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 Spectral matching in time domain: a seismological and engineering 1 

analysis. 2 

Maria Lancieri, Paolo Bazzurro and Oona Scotti  3 

ABSTRACT 4 

The time domain spectral matching is the most commonly used technique in earthquake engineering 5 

to obtain accelerograms whose response spectrum is compatible with a smooth target spectrum, be 6 

it a poly- line design spectrum or a hazard spectrum. These accelerograms are used for assessing the 7 

response of structures, usually beyond their linear elastic regime. Although this practice is 8 

widespread, there is an ongoing debate on whether these matched accelerograms are legitimate 9 

substitutes for real ones and on whether they produce biased structural response estimates. 10 

To help shed some light on this debate, we addressed two main questions: 11 

1. How does the matching process modify the time-frequency properties of a real 12 

accelerogram? 13 

2. How can one devise a rigorous benchmark to test the performances of spectral matched 14 

accelerograms? 15 

We implemented a non-conventional strategy using the jagged spectra of real accelerograms for a 16 

given earthquake scenario as targets. This allows establishing a benchmark by which both 17 

seismological and engineering points of view can be addressed. Given the non-stationarity of the 18 

accelerometric signals, we used the time-frequency Stockwell transform to compare pairs of 19 

accelerograms to characterize in both time and frequency the changes induced by the matching 20 

process and to investigate the characteristics of an accelerogram causing the peaks of the response 21 

of a nonlinear single degree of freedom oscillator. 22 
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On the seismological side, we found that the spectral matching generates spectrum-compatible 23 

accelerograms with the same dominant frequency of the S-waves of the target and that the matched 24 

accelerograms have, on average, higher coda amplitudes with respect to the natural records with the 25 

same spectrum, over a time window of 5 s.  26 

On the engineering side, the most important finding regards the large dispersion of peak responses 27 

to accelerograms with the same spectrum. Caution should therefore be applied in using very few 28 

spectrum-compatible records for practical applications. 29 

Introduction 30 

The development and refinement of spectrum compatible accelerogram generation techniques has 31 

been the object of many discussions, as four decades of bibliographic evidence on the topic attests 32 

(Rizzo et al., 1975, Kaul 1978, Silva and Lee, 1987, Preumont 1984, Lilhanand and Tseng 1988, 33 

Abrahamson 1992, Mukherjee and Gupta 2002, Suarez and Montejo 2007, Hancock et al. 2006, 34 

Pousse et al. 2006, Al Atik and Abrahamson 2010, Laurendeau et al. 2012, Zentner 2013, 35 

Alexander and al. 2014,  Adekristi and Eatherton 2016, among many others). 36 

Historically, the concept of response spectrum was formulated in the early 1930s (Biot 1932, 37 

Benioff 1934); the basic idea was that seismic ground acceleration is made up of “exceedingly 38 

variable oscillatory movements” and, in order to reduce such variability, the authors suggested 39 

defining a spectrum to describe the maximum response of pendula, or single-degree-of-freedom 40 

linear oscillators. By design, the response spectrum gives information on the maximum ground 41 

motion amplitude at any given frequency, in terms of acceleration, velocity or displacement, but 42 

ignores the phases. In the following years, its definition was refined (Housner 1941, Hudson 1956) 43 

and it became the standard tool for analyzing the strong motion records properties in relation to the 44 

structural behavior of simple linear oscillators that are of particular interest in modal analysis 45 

(Housner and al. 1953, Alford et al. 1953, Hudson 1962). In the 1970s, the time history analysis of 46 

equipment and structural components was increasingly put into practice in the design of nuclear 47 
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power plants. As a consequence, the development of accelerograms compatible with smoothed 48 

response design spectra became a necessity. The generation of spectrum-compatible accelerograms 49 

is not a trivial task since the response spectrum, unlike the Fourier spectrum, is not a transform. The 50 

implication of this is that for any given accelerogram, while it is always possible to compute its 51 

response spectrum, there is an infinite number of accelerograms with which it is compatible. Since 52 

the concept of an “inverse response spectrum” is meaningless, researchers have developed many 53 

different methods to generate spectrum compatible accelerograms. They range from pure synthetic 54 

accelerograms that are given by the superposition of sinusoids with a random phase (Gasparini and 55 

Vanmarcke, 1976), to the modification of recorded accelerograms via spectral matching techniques. 56 

Spectral matching techniques are based on the idea of modulating the energy content of a recorded 57 

ground motion so that its response spectrum matches a target. Conceptually, there are two main 58 

strategies to accomplish this. The first is based on the modification of the signal in the frequency 59 

domain (Preumont 1984, Silva and Lee, 1987) by adjusting the Fourier spectrum as a function of 60 

the ratio between original and target spectra. This strategy is quite intuitive, but it is equivalent to 61 

repeatedly superimposing the original accelerogram harmonic motions with uniform amplitude over 62 

the entire time window (Lilhand and Tseng 1988). Thus, in general, this method provides 63 

unrealistic waveforms because it preserves neither the causality nor the non-stationary behavior of 64 

the original seismic signals. The second strategy consists of modifying the original accelerogram in 65 

the time domain by adding wavelets (Kaul 1978, Lilhand and Tseng 1988, Abrahamson 1992, Al 66 

Atik and Abrahamson 2010) until the desired response spectrum is obtained. This time-domain 67 

spectral matching technique assumes that the peak response of a single-degree-of- freedom (SDOF) 68 

oscillator of a given frequency that occurs at a specific time tmax is mostly sensitive to the 69 

accelerogram in the neighborhood of tmax. Therefore, the original accelerogram (commonly called 70 

seed accelerogram) is modified by superimposing wavelet functions, each centered at tmax, whose 71 

amplitude and phase are designed to manipulate the SDOF oscillator response precisely at tmax in 72 

such a way that the discrepancy of the oscillator response to the amplitude of the target spectrum at 73 
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that frequency is kept within a pre-specified tolerance. Each wavelet whose duration depends on its 74 

frequency produces localized perturbations in the accelerogram. The advantage of working in the 75 

time domain is that the non-stationary behavior of the accelerogram is retained. In addition, the 76 

wavelet function proposed by Al Atik and Abrahamson (2010), unlike the Lilhand and Tseng 77 

