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Abstract 

The austenitic steel devices from pressurized water reactors are continuously subjected to 

neutron irradiation that produces crystalline point defects and helium atoms in the steel 

matrix. These species evolve into large defects such as dislocation loops and helium filled 

bubbles. This paper analyzes, through molecular dynamics simulations with recently 

developed interatomic potentials, the impact of the helium/steel interface on the helium 

behavior in nanosize bubbles trapped in an austenitic steel matrix. It is shown that the 

repulsive helium-steel interactions induce higher pressures in the bubble compared to bulk 

helium at the same temperature and average density. A new equation of state for helium is 

proposed in order to take into account these interface effects. 
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1. Introduction 

Austenitic steels are used in the Pressurized Water Reactors (PWR) as materials for the 

internal components. They are preferred due to their good mechanical properties and their 

high resistance to corrosion. Some of the most common types of austenitic steels, AISI-304 

and AISI-316, are alloys of iron (Fe), chromium (Cr) and nickel (Ni) with small amounts of 

other elements, such as manganese (Mn), molybdenum (Mo), silicon (Si) and carbon (C) [1]. 

During their lifetime in the nuclear reactor, the austenitic steel devices are subjected to 

neutron irradiation at elevated temperature. The collisions between high energy neutrons and 

steel atoms produce point defects (vacancies and self-interstitial atoms) that can evolve into 

large clusters of defects such as voids (clusters of vacancies) or dislocation loops (clusters of 

self-interstitial atoms or vacancies). Transmutation reactions of (n,α) type take place between 

neutrons and alloy atoms (especially Ni atoms) [2]. The main products of these reactions are 

helium (He) and hydrogen (H). Small quantities of these two elements can have a strong 

impact on steel properties, especially the mechanical ones [2].  

The helium atoms act as a vacancy trap forming helium-vacancy complexes (helium 

bubbles) [3,4]. Experimental studies on helium implanted samples of austenitic steels [5-13] 

revealed the existence of small, mainly spherical, bubbles with diameters ranging from less 

than a nanometer [7] to more than a hundred of nanometers [6]. The helium bubbles number 

density in the steel matrix varies from 10
20

 m
-3

 to 10
24

 m
-3

. The bubbles average size and 

number density are strongly depending on the steel temperature and the fluence of 

implantation [12]. 

Several theoretical studies have been devoted to understanding the formation of helium 

bubbles in body-centered cubic (bcc) iron or iron-chromium and the behaviour of helium in 

these bubbles [14-23]. As the relationship between the average helium density and the 
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pressure in the bubble was found to be strongly altered with respect to bulk helium, new 

equations of state that take into account the helium/iron interface effects have been proposed 

for helium in nanobubbles [22,23]. 

The recent development of a ternary FeNiCr potential [24] opened the door to extending 

the atomistic studies to helium bubbles in metal alloys similar in structure and composition to 

some austenitic steels that are frequently used in the nuclear industry. The present work is a 

molecular dynamics study on the helium behaviour in nanosize bubbles in a face centred 

cubic (fcc) FeNiCr alloy at compositions similar to AISI-316 austenitic steels. We propose a 

simple equation of state (EOS) for helium in nanobubbles that takes into account the 

helium/steel interface effects. This equation is conceived to reasonably describe the helium in 

nanobubbles for helium densities in agreement with experimental observations and 

temperature-pressure conditions similar to those in the PWRs.  

The paper is structured as follows: Section 2 details the models and methods employed in 

this study, Section 3 presents the steps taken to build the equation of state for helium in 

nanobubbles and the results of this study are summarized in Section 4. 

 

2. Models and methods 

2.1. Models for helium bubbles in steel 

All the calculations presented here were carried out using 3D periodic boundary 

conditions. The pattern for the periodical model was built starting from a supercell of 15 x 15 

x 15 fcc elementary cells. The fcc sites of this supercell were randomly filled with Fe, Ni and 

Cr atoms in order to satisfy two conditions: 
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- The alloy should exhibit an homogeneous distribution of its components (Fe, Ni, Cr) 

[25]; 

- The alloy composition (in weight %) should be: 12% Ni, 17.5% Cr and 70.5% Fe. This 

composition is similar to AISI-316, but also to some AISI-304 alloys [1]. 

