Building an interpretable fuzzy rule base from data using Orthogonal Least Squares Application to a depollution problem

Abstract : In many fields where human understanding plays a crucial role, such as bioprocesses, the capacity of extracting knowledge from data is of critical importance. Within this framework, fuzzy learning methods, if properly used, can greatly help human experts. Amongst these methods, the aim of orthogonal transformations, which have been proven to be mathematically robust, is to build rules from a set of training data and to select the most important ones by linear regression or rank revealing techniques. The OLS algorithm is a good representative of those methods. However, it was originally designed so that it only cared about numerical performance. Thus, we propose some modifications of the original method to take interpretability into account. After recalling the original algorithm, this paper presents the changes made to the original method, then discusses some results obtained from benchmark problems. Finally, the algorithm is applied to a real-world fault detection depollution problem.
Type de document :
Article dans une revue
Fuzzy Sets and Systems, Elsevier, 2007, 158 (18), pp.2078-2094. 〈10.1016/j.fss.2007.04.026〉
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal-irsn.archives-ouvertes.fr/irsn-00311750
Contributeur : Sébastien Destercke <>
Soumis le : mercredi 20 août 2008 - 20:33:55
Dernière modification le : jeudi 11 janvier 2018 - 06:21:34
Document(s) archivé(s) le : jeudi 3 juin 2010 - 18:38:39

Fichiers

FSS_learningOLS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Sebastien Destercke, Serge Guillaume, Brigitte Charnomordic. Building an interpretable fuzzy rule base from data using Orthogonal Least Squares Application to a depollution problem. Fuzzy Sets and Systems, Elsevier, 2007, 158 (18), pp.2078-2094. 〈10.1016/j.fss.2007.04.026〉. 〈irsn-00311750〉

Partager

Métriques

Consultations de la notice

361

Téléchargements de fichiers

201