(1988) original version, generates velocity and displacement time histories that have no low-78 

frequency bias. For these reasons, the time-domain spectral matching technique is widely used 79 

because it provides, quickly and easily, more “realistic” non-stationary accelerograms. The 80 

interested reader can find a more detailed discussion on the time-domain matching technique in the 81 

relevant literature (Hancock et al. 2006; Seifried 2013). 82 

The end users of these waveforms, namely engineers, use matched accelerograms for assessing 83 

structural response during specific applications but, in general, they trust the work done by the 84 

seismologist and do not question their legitimacy. To engineers, the sanity check that matched 85 

accelerograms must pass to be legitimate is confined to the response they cause to the structures of 86 

interest. If matched accelerograms produce unbiased structural responses when compared to those 87 

of “equivalent” real records, engineers fully embrace them. The acceptance of matched records is 88 

driven by practicality since their use dramatically decreases the number of response analyses 89 

necessary to estimate structural responses within a given level of accuracy. However, if the 90 

response of such records is biased, engineers may still use them for the reasons stated above, but 91 

they may have to statistically correct the responses for the induced level of bias.   92 

The presence of bias in structural response has been a matter of debate for almost two decades. On 93 

one hand, some authors (Carballo and Cornell, 2000; Bazzurro and Luco, 2006; Schwab and 94 

Lestuzzi 2007; Huang et al., 2008) identified a systematic bias in the estimation of mean nonlinear 95 

structural response induced by matched records. This is especially true for highly non-linear 96 

structural responses. On the other hand, other studies (Shome et al., 1998, Hancock et al., 2008; 97 

Iervolino et al. 2010; Heo et al., 2010) claim that structural response caused by matched 98 
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accelerograms has no (or negligible) bias.   99 

Answering the “bias issue” is not trivial s ince many factors come into play, namely the degree of 100 

non- linearity of the structure, the matching strategy, the use of fully synthetic accelerograms, and 101 

the amount of modification caused to their original intensity measures (IMs) by the spectral 102 

matching if recorded data are used as seeds. Supporters of the spectral matching (Watson-Lamprey 103 

and Abrahamson, 2006; Hancock et al., 2008; Grant, and Diaferia, 2013) argue that if the matched 104 

signals are characterized by IMs that are similar to that of the real accelerogram used as seed 105 

(typically Arias Intensity, duration, and so on), then matched accelerograms do not bias the 106 

structural response. Implicit in this reasoning is the assumption that only a naïve application of the 107 

matching procedure produces records that may induce bias in structural response. Iervolino and 108 

coauthors (2010) raised a central point to this debate around biased response. One must then 109 

question whether using the response of real records as a benchmark to validate the performance of 110 

matched accelerograms as done in many studies is appropriate. Indeed, assessing the “equivalence” 111 

between the matched and real records is not straightforward. The degree of statistical equivalence of 112 

the response is often based on few proxies that do not reveal the whole complexity of a seismic 113 

signal, a complexity that could have an impact on the non- linear behavior of a structure that 114 

experiences it.  115 

Matched accelerograms are only used for engineering purposes, and their seismological features 116 

have never been thoroughly investigated. Of course, the matched accelerograms are characterized 117 

by smooth spectra whereas recorded time histories have spectra whose jaggedness is related to the 118 

complexity of the source process, wave propagation in crustal medium and the response of the 119 

shallower soil layers beneath the seismic station. From a seismological viewpoint, however, despite 120 

the “quasi-empiric” appellative given by Silva and Lee (1987), the nature and the characteristics of 121 

matched accelerograms compared to those of real ones are in fact barely known.  122 



 6 

In this paper, we propose an unconventional strategy to create a set of matched waveforms with the 123 

two-fold objective of understanding their features vis-à-vis those of real records and, to a limited 124 

extent, of testing whether these records produce an unbiased structural response, and if so, why. 125 

Instead of matching the spectra of real records to a target smooth spectrum, as routinely done, we 126 

matched them to jagged target spectra of real records. The advantage of this strategy is that each 127 

target spectrum corresponds to its natural accelerogram. This correspondence allows establishing a 128 

real benchmark to which both seismological and engineering point of views can be considered.  129 

More specifically, wearing a seismological hat, we will make a direct investigation of many 130 

accelerograms matched to the same jagged spectrum. Our goal is to assess and characterize the 131 

common features, if any, shared by original and matched accelerograms. With this aim we propose 132 

an original method, based on the Stockwell transform (Stockwell et al. 1996) that allows comparing 133 

two non-stationary accelerograms and, thus allows one to understand how the accelerogram is 134 

modified by each step of the iterative matching procedure.  135 

Wearing an engineering hat, we instead quantify the differences between the values of a set of 136 

standard Intensity Measures (IMs) of the target and matched accelerograms. Finally, we go beyond 137 

linear SDOF responses and start to address the engineering concerns by comparing the response and 138 

respective damage states caused by original and matched time histories of a nonlinear SDOF 139 

oscillator. Using a small subset of accelerograms with the same response spectrum, we use the 140 

Stockwell transform to qualitatively identify the accelerogram’s features that cause different 141 

structural responses.  142 

The Jagged Spectrum Matching Process 143 

Database 144 

The first step is the selection of a sufficient number of accelerograms to allow a robust statistical 145 

inference. Selecting many records from past earthquakes from a large magnitude, M, and source-146 

site distance, R, bin would unnecessarily complicate the analysis since the accelerograms would be 147 
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too different in terms of both amplitude and duration. Therefore, we chose a narrow, well-populated 148 

M-R bin with moment magnitude ranging from 5.8 to 6.6 and hypocentral distance from 10 to 30 149 

km (Figure 1a). In total, we extracted 226 “raw”, uncorrected accelerograms from the Southern 150 

California Earthquakes, the Euro-Mediterranean (Ambraseys et al. 2004) and Orfeus databases. The 151 

M-R scattergram and histogram of the selected suite of records is plotted in Figure 1a. We then 152 

applied a baseline correction (based on Paolucci et al. 2011) to each accelerogram in order to 153 

remove any residual displacement after a double integration of the accelerometric signal. 154 

Tuning RSPMatch 155 

In this paper, we use the RSPMatch code (Al Atik and Abrahamson 2010), the most commonly 156 

used code for signal matching in the time domain. The spectra are matched in the frequency range 157 

0.1 – 35 Hz. The matching procedure here is performed in 4 passes, each of which modifies the 158 

accelerogram progressively over 4 frequency ranges: [1-35] Hz, [0.5-35] Hz, [0.3 - 35] Hz, and 159 

[0.1-35] Hz. Concerning the matching procedure, as alluded to in the introduction, we used each 160 

one of the 226 response spectra as a target for the matching while utiliz ing the remaining 225 161 

accelerograms as seeds for the matching (Figure 1b). For the sake of conciseness, in the following 162 

we will refer to the real acce lerogram corresponding to the target spectrum as the “target 163 

accelerogram”. This exercise is repeated for all 226 records in the bin, hence generating 226 164 

“matched families” for a total of 50858 matched accelerograms. Therefore, each one of the 226 165 

families of records has one real accelerogram and 225 spectrum matched time histories, all of which 166 

have the same response spectrum within a given tolerance.  167 

The used wavelet is the “improved tapered cosine” introduced by Al Atik and Abrahamson (2010).  168 