The resulting system was a perfect fcc supercell, with the cell parameter a = 5.325 nm, 

containing 1530 Ni atoms, 2520 Cr atoms and 9450 Fe atoms. Therefore, the composition of 

the model system in Ni, Cr and Fe is 11.3 atomic %, 18.7 atomic % and 70 atomic %, 

respectively. 

Cavities with different RC radii (RC = 0.5 nm to 1.5 nm) were carved by eliminating metal 

atoms in the middle of this supercell. The cavities were then filled with different numbers of 

helium atoms in order to cover a range of helium densities, from 20 nm
-3

 to 100 nm
-3

. This 

helium density range is in agreement with the experimental findings. Indeed, an Electron 

Energy-Loss Spectroscopy (EELS) study of helium bubbles in a FeCr martensitic steel [26] 

found He densities ranging from 20 nm
-3

 (5 nm radius bubbles) to 70 nm
-3

 (2 nm radius 

bubbles). Another EELS study on a FeCr ferritic alloy [27] found a He density of 61.3 nm
-3

 in 

bubbles with radii of about 1.4 nm. Finally, a Positron Annihilation Spectroscopy (PAS) study 

[13], carried out on an austenitic steel of type 316, found a helium density of 56 nm
-3

 in 

bubbles with radii of about 4 nm.  

Previous theoretical and experimental works showed that the gas density in bubbles 

trapped in a solid matrix cannot surpass a certain value. Beyond this density limit, the bubble 

volume increases by surface breaking, in the sense that some solid atoms on the bubble 

surface are pushed into the interstitial sites of the matrix [28,29]. This phenomenon leads to 

distortions at the solid surface. The surface breaking is followed by a phenomenon of 
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emission of an interstitial dislocation loop (known under the name of loop punch-out 

mechanism) [29,30] that partially restores the perfect solid surface [17]. In the particular case 

of helium bubbles in perfect bcc Fe and FeCr alloys, the density limit value for which surface 

breaking occurs was estimated at 2 He/Vac (~ 170 nm
-3

) [15,17]. However, the alloys under 

irradiation conditions contain a variable amount of vacancies that absorb at the bubble surface 

in order to establish the equality of their chemical potential at the bubble surface and in the 

bulk [21]. The vacancy absorption lowers the density limit at which the surface relaxation 

takes place. This could explain the fact that the experimental helium densities [26,27] are 

considerably lower than the theoretical limit estimated for these very systems [15,17]. 

 

2.2. Simulation methods 

The systems created as previously described were relaxed through NPT (constant Number 

of particles, Pressure and Temperature) molecular dynamics (MD) methods [31] as 

implemented in the LAMMPS code [32].  

The MD simulations were carried out at 500 K and 700 K for an external pressure of 0 

GPa. This T-P range is very similar with the PWR conditions: temperature from 559 K to 603 

K and a relatively low pressure of 0.0155 GPa. 

A timestep of 0.2 fs was proved to be appropriate for this type of simulations [22]. The 

systems were relaxed during 1 ns (5 x 10
6
 MD steps), then the results were accumulated over 

the next 5 x 10
6
 MD steps at every 100 steps. Thus, for every case, one obtained a set of 

50000 instantaneous values. The properties of interest (pressure in the bubble, density and 

bubble radius) were then calculated as averages of these instantaneous values. 

The pressure in the bubble was computed from the atomic stress tensor diagonal 
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components (provided by LAMMPS in pressure*volume units [32]) of the helium atoms 

contained in the bubble and the bubble volume. The bubble volume was that of a sphere with 

the radius (RB) being calculated as the arithmetic mean between a “cavity minimum radius” 

and a “cluster maximum radius”. The “cavity minimum radius” was defined as the distance 

between the bubble mass center and the closest matrix atom (Fe, Ni or Cr) and the “cluster 

maximum radius” as the distance between the bubble mass center and the furthest (helium) 

atom in the helium cluster. Following this definition [33], the bubble/steel geometrical 

interface would be situated at the crossing point of the matter densities of the two phases. 

 

2.3. Interatomic potentials 

All the simulations were performed using semi empirical interatomic potentials to describe 

the three types of interactions that are present in the systems: the Fe-Ni-Cr interactions, the 

M-He (M = Fe,Ni,Cr) interactions and the He-He interactions.  

