artefacts, Corros. Sci, vol.112, pp.264-275, 2016.

A. Seyeux and P. Marcus, Analysis of the chemical or bacterial rigin of iron sulfides on steel by time of flight secondary ion mass spectrometry (ToF SIMS), Corros. Sci, vol.112, pp.728-733, 2016.

A. E. Menjra, A. Seyeux, D. Mercier, Z. Beech, P. Makama et al., ToF-SIMS analysis of abiotic and biotic iron sulfide layers formed in aqueous conditions on iron surfaces, Appl. Surf. Sci, vol.484, pp.876-883, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02342588

B. W. Sherar, P. G. Keech, J. J. Noël, R. Worthingham, and D. W. Shoesmith, Effect of Sulfide on Carbon Steel Corrosion in An erobic Near Neutral pH Saline Solutions, CORROSION, vol.69, pp.67-76, 2012.

S. Berlendis, M. Ranchou-peyrus, M. L. Fardeau, J. Lascourrèges, M. Joseph et al., Desulfotomaculum aquiferis sp. nov. and Desulfotomaculum profundi sp. nov. isolated from a deep natural gas storage aquifer, Int. J. Syst. Evol. Microbi, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01443240

J. Tremosa, D. Arcos, J. M. Matray, F. Bensenouci, E. C. Gaucher et al., Geochemical chara terization and modelling of the Toarcian/Domerian porewater at the Tournemire underground research laboratory, 25 Years after Chernobyl Power Plant Explos. Manag. Nucl Waste Radionucl, Transf. Environ, vol.27, pp.1417-1431, 2012.

J. M. Matray, S. Savoye, and J. Cabrera, Desaturation and structure relationships around drifts ex avat d in the well-compacted Tournemire's argillite, Eng. Geol, vol.90, pp.1-16

C. Beaucaire, J. Michelot, S. Savoye, and J. Cabrera, Groundwater characterisation and modelling of water-rock interaction in an argillaceous formation, Appl. Geochemistry, vol.23, pp.2182-2197, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00357173

O. Haouari, M. Fardeau, J. Cayol, G. Fauque, C. Casiot et al., Thermodesulfovibrio hydrogeniphilus sp. nov., a new thermophilic sulphatereducing bacterium isolated from a Tunisian hot spring, Syst. Appl. Microbiol, vol.31, pp.38-42, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00752866

C. Jeanthon, A. Reysenbach, S. L'haridon, A. Gambacorta, N. R. Pace et al., Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir, vol.164, pp.91-97, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02372920

G. Beaudoin, B. E. Taylor, D. Iii, and M. Thiemens, Variations in the sulfur isotope composition of troilite from the Cañon Diablo iron meteorite, Geochim. Cosmochim. Acta, vol.58, pp.90277-90278, 1994.

Y. Leon, M. Saheb, E. Drouet, D. Neff, E. Foy et al., Interfacial layer on archaeological mild steel corroded in carbonated anoxic environments studied with coupled micro and nano probes, Corros. Sci, vol.88, pp.23-35, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157704

P. Hoppe, S. Cohen, and A. Meibom, NanoSIMS: Technical Aspects and Applications in Cosmochemistry and Biological Geochemistry, Geostand. Geoanalytical Res, vol.37, pp.111-154, 2013.

G. Slodzian, Challenges in localized high precision isotope analysis by SIMS, Appl. Surf. Sci, pp.3-12, 2004.

G. Slodzian, F. Hillion, F. J. Stadermann, and E. Zinner, QSA influences on isotopic ratio measurements, Appl. Surf. Sci, pp.874-877, 2004.

B. Winterholler, P. Hoppe, S. Foley, and M. O. Andreae, Sulfur isotope ratio measureme ts of individual sulfate particles by NanoSIMS, Int. J. Mass Spectrom, vol.272, pp.63-77, 2008.

H. G. Thode, Sulphur isotopes in Nature and the Environment: an overview., in: Stable Isot, Assess. Nat. Anthropog. Sulphur Environ, 1991.

S. Oana and H. Ishikawa, Sulfur isotopic fractionation between sulfur and sulfuric acid in the hydrothermal solution of sulfur dioxide, Geochem. J, vol.1, pp.45-50, 1966.

C. Chautard, Intéractions fer/argile en conditions de sotckage géologique profond -Impacts d'activités bactériennes et d'hétérogénéités, Ecole nationale supérieure des mines de Paris, 2013.

D. E. Canfield, B. Thamdrup, and S. Fleischer, I otop fractionation and sulfur metabolism by pure and enrichment cultures of elemental sufur-disprop rtionating bacteria, Limnol. Oceanogr, vol.43, pp.253-264

C. Chautard, Interactions fer/argile en conditions de stockage géologique profond -Impacts d'activités bactériennes et d'hétérogénéités, Ecole nationale supérieure des mines de Paris, 2013.

R. A. Berner, Sedimentary pyrite forma ion: an update, Geochim. Cosmochim. Acta, vol.48, pp.605-615, 1984.