The value of the tolerance parameter is set by the user as a function of the desired degree of 169 

similarity between the target and the matched spectrum. The value of the tolerance parameter and 170 

the number of iterations, which influence the convergence time of each RSPMatch run, were 171 

selected after performing a battery of preliminary tests done on 10 target spectra. This exercise 172 
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resulted in setting a 15% tolerance and 20 iterations as a good compromise between accuracy and 173 

practicality.  174 

A final comment on the RSPMatch matching criteria adopted in this study concerns the tuning of 175 

the convergence damping parameter that specifies the fraction of adjustment made to the 176 

acceleration time series at each iteration (for details, see Al Atik and Abrahamson 2010). In 177 

standard applications, where the seed is matched to a smooth target spectrum, the matching process 178 

is parameterized to minimize the differences between the seed and the matched records (looking at 179 

values of quantities, such as Arias intensity and duration) (Grant and Diaferia 2013, Seifried and 180 

Baker 2016). With this aim, some authors explicitly tune the convergence damping parameter to 0.7 181 

or even to lower values (Seifried 2013). In our non-canonical application, we are not interested in 182 

keeping the similarities between the seed and the matched accelerograms. We are rather interested 183 

in obtaining matched and target spectra (and possibly time histories) that are as close as possible. 184 

For this reason, during the matching exercise, we used the default value of 1 for the convergence 185 

damping parameter.  186 

Qualifying the matched spectra 187 

Since RSPMatch so far is often used by engineers to match smoothed spectra, before pursuing our 188 

study we need to investigate whether it works as intended for matching jagged spectra as well.  189 

The successful matching criterion used by the RSPMatch code is based on whether at each 190 

frequency the maximum absolute distance between the ordinates of the target and matched spectra 191 

is within the set tolerance. The code performs a discrepancy check on a frequency-by-frequency 192 

basis, and if the maximum discrepancy value at anyone frequency is greater than the tolerance set 193 

by the user, the matching is declared unsatisfactory, no matter what frequency or how many 194 

frequencies violated this condition. 195 

For example, Figure 1c shows the matched spectra that were labeled as successfully matched by 196 

RSPMatch while Figure 1d displays the spectra labeled as unmatched even though the discrepancy 197 
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between matched and target spectra are noticeable only at very low and very high frequencies that 198 

are irrelevant for driving the response of most structures.  199 

A more comprehensive view of the achieved quality of the matching for all the records as a function 200 

of frequency is given in Figure 2. For each of the 226 matched accelerograms families the median 201 

misfit between the target spectrum and the 225 matched spectra has been computed at each 202 

frequency (169 points logarithmically spaced) in the 0.1-35 Hz range as follow: 203 
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Positive misfits indicate that target spectra amplitudes are higher than the matched. For each 206 

frequency in the range, Figure 2 shows the number of families with median misfit value expressed 207 

in terms of tolerance percentage. The darker bins mean that more than 209 families have a median 208 

misfit equal to zero, while the light grey means that less than 20 families have a median misfit less 209 

than 10%; it can be seen that for the large majority of accelerogram families the median misfit is 210 

centred on zero, except at higher frequencies (f > 25 Hz) where there is a mild median negative bias 211 

of about 2%.  212 

From an inspection of Figures 2 we can conclude that all the families of matched records have a 213 

median misfit lower than 10% and that spectra of families of matched records are tightly packed 214 

around the target value at each frequency. Very few exceptions are observed at the very low and 215 

very high frequencies that are inconsequential for the response of most structures. Therefore, we 216 

assume that all the accelerograms are successfully matched for the purposes of this work. 217 

 218 
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Time-Frequency Analysis of Time Histories Matched to Jagged Spectra  219 

Comparison of two non-stationary time histories 220 

The response spectrum does not reflect the complexity of accelerograms. As stated in the 221 

introduction, even if the matched accelerograms have the same response spectrum of the target, the 222 

accelerograms themselves are different. In this section, we propose a pure seismological method to 223 

assess the differences and/or the similarities between two accelerograms sharing the same spectrum.  224 

For stationary time histories, their comparison is easily carried out by performing time cross-225 

correlation or the spectral correlation expressed as the ratio between the squared cross-spectral 226 

density, and the product of the auto spectral density of the two signals (Norton and Karczub, 2003).  227 

Seismic signals, however, are not stationary, and for this reason the comparison needs to be 228 

performed in the time-frequency domain. The Stockwell-Transform (Stockwell et al. 1996), which 229 

is called here S-transform for short, is thus a well-suited tool as it provides a time-frequency 230 

representation of the signal. The S-transform can be interpreted as an extension of the continuous 231 

wavelet transform with Gaussian windowing, as the mother wavelet with a non-null average, and 232 

dilation factor equal to the inverse of the frequency (Simon et al. 2007, Ventosa et al. 2008). The S-233 

transform, S(t,f), is defined as:  234 

 (   )  ∫  ( )
| |

   
  

(   )   

        
  

  

   

Where h(t) is the time-series (namely, the accelerogram in this application), f the frequency and t 235 

the time. The integral of the S-transform along the time axis is simply the Fourier transform of the 236 

time-series h(t), and therefore S(t,f) can be interpreted as a power density spectrum unrolled along 237 

the time axis.  238 

By definition, the S-transform gives the Fourier spectra computed on Gaussian windows centered at 239 

each time sample and, therefore, the spectral correlation can then be obtained by looking at the 240 

coherence of the S-transforms along the time axis. Such a strategy is inspired by the advanced 241 
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signal comparison techniques based on local cross-correlation that are mainly used in the domain of 242 

full wave tomography (Hale 2006).  243 

In mathematical terms, the forward 1-Dimensional coherence (1DCoh) product of the S-transforms 244 

is expressed as: 245 
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is the backward 1-dimensional coherence image; where SMatch and STarget are the S-transforms of the 247 

matched accelerograms. The S-transform product is computed in the complex domain. 248 

Theoretically, Δt should be the sampling interval of the accelerogram, which here is 0.005 s, but in 249 

practice, this short Δt would make the calculation too long. For this reason, we set Δt has equal to 250 