For the Fe-Ni-Cr interactions one used a ternary embedded atom method (EAM) type 

potential [24]. This potential is able to well reproduce, with respect to Density Functional 

Theory (DFT) and experimental results, the stability of the fcc phase, the elastic constants and 

the stacking fault energies for model alloys with compositions similar to AISI-316L austenitic 

steels. Moreover, the potential provides the stability of the fcc phase for Fe-10Ni-20Cr under 

large shear strains (5%) in the temperature range from 0 K to 900 K.  

The potentials proposed in reference [34] were used to describe the Fe-He and Cr-He 

interactions. Based on the pair potential formalism, these potentials were fitted in order to 

correctly reproduce, with respect to DFT results, the migration energies of helium in Fe and 

Cr and the formation energy of the substitutional and interstitial helium in tetrahedral and 
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octahedral sites in Fe and Cr.  

The potential describing the Ni-He interaction was fitted to a set of Ni-He interaction 

energies obtained by Melius [35] using the Hartree-Fock approximation. The form of this 

potential is given below: 
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The potential parameters, together with the cutoff radii, are given in Table 1. 

To our knowledge, two other Ni-He potentials have been recently proposed: one by Zhang 

et al. [36] and the other one by Torres et al. [37]. These two potentials are both able to well 

reproduce, with respect to DFT results, the incorporation energies of helium in substitution 

and interstitial tetrahedral and octahedral sites in Ni and the helium migration barrier between 

two tetrahedral sites. The Zhang potential coincides with our potential for r > 0.1 nm but 

tends to be less repulsive for r < 0.1 nm, while the Torres potential is much less repulsive. In a 

series of test calculations, the Ni-He potential used in the present work (referred to as Melius 

potential) was compared with the most different of the two previously mentioned potentials, 

the Torres potential. These test calculations showed practically no difference (see Table 2) 

between the bubble radii (RB), average densities (ρ) and pressures in the bubble (PB) 

calculated with the two Ni-He potentials. 

A comparison [38] between two He-He potentials, the Ross-Young (RY) potential [39] 

and the Aziz potential [40], showed that the former is able to better reproduce the P(ρ) curve, 

with respect to DFT and experimental results (at least at ~ 300 K), while the latter shows a 
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better agreement with the experimental data on melting curves. The RY potential also predicts 

an fcc-bcc-fluid triple point at P = 12.5 GPa and T = 250 K, while no such point was observed 

with the Aziz potential. Indeed, a triple point was experimentally detected at P = 11 GPa and 

T = 285 K [41], as predicted by the RY potential, albeit of a different (fcc-hcp-fluid) type. 

Given the relatively good description of the P(ρ) curve by the RY potential and the fact 

that the T-P range of the calculations from the present work do not include the helium melting 

curve (the helium is firmly in the liquid phase [38]), the RY potential was considered well 

suited to describe the He-He interactions in our MD simulations. 

 

3. Results and discussion 

As shown on Figure 1, the M-He interactions dominating at the helium/steel interface are 

more repulsive than the He-He ones, which are predominant in the central region of the 

bubble. This imbalance between the interactions at the interface and in the bubble center 

induces a He desorption from the helium/steel interface in order to equalize its chemical 

potential throughout the bubble. Thus, as observed on the density profiles calculated after the 

MD relaxation of the helium/steel systems, the bubble exhibits a central bulk-like region and a 

low density region, or even a gap (Figure 2), close to the bubble surface (r = RB). The 

occurrence of a gap at the interface has already been observed for helium bubbles in bcc Fe 

and FeCr alloys [15,17] and this gap has been shown to decrease and even disappear at high 

helium densities [15]. 