0.2 s. The result of the coherence analysis is a time-frequency coherence image obtained plotting 251 

the absolute value of the S-transform product. A coherence score is attributed as a function of the 252 

maximum reached by the absolute value of the coherence product.  253 

An example is given in Figure 3 where the “target” (Figure 3a) and the matched (Figure 3b) 254 

accelerograms are plotted along with their S-transforms (Figure 3c, Figure 3d), the coherence image 255 

is given in Figure 3e. The areas of the S-transforms in darker tones have higher amplitudes and can 256 

be interpreted as amplitude bursts. The target and the matched accelerograms are both characterized 257 

by the presence of an amplitude burst occurring at around 5 s and centered at 2.7 Hz, which is a 258 

feature that the S-transform coherence clearly highlights. However, the matched accelerogram 259 

differs from the target one mostly because of a longer coda characterized by 3 amplitude bursts 260 
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centered at around 3 Hz. We also remark the presence darker stripes located in the 5 – 10 s time 261 

window and spanning a large frequency range up to 25 Hz.  262 

Looking at this example we can claim that in this case, the matching process generates an 263 

accelerogram having an amplitude burst centered on the same frequency of the amplitude burst of 264 

the target accelerogram. In other words, in this particular case, the S-waves (S is for secondary) of 265 

the matched and the target accelerograms have both the same dominant frequency. However, note 266 

that in this example the codas of matched accelerograms have a longer duration and higher 267 

amplitude compared to the coda of the target accelerogram. 268 

The question now is to understand how general these two observations are. 269 

Analysis of time histories matched to the same jagged spectrum 270 

To give an exhaustive answer to this question we should perform the same analysis for all the 271 

50850 waveforms but this exercise is not feasible since the S-transform coherence analysis is time 272 

consuming. Hence, we limited the analysis to a subset o f five families of matched accelerograms 273 

(limiting the number of analysis to 1125 S-transform coherence analysis) chosen to be different 274 

from one another. The five families were selected on the basis of the characteristics of the “target” 275 

accelerograms, namely different S-wave dominant frequencies, different S-transform shapes (a 276 

single burst, multiple bursts), and different Husid duration. The S-wave dominant frequencies of the 277 

target histories are 1.50, 3.53, 5.64, 5.95, and 9.0 Hz; they correspond to the values where the 278 

maxima of the S-transform amplitudes are located.  279 

To answer whether the dominant frequency of seed and target accelerograms is about the same in 280 

all cases in Figure 4 we plot the distribution of the frequencies where the coherence betwee n the 281 

target and the matched accelerograms S-transform reach its maximum. In all the examined cases, 282 

indeed the maxima of coherence images are centered at the dominant frequency of the target S-283 

wave and the coherence scores are always larger than 0.75. Moreover, this observation is 284 

independent of the coherence score. This test shows that the matching process shifts the S-wave 285 
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dominant frequency of the seed accelerogram in the same neighborhood of the S-wave dominant 286 

frequency of the target accelerogram. In other words, a process driven by the response spectrum 287 

induces some similarity in the Fourier spectra (recall that the S-transform is a Fourier transform 288 

unwrapped along the time axis) of the matched and the target waveforms. Therefore, even if the 289 

matched accelerograms differ from one another, they show common features related to the Fourier 290 

spectral content of the target. 291 

We can conclude that, at least for this earthquake scenario and for this subset of 1125 waveforms, 292 

the S-waves of the matched and target accelerograms have approximately the same dominant 293 

frequency. 294 

The second question was: “do the matched accelerograms have longer coda compared to the target 295 

ones in all cases?” To answer this, we compared the target matched accelerogram codas by 296 

calculating the ratio of accelerogram envelope. 297 

The performed analysis is based on the following steps: 298 

1. We manually picked the instant, tcoda, corresponding to the beginning of the coda of 299 

each target/seed accelerogram pair (an example is shown in Figure 5a); 300 

2. We compute the envelope of the target and all the matched waveforms defined as the 301 

amplitude of the Hilbert transform of the accelerogram (Figure 5b, the envelope of the 302 

matched accelerograms are plotted as density of points);  303 

3. We assume that the matching process does not change the value of the tcoda and, 304 

therefore, the tcoda of the seed accelerogram is attributed to the matched waveform; 305 

4. We align the target and the matched accelerogram at the manually picked tcoda 306 

values; 307 

5. For each target-matched accelerogram pair, we compute the average coda envelope 308 

ratio (ER) over 1 second non-overlapping time-windows. This operation both allows 309 
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smoothing the ratio value and also reduces the impact of the possible tcoda picking errors 310 

(Figure 5-c). The quantity ER is defined as following: 311 

    ∫
| ( ( ))|

| ( ( ))|

   

 

   

where | ( ( ))| is the amplitude of the Hilbert transform of the matched accelerogram 312 

and | ( ( ))| is the amplitude of the Hilbert transform of the target accelerogram 313 

6. We repeat the same operation for all the matched families. We set to zero the tcoda, 314 

and we plot as density of points the ER values computed in six time windows following the 315 

tcoda (Figure 5d). 316 

To enhance the coda amplitude amplification/reduction, the ER distribution in Figure 5d is plotted 317 

on a logarithmic base 2 scale. We remark that, in all the six time windows, the ER values are greater 318 

than 1 (0 in log2 scale) for the large majority of data, indicating that the coda amplitude is usually 319 

(but not always) amplified. In particular, the ER distributions are centered at two (1 in log2 scale) in 320 

the first three seconds after tcoda indicating that, on average, the coda amplitude of the matched 321 

accelerograms is twice that of the target waveforms. In the following time windows, the ER 322 

distributions are more scattered and the average ratio is close to 1.4 (0.5 in log2 scale).  323 

This result can be interpreted in two different ways: matched accelerograms usually have higher 324 

coda amplitudes than the target accelerograms or, matched accelerograms usually have longer 325 

strong-phase duration than the target accelerograms. As will be shown in Section “Statistical 326 

Analysis of Time Histories Matched to Jagged Spectra: Intensity Measures”, the analysis of the 327 

Husid duration leans towards this latter interpretation. 328 

Analysis of the matching process using S-transform  329 

In this subsection, we address the question of the origin of the similarities and differences present in 330 

target and matched time histories. As an illustrative example, we thus examine here the different 331 
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iterations of the RSPMatch matching process for the same accelerogram pairs considered in Figure 332 

3.  333 

Before delving into the details of the matching iterative process, it is worth recalling that: 334 

- the response spectrum is defined as the peak response to the accelerogram of a series 335 

of linear elastic single-degree-of- freedom (SDOF) harmonic oscillators, each characterized 336 

by a fundamental frequency and damping (often 5% of critical); 337 

-  the “time domain” matching method assumes that the time at which the SDOF 338 

oscillator peak response occurs (hereinafter TPR) does not change as a consequence of the 339 

iterative wavelet adjustment; 340 

- RSPMatch modifies the seed accelerograms superimposing wavelet functions 341 

centered at TPR, whose amplitude and phase are designed to manipulate the SDOF 342 

oscillator response. 343 

- The time-frequency content of the cosine wavelets (We show the improved tapered 344 

cosine used by RSPMatch in the supplementary material) is a direct consequence of the 345 

Gabor's principle, asserting that the spreads in the time and frequency measurements must 346 

define a rectangle in Fourier space whose area is at least 1. If the wavelet has a long duration 347 

the spread will be higher in time domain (this is the case of the 2 Hz wavelet in the top right 348 

panel in SM), while if the wavelet has a short duration the spread will be higher in the 349 

frequency domain (this is the case of the 20 Hz wavelet in the bottom right panel in SM).  350 

The spectral matching process is presented in Figure 6 where we look simultaneously at the 351 

response spectra adjustment (Figure 6a), the corresponding S transform modification (Figure 6b), 352 

and the accelerogram evolution (Figure 6c). Figure 6a displays the target, seed and matched spectra. 353 

The matching procedure here is performed in 4 passes, each of which modifies the accelerogram 354 

progressively over 4 frequency ranges: [1-35] Hz, [0.5-35] Hz, [0.3 - 35] Hz, and [0.1-35] Hz (a1- 355 

a4). Looking at Figure 6a (top panel), the spectrum of the seed is below the target up to 4 Hz, at 356 
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higher frequencies the target and the seed spectra have comparable amplitudes. Note that for passes 357 

2,3 and 4 the updated input seed spectrum is the response spectrum of the accelerograms obtained 358 

as the output from the previous pass.  359 

As far as the S-transform features, for both target and seed the highest amplitude bursts visible on 360 

the S-transform (Figure 6b) correspond to the S-waves on the time histories (Figure 6c), as already 361 

shown in Figure 3. The S-wave dominant frequencies (the center of the amplitude burst) are located 362 

between 5-10 s and centered on 2.7 Hz for the target and between 3 and 7 s and centered around 4 363 

Hz for the seed. The TPR values are plotted with empty circles as a function of the fundamental 364 

frequency of the corresponding SDOF (Figure 6b). We remark that many TPR values are around 365 

the time of the amplitude burst corresponding to the S-waves. This observation is valid for the 225 366 

time histories. Therefore, for the investigated scenario, the response spectrum is controlled by the S 367 

wave amplitudes in a frequency range of 2 – 8 Hz. After the first pass (Figure 6b) the wavelets 368 

passing through the TPR lying on the S-phase seed shift the amplitude burst center from 4 to 2.7 369 

Hz, closer to the target dominant frequency. In particular, we remark that the TPR located between 370 

3 and 7 s, are now more spread in time. This step is at the origin of the similarity highlighted in 371 

Figure 3 and Figure 4.  372 

At lower frequencies (< 1 Hz), the response spectrum amplitude is controlled by the coda of the 373 

accelerograms for both target and seed cases, as shown by the location of TPR values. During the 374 

first pass of the matching a lower frequency coda appears (indicated by the black arrows on Figure 375 

6b and Figure 6c), having generally higher amplitudes than the seed. The coda amplitude and 376 

shapes are adjusted in the subsequent passes, as apparent by inspecting the corresponding 377 

accelerograms (Figure 6c).  378 

The low-frequency content is adjusted by the RSPMatch code with the insertion of many low-379 

frequency cosine wavelets (characterized by a longer duration and a spread along the time axis of 380 

the S-transform,) in the coda of the accelerogram. The consequence of such an adjustment is that 381 
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the coda amplitude of the matched record is higher than the seed, over a time window of 5 s (Figure 382 

6c). A systematic analysis of the seed coda amplification induced by the spectral matching process 383 

(see Appendix C) shows that, in general, this trend takes place over an average time window of 3 384 

seconds. 385 

Concerning the frequencies higher than 10 Hz, we observe that the TPR values of the seed 386 

accelerogram of all the SDOFs with fundamental frequency greater than 7 Hz (with the exception of 387 

10 Hz) are aligned at 4.8 s (Figure 6b). This implies that, during the matching process, many high-388 

frequency wavelets are injected at the same instant. The amplitude of such wavelets is relatively 389 

small since the target and seed spectra are close. Nevertheless their superposition originates the 390 

high-frequency (above 10Hz) low amplitude stripes visible on the matched accelerogram.  391 

Thanks to the S-transform analysis we were able to trace the modification induced on the seed by 392 

the matching process, and to explain the origin of the similarities between matched and target 393 

accelerograms. The question arising now is if and how the changes induced by the spectral 394 

matching process impact the response of structures subject to matched records compared to the 395 

response of natural records with the same target spectrum. 396 

Time-Frequency Analysis of the Response of a Nonlinear Spring  397 

 A comprehensive response to this question can only be given after the analysis of responses of 398 

many structures with different geometries, and material laws have been investigated. In this paper, 399 

we start addressing this question by considering a nonlinear SDOF system with an initial 400 

fundamental frequency of 1 Hz. For this purpose, we selected the “spring 1a” SDOF system in the 401 

FEMA P440A document (Applied Technology Council, 2009), which is intended to model the 402 

behavior of a typical gravity frame system (e.g., steel) commonly found in US buildings. The force-403 

displacement backbone curve yields at a normalized base shear of 0.25 and a drift of 0.5% and 404 

includes a strength drop at a normalized base shear of 1 and drift of 2.5%. This drop terminates with 405 

a horizontal plateau with a residual strength of 55% of the ultimate capacity starting at a drift of 4% 406 
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and extending to an ultimate deformation capacity of 7%. Figure 7 shows the backbone capacity 407 

curve of the spring with its degrading hysteric behavior obtained by subjecting it to the 1 Hz 408 

sinusoidal acceleration time history with increasing amplitude shown at the top of the figure. The 409 

spring response is characterized by cyclic strength and stiffness degradation.  410 

We analyze now the spring response and its relationship with the input accelerogram using the S-411 

transform technique. An example is given in Figure 8 where one of the 226 real accelerograms used 412 

as input is represented by its response spectrum, its accelerogram and the corresponding S-413 

transform (with a zoom between 0 and 1 Hz). The accelerogram’s features are visually compared 414 

with the time history of spring drift, Θ, along with its S-transform and the response hysteretic 415 

behavior expressed in terms of normalized base shear versus drift. 416 

The spring reaches the max of 4% drift at around 7 s (vertical lines on the subplot), when an 417 

energetic pulse centered at 1 Hz occurs in the accelerogram as clearly visible in the S-transform. 418 

The spring oscillates around its linear fundamental frequency of 1 Hz up to this burst of amplitude. 419 

After this instant, the spring enters the nonlinear response regime and its oscillation frequency shifts 420 

to 0.4 Hz because of the stiffness degradation observed in the hysteretic curve. 421 

In Figure 9 we move a step forward in our analysis by considering two additional accelerograms 422 

this time matched to the response spectrum of the accelerogram shown in Figure 8. The two 423 

matched accelerograms have different duration, different number of amplitude bursts arriving at 424 

different times (cd. Figure 9e and Figure 9f). 425 

Although they have essentially the same response spectra, matched accelerograms induce very 426 

different SDOF responses (cf. Figure 9i, 9k, 9m and Figure 9j, 9l, 9n). In the case of the first 427 

matched accelerogram, the spring responds similarly to the target accelerograms (Figure 9m). At 428 

the occurrence of the amplitude pulse at 1 Hz the spring reaches the maximum drift (of about 6%) 429 