As a result of the non-uniform He density profile, the first radial distribution function 

peaks of the helium in the bubble are more intense and slightly shifted towards lower He-He 

distances compared to bulk helium at the same average density ρ (Figure 3). 
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The repulsive helium/steel interactions also translate in higher pressures in the bubble (PB) 

as compared to bulk helium (PP) at the same temperature T and average density ρ: 

   TPTP PB ,,    (2) 

Figure 4 illustrates this inequality for systems at 500 K and different densities. This figure 

also shows that the discrepancies between the pressure in the bubble and the bulk helium one 

diminish as the bubble radius increases. The helium behaves as if it occupied in the bubble a 

volume Vc (confinement volume) smaller than the bubble volume VB. To this confinement 

volume one can associate a confinement density (ρc) that is higher than the average helium 

density in the bubble (ρ). The confinement density can be considered as the virtual value of 

the bulk helium density for which the pressure in the bubble equals the bulk helium one: 

   TPTP cPB ,,    (3) 

If PP(ρc,T) from the equation 3 is expressed using the bulk helium virial EOS in terms of 

density, one obtains an EOS for the helium in the bubble: 

   



1
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i

i

cicB TFkTTP   
(4) 

The Fi(T) coefficients are functions of temperature while ρc, the confinement density, is a 

function of the average helium density in the bubble, ρ. 

In order to find a simple form for the ρc(ρ) function, one makes the hypothesis (in 

agreement with experimental findings [7,10]) that the helium bubbles in steel have a spherical 

shape with the helium occupying only a central (spherical) zone of the bubble. Within this 

hypothesis, the ρc/ρ ratio can be written as shown below: 
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In equation 5, RB is the bubble radius and ΔR is a correction term that accounts for the 

repulsive effect of the helium/steel interface. It follows from this equation that, as for the 

pressure, the discrepancies between ρc and ρ diminish with increasing bubble radius, 

vanishing for an infinite radius. 

Expressing ρc as a function of ρ from equation 5 and developing the equation 4 up to the 

third coefficient (i = 3), one obtains the following relationship: 
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    (6) 

where the Fi(T) coefficients from equation 4 are expressed as affine functions of T. The 

choice of an affine function is justified by the narrow temperature range (T = 500 – 700 K) 

analysed in the present study. For a larger temperature range, higher order polynomial 

functions could be necessary. The Ai and Bi parameters (Table 3) were obtained by fitting to a 

set of MD data points calculated for the bulk helium using the two-phase method described in 

reference [38] and the He-He interatomic potential introduced in Section 2.3. 

The value of the ΔR correction term was computed by fitting to the MD pressure data 

obtained in the present work. The fitting procedure involved the introduction of a penalty 

function S(ΔR): 
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Pi
EOS

(ΔR) is the pressure in the bubble given by equation 6 and Pi
MD

 is the pressure in the 

bubble calculated through MD. NP represents the number of molecular dynamics data points.  
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The value of ΔR that minimizes the penalty function is taken as the correction parameter 

in equation 6. For both MD data sets, at 500 K and 700 K, one obtained the same ΔR value of 

0.0549 nm (0.549 Å). This shows that the temperature has a negligible impact on the ΔR 

value. 

This kind of correction was already successfully applied by other authors in the case of 

helium bubbles in bcc iron [22]. These authors used the ΔR correction to adapt a bulk helium 

hard sphere equation of state to the bubble case. Fitting on MD results they obtained on a 

large temperature range (from 300 K to 1000 K), these authors found for ΔR a value very 

similar to the present one: 0.057 nm. 

Figure 5 gives a comparison between the pressure in the bubble calculated using the 

equation 6 and the corresponding MD pressure values. The uncorrected EOS (ΔR = 0 nm) 

always underestimates the pressure in the bubble. Introducing the ΔR correction allows to 

considerably improve the EOS results. 

In order to quantify the deviation of the pressure in the bubble from the bulk helium one at 

the same density and temperature, one defined a relative deviation function, Dev(RB)%, as 

follows: 

100
)(

)%( 



P

PB

EOS

B
P

PRP
RDev  (8) 

P
EOS

(RB) is the helium pressure in a RB radius bubble calculated with the corrected EOS 

(equation 6) and PP is the bulk helium pressure at the same temperature and density as in the 

bubble. Figure 6 represents the Dev(RB)% function calculated at 600 K (in the middle of the 

analysed temperature range) for three density values covering all the analysed density range: 

20 nm
-3

, 60 nm
-3

 and 100 nm
-3

. The relative deviation decreases with RB, this decrease being 
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steeper at lower densities. In general, for RB > 5 nm the relative deviation is less than 10% and 

for RB > 10 nm it becomes less than 5%. Thus, for bubble radii in excess of 10 nm a bulk EOS 

can be safely used to describe the state of helium in the bubble. 