(Figure 9i) and immediately after its dominant oscillator frequency decreases to 0.4 Hz (Figure 9k). 430 

The response to the second matched accelerogram, however, shows a different, more intriguing 431 
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behavior (Figure 9j, 9l, 9n). The spring responds to the first amplitude pulse visible in the 432 

accelerogram S-transform at around 7 s (dashed line in Figure 9j 433 

) and reaches a drift higher than the 2.5% at which the ultimate base shear of the spring is attained 434 

in the capacity curve. Then a second pulse of higher amplitudes occurs at 12 s; the spring response 435 

reaches 4% drift, its strength is reduced to 55% (Figure 7) of its base shear capacity and its 436 

fundamental frequency drops from 1 Hz to 0.4 Hz. Finally, a third small pulse centered at 0.4 Hz 437 

occurs at 16 s and, although its amplitude is not large it is sufficient to lead the structure to its 438 

ultimate 7% drift capacity. 439 

From this example, we learn that the two matched accelerograms are both different than the target. 440 

But for the first accelerogram, these differences do not radically change the SDOF response, 441 

whereas the second accelerogram shows a more aggressive behavior. The level of aggressiveness of 442 

matched accelerograms is not easily generalizable. In Appendix C we present an example of two 443 

accelerograms matched to another target spectrum where one of the accelerogra ms is less 444 

aggressive than the target. 445 

Of course, these considerations apply to the response of this specific SDOF spring whose force-446 

deformation backbone curve is characterized by an abrupt strength drop after the yielding.  447 

The most interesting result is that time histories that are matched to the same spectrum (in this case 448 

the jagged one of a real record) can cause widely different responses to the same structure. This 449 

result suggests caution in selecting only a few matched records to test the fitness for purposes of an 450 

existing structure or of a newly designed one. Also, and perhaps even more importantly, with the 451 

knowledge of the nonlinear behavior of the structure that the matched time histories are intended to 452 

test, the seismologist could, using the S-transform technique adopted here, easily identify and 453 

cherry pick accelerograms that are either benign or aggressive for that specific structure. The 454 

spectral analysis findings discussed here could be used judiciously to help selecting a pool of 455 

records that are consistent with the target but are statistically balanced between aggressive and 456 
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benign behavior for the structure at hand. This arbitrariness, however, could potentially be misused, 457 

if so desired.  458 

Statistical Analysis of Time Histories Matched to Jagged Spectra: Intensity Measures  459 

The S-transform analysis presented in the previous paragraphs is a useful tool to look in detail at the 460 

characteristics of both the accelerograms and of the induced drift. However, this is a time-461 

consuming procedure not suitable for a comprehensive statistical analysis of the entire data-set. A 462 

simpler way to address the question about the degree of similarity between the matched and the 463 

target accelerograms is to carry out a statistical analysis of the similarity of an ensemble of IMs 464 

whose values are extracted from both the natural target record and from the 225 matched records 465 

for all the 226 permutations. The IMs considered here are: 466 

1. Peak Ground Acceleration, defined as        | ( )|, where h(t) is the ground 467 

acceleration expressed in g; 468 

2. Arias Intensity (Arias, 1970)    
 

 
∫  ( )   
 

 
 where T is the whole ground motion 469 

duration; 470 

3. Husid duration (defined as the duration time interval between 5%- 95% of AI) 471 

(Husid 1969); 472 

4. Standardized CAV (EPRI 2006) defined as the integral of the absolute value of the 473 

ground acceleration over non-overlapping time windows of 1s with acceleration greater than 474 

2.5% of g, that is      ∑  ( (  )       )
 
   ∫ | ( )|  

      

    
 where H is the 475 

Heaviside (or unit step) function equal to 0 if h(T) < 0.025g and to 1 elsewhere; 476 

5. Housner Intensity    ∫    ( )  
    

    
 where PSV is the pseudo spectral velocity 477 

and   is the oscillator period; 478 

6. Spectral intensity      ∫    ( )  
    

    
  where PSA is the pseudo spectral 479 

acceleration. 480 
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For each considered IM, the distribution of IM values computed on the 226 seed ground motions 481 

(real data) is compared separately with each one of the 226 IMs distributions computed using the 482 

matched data. Such a comparison was done for all the 226 matched families, but for the sake of 483 

synthesis Figure 10a displays only 19 distributions randomly selected among the 226 available. 484 

Nevertheless, the trends and the properties shown by this subset are fully representative of those of 485 

all the other families of matched ground motions. The IM distributions are graphically represented 486 

by boxplots, which provide a representation of distribution features such as width, symmetry, 487 

median, and other quantiles. The box limits shown here are the 25 th and 75th quantiles of the 488 

distribution, the whiskers located at the top and bottom of the box span the distribution over 2.7 489 

standard deviations (this range encloses a probability of about 99.3%), and finally the black 490 

horizontal line in the middle of the box is the median value. By comparing the box sizes, it is 491 

possible to conclude that for all the investigated IM that do not explicitly depend on the duration of 492 

the record the variability of the IM is indeed strongly reduced by the spectral matching, as intended. 493 

For example, the PGA values of seed data vary between 0.04 g and 1.6 g (corresponding to -1.4 and 494 

0.2 log10(PGA) values in Figure 10a), while the box plots of the 19 matched families are tightly 495 

compressed around their median values, and the boxes are reduced to a line with whiskers, in some 496 

cases only barely visible. As mentioned and as expected, the conclusion above does not hold for the 497 

Husid duration, because the matching does not significantly affect the duration of the seed record 498 

(see Appendix C for a detailed discussion), and only partially holds for AI and SCAV because these 499 

two IMs are dependent, although less directly, on the duration of the record. 500 

It is, however, more interesting and instructive to compare the median values of each IM computed 501 

for the matched families with the corresponding value of the target ground motion. This value is 502 

plotted as a dot in Figure 10a, Figure 10e, Figure 10g, Figure 10i, Figure 10k. The median values of 503 

peak ground acceleration (PGA), Housner Intensity and Spectral Intensity of the matched 504 

accelerograms are close to the corresponding values of the target record. Again, this is to be 505 
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expected since these IMs are directly or indirectly targets for the matching procedure and do not 506 

depend explicitly on the duration of the record.  507 

The Husid Duration is the only investigated parameter that after the matching still shows median 508 

values close to the median value computed on the seed ground motions and a certain variability (as 509 

shown by wide boxes Figure 10c). Moreover, the median duration of the matched families differs 510 

from the duration value of the target ground motion (except for few families, as discussed in the 511 

following). All these observations lead to conclude that the Husid Duration is the least modified IM 512 

by the matching process (in this case the coda ratio distributions are ma inly centered on 1, recall 513 

Figure C1 in Appendix C) 514 

The distributions of Standardized CAV and Arias intensity (Figure 10e and Figure 10g) can be 515 

better interpreted by looking jointly at the PGA and Husid distributions since they are expressed as 516 

the integral over time of quantities derived from the ground motion amplitude (Figure 10a and 517 

Figure 10c). If the median PGA is close to the target value (the box and the dot are close), but the  518 

Husid duration is higher than the target value (the box is above the dot as, e.g., in the first box in 519 

Figure 10a) then Arias and Standardized CAV have median values higher than the “target” value. In 520 

the second highlighted case, the matched ground motions have median PGA and Husid duration 521 

close to the “target” values and both Standardized CAV and Arias intensity distributions have 522 

median values close to the target. 523 

Finally, a more comprehensive visualization of the discrepancy between IM values of target and 524 

matched accelerograms is provided in Figure 10b, Figure 10d, Figure 10f, Figure 10h, Figure 10j, 525 

Figure 10l. This figure shows, for all the considered IMs, the distribution of the difference between 526 

the median value computed for each one of the 226 families of matched time histories (namely the 527 

center of the box plot in Figure 10a, Figure 10c, Figure 10e, Figure 10g, Figure 10i, Figure 10k) and 528 

the IM value of the target accelerogram of that family (the dot in Figure 10a, Figure 10c, Figure 529 

10e, Figure 10g, Figure 10i, Figure 10k). The asymmetric tail of the histograms related to Arias 530 
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intensity, Standardized CAV, and Husid duration clearly shows that the values of these IMs 531 

estimated from the matched records tend to be higher than the values from the target record. The 532 

systematic over-estimation of these IMs is apparently induced by the matching procedure. The P GA 533 

distribution has a short- left tail (Figure 10b), however, the 87% of the differences are within the 534 

±15% range delimited by the vertical dashed lines, and only the remaining 13% is smaller than -535 

15%. The differences between the values of Housner and Spectral Intensities of matched and target 536 

accelerograms are instead minimal (Figure 10k, Figure 10l), since these quantities are directly 537 

related to the response spectra matched by the procedure. For these two IMs the histograms of the 538 

differences are plotted here only as sanity checks.  539 

The statistical comparisons between the distributions of differences between Intensity Measures 540 

(IMs) of matched and target accelerograms show high similarities for those IMs (e.g., PGA, 541 

Housner Intensity and Spectral Intensity) that are not heavily dependent on duration. On the 542 

contrary, the distributions of Husid Duration, Standardized Cumulative Absolute Velocity (SCAV) 543 

and Arias Intensity (AI) are skewed to the left, implying that these IMs tend to have higher values 544 

for matched than target accelerograms. This result supports the seismological observations on coda 545 

amplification of the matched time-series (Figure 5). We also know that such a coda can determine a 546 

more aggressive (Figure 9n) or more benign (Figure C2n) behavior on a SDOF response, but we did 547 

this exercise on only a few examples so far. In the following, we will perform a systematic 548 

investigation to statistically characterize the behavior of the entire matched accelerograms dataset, 549 

with respect to the studied SDOF response. 550 

Statistical Analysis of the Response of a Nonlinear Spring. 551 

Taking advantage of a large number of matched waveforms, we compute the distribution of 552 

differences,                          , of the spring maximum drift induced by the entire 553 

ensemble of matched accelerograms and that of the target accelerogram (Figure11a). This 554 

distribution has a median value equal to zero and the interquartile range (IQR defined as Q 84 – Q16) 555 
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is 0.7% wide. This result indicates that, at least for this spring, there is no evidence that the matched 556 

time histories induce structural responses that are either more benign or more aggressive than those 557 

of target accelerograms.  558 

However, for a deeper understanding of what makes a matched accelerogram either more 559 

aggressive or more benign for the considered spring we categorized the target accelerograms into 560 

four classes based on the severity of their maximum spring responses: yielding class (between 0.5% 561 

and 2.5% drift), strength drop class (between 2.5% and 4% drift), plateau class (between 4% and 562 

7%), and ultimate class (equal to 7% drift). (See Figure 7 for the definition of the four response 563 

severity classes).  564 

Figure11 shows the histograms of the drift misfits of time histories matched to target accelerograms 565 

whose responses belong to the yielding class (Panel b), to the strength drop class (Panel c), to the 566 

plateau class (Panel d) and the ultimate/collapse class (Panel e). 567 

If the response spectrum matching operation does not introduce biases in this spring’s response and 568 

if we assume that the response spectrum is everything that matters for estimating nonlinear 569 

structural response (which, of course, is not entirely true ), then the drifts related to the target 570 

accelerograms and the drifts related to the matched accelerograms should belong to the same 571 

response severity class (Table1). This is the case for the “yielding target accelerograms”  572 

(Figure11b), in which the median and the average values of the drift misfits are equal to 0 and the 573 

IQR is of the order of 0.4%. All the matched accelerograms induce a response that is below yielding 574 

(see Table 1). This is expected since the spring behaves linearly for all the matched accelerograms 575 

and for linear responses the spectrum is all that matters.  576 

A different behavior, however, is observed when the response of the spring enters the nonlinear 577 

regime. For the matched time histories whose target belongs to the strength drop class (Figure11c), 578 

the median drift difference equals to 0% and the IQR is on the order of 1.4%. Among the matched 579 

time histories, 1088 are associated with a linear behavior (visible as a histogram on the left tail of 580 
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the distribution), 1558 matched time histories induce a more severe response and drive the spring to 581 

the plateau segment of the capacity curve (see histogram in the right tail), and finally 164 time 582 

histories drive the spring to its ultimate 7% drift (see histogram on the far-right tail). 583 

The most scattered distribution of drift difference is the one corresponding to matched 584 

accelerograms whose target accelerograms push the spring into the plateau part of the backbone 585 

curve (Figure11d). This plateau class is composed of 8775 matched waveforms (corresponding to 586 

39 target time histories) with a median difference in spring response equal to -0.4% drift and IQR 587 

on the order of 2.5%. Among the matched waveforms, 18 induce a spring response within the 588 

yielding segment (visible as a histogram on the far- left tail of the distribution), 2455 induce a drift 589 

within the strength drop segment (histogram on the left tail), and 909 lead the spring to its ultimate 590 

drift (see histogram on the right tail). Looking at the overall statistic for the plateau class (Table 1),  591 

almost 40% of the matched accelerograms cause responses that are either less severe (28% in 592 

strength drop and 0.2% even in the linear range) or more severe (10% in ultimate) than that of the 593 

target time histories. 594 

Finally, the ultimate/collapse drift class (Figure11e) contains 15300 (corresponding to 68 target 595 

time histories) with an asymmetric distribution characterized by a tall bin centered on zero (the 596 

median is equal to zero and IQR is on the order of 0.1%). The left tail composed of 2366 597 

accelerograms driving the spring within the plateau segment of the capacity curve and 73 598 

accelerograms with drift belonging to the drop strength segment of the capacity curve.  599 