 

4. Conclusions 

The study presented here showed that the steel surface has a strong impact on the helium 

behaviour in the bubble, that is, on its equation of state. Thus, in order to correctly describe 

the helium state in a bubble, a different EOS from that of the bulk helium should be used. In 

the present work, a bulk helium virial EOS was altered by introducing a spherical 

confinement volume inside the bubble that accounts for the (repulsive) effects of the surface.  

An analysis of the relative deviation of the pressure in the bubble from the bulk helium 

one at the same density and temperature showed that, for bubble radii in excess of 10 nm, a 

bulk helium EOS would become appropriate to describe the helium in the bubble. 

The helium EOS in the bubble provided by this study can be further used in the kinetic 

equations describing the growth rate of the helium filled cavities [42] that form in the 

austenitic steels under neutron irradiation. 
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Fig. 1 
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Fig. 2 
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Fig. 3 



 20 

 

Fig. 4 
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Fig. 5 
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Fig. 6 
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Figure captions 

Fig. 1. Comparison between the He-He and M-He (M=Fe, Ni, Cr) potentials. 

Fig. 2. Example of helium distribution in a bubble in fcc FeNiCr. The radial density profile 

was calculated at 500 K for a 1 nm bubble. The average He density in the bubble is 56 nm
-3

. 

Fig. 3. Comparison between the radial distribution function (RDF) of the helium in a 1 nm 

bubble in fcc FeNiCr (T = 500 K, ρ = 56 nm
-3

) and the RDF of the bulk helium at the same 

density and temperature. The RDF for bulk helium was calculated for a cluster of atoms found 

in a 1 nm radius sphere. 

Fig. 4. Comparison between the P(ρ) curves corresponding to the helium in bubbles with 

various radii and that of the bulk helium at 500 K. 

Fig. 5. Comparison between the pressures in the bubble calculated using corrected and 

uncorrected virial EOS and the corresponding MD results. 

Fig. 6. The relative deviation of the pressure in the bubble from the bulk helium one at the 

same density and temperature represented as a function of the bubble radius RB. 
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Table 1 

Parameters for the Ni-He potential used in the present work. The unit for energy is the 

electronvolt (eV) and the unit for distance is the angstrom (Å). 

A(eV) B(eV·Å) C(eV·Å
2
) D(Å

-1
) ri(Å) 

349.732 -917.546 727.518 2.54144 4.0 

P0(eV) P1(eV·Å
-1

) P2(eV·Å
-2

) P3(eV·Å
-3

) rc(Å) 

3.71640E-1 -2.01704E-1 3.60846E-2 -2.12190E-3 5.0 
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Table 2 

Comparison between the bubble radii (RB), average densities (ρ) and pressures in the bubble 

(PB) predicted at 700 K using two different Ni-He potentials: the Melius potential (M) [35] 

and Torres potential (T) [37]. RC and NHe stand for the cavity radius before MD relaxation 

and the number of helium atoms in the bubble, respectively. 

Ni-He potential RC(nm) NHe RB(nm) ρ(nm
-3

) PB(GPa) 

M 0.5 38 0.45 99.0 15.47 

T 0.5 38 0.45 99.0 15.34 

M 1.1 490 1.08 93.0 8.08 

T 1.1 490 1.08 93.0 8.02 

M 1.5 1266 1.48 92.5 6.69 

T 1.5 1266 1.48 92.5 6.64 
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Table 3 

Parameters used in Equation 6. In this equation, the unit for the pressure is the GPa and the 

unit for the density is the Å
-3

 (1 Å
-3

 = 1000 nm
-3

). As a consequence, the parameters are 

expressed using the following units: 1 GPa·Å
3i+3

·K
-1

 for Ai, 1 GPa·Å
3i+3

 for Bi and 1 

GPa·Å
3
·K

-1
 for k, the Boltzmann constant. 

A1 B1 A2 B2 A3 B3  k  

0.19103 -1.5031 1.4263 1215.08 -6.5035 17534.2  0.0138066  

 

 

 

 

 

 

 

 

 

 

 

 

 