In synthesis, from Figure11 we can conclude that: 600 

1. Two time histories with the same response spectrum can cause completely different 601 

nonlinear responses in the same structure. The distribution of the maximum induced drifts, 602 

which is structure-specific, can be very wide when the target spectrum is high enough that 603 

the matched time histories cause, on average, a maximum response in the nonlinear range. 604 

2. We observe no distinct bias in the nonlinear response of matched time histories for 605 
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this spring. Given that this spring has a brittle behavior (essentially a strength reduction 606 

factor, R, equal to 1.0), this result is consistent with the findings of others (e.g., Bazzurro 607 

and Luco, 2006, Luco and Bazzurro, 2007, Seifried and Baker, 2016) that used, as 608 

conventionally done, a smoothed target spectrum rather than the jagged target spectrum used 609 

in this study.  610 

This analysis shows that the benign or aggressive behavior of a matched accelerogram does not 611 

depend only on the features produced by the spectral matching (like the coda amplification or IMs 612 

left tails), but also on the characteristics of the structure that experiences them. This observation 613 

confirms for records matched to jagged spectra the findings in Bazzurro and Luco (2006) that 614 

accelerograms matched to a smoothed spectrum (or any accelerogram, for that matter) cannot be 615 

labeled as "aggressive" or "benign" without considering a particular structural vibration period and 616 

specific yield strength and cyclic behavior of the structure. Of course, this conclusion needs to be 617 

pursued beyond the studied SDOF.  618 

Conclusions 619 

This work represents a first step towards resolving the ongoing debate on whether the matched 620 

accelerograms are legitimate substitutes for real ones and on whether they produce biased structural 621 

response estimates. Presently the debate suffers from the following caveats (i) selected real 622 

accelerograms are used as the seed for the matching, which modifies their seismological 623 

characteristics and thus may systematically change the structural response (i.e., induce bias) (ii) 624 

beyond yielding, the structural response is no longer controlled only by the spectral amplitude of 625 

the input ground motion (see Seifried and Baker 2016 for an in-depth discussion) and (iii) other 626 

quantities that are not explicitly matched by the procedure may have an impact on the response. 627 

To overcome such limitations, we established an “unconventional” engineering benchmark, 628 

comparing and contrasting the seismological characteristics of a set of matched and recorded 629 

accelerograms sharing the same real “jagged” response spectrum. The study is based on 226 630 
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accelerograms, corresponding to a scenario centered on magnitude 6.2 and a source-to-site distance 631 

of 20 km. Iteratively, 225 accelerograms were made spectrum compatible with the response 632 

spectrum of the remaining one using a matching procedure that operates in the time domain. The 633 

226 permutations generated more than 50,000 matched waveforms that constitute the basis for our 634 

statistical study. 635 

The seismological conclusions of the papers concern the similarities of matched and real 636 

accelerograms that shared the same target spectrum. To compare two accelerograms we introduced 637 

and employed a new method; that is based on the analysis of the coherence of S-transforms along 638 

the time axis. We found that amplitude bursts injected in the matching procedure control the 639 

spectrum response shape in the 2-10 Hz frequency range, at least for the accelerograms of the 640 

investigated scenario. This suggests that spectral matching generates accelerograms with the same 641 

dominant frequency (in the 2-10 Hz range in our scenario) of the S-waves of the target 642 

accelerograms. However, although the S-waves of target and matched accelerograms have common 643 

features, matched accelerograms show, on average, higher coda amplitudes over a time window of 644 

5 s; this discrepancy can be ascribed to the longer duration of low-frequency wavelets inserted by 645 

the matching procedure. This is also seen in the statistical analysis of the Intensity Measures (IMs), 646 

where the IMs dependent on duration (e.g., Husid duration, SCAV, Arias intensity) show positively 647 

biased central metrics. 648 

Moving towards the engineering side of the study we focused our efforts on studying the effects of 649 

spectrum matching on the response of a SDOF oscillator with a brittle nonlinear behavior. We 650 

looked both at the dispersion and at the bias of structural responses to matched records. 651 

The most interesting result is that accelerograms matched to the same spectrum can cause structural 652 

responses that are widely different from one another and also widely different than the response of 653 

the real record that shares the same response spectrum. In other words, in a pool of accelerograms 654 

matched to the same spectrum some can cause drifts associated to moderate damage while some can 655 
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cause drifts associated to collapse. More specifically, based on a few examples, we observed that 656 

matched accelerograms having a longer coda can be either more aggressive or gentler to the specific 657 

SDOF system than the real one. To draw a clear-cut conclusion on the possible response bias of this 658 

SDOF spring, a statistical analysis of the results showed that no appreciable bias in the response of 659 

accelerograms (compared to the case of real records) when matched to the jagged spectra of real 660 

records. These results may not hold for other nonlinear SDOF oscillators but was somewhat 661 

expected for this one since it has a strength reduction factor essentially equal to unity. However, 662 

more investigations using additional nonlinear SDOF and multi-degree-of- freedom structures are 663 

needed to shed more light on the issue of bias possibly induced by spectrum-compatible records 664 

matched to jagged (or smooth) spectra.  665 

We believe, however, that some of the results and the tools developed in this study using such an 666 

atypical approach are also applicable to the conventional case of accelerograms matched to 667 

smoothed spectra. In particular using the tools proposed here, a seismologist could identify the 668 

features that make accelerograms compatible to smoothed spectra either benign or aggressive for 669 

the structure of interest. Therefore, given the limitations to using very few matched records in 670 

practical applications, these tools may help seismologists in judiciously choosing an appropriate 671 

balance of benign and aggressive signals for engineering purposes. Hence, we recommend that a 672 

seismologist is first supplied by the engineer, at the bare minimum, with a nonlinear SDOF 673 

representation of the structure so that the record selection is not done blindly. These 674 

recommendations derive naturally from the results of this work but it is our intent to confirm them 675 

by carrying out a specific study based on accelerograms matched to conventional smooth 676 

hazard/design spectra. 677 
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 TABLE 

Table 1: overview of the SDOF responses caused by matched accelerograms.  

 693 

 

 # 

Target 

#Matched Yielding Strength-

Drop 

Plateau Ultimate 

Yielding 76 17100 17100(100%)     

Strength-Drop 43 9675 1088 (11.2%) 6865(70.9%) 1558(16.2%) 164(1.7%) 

Plateau 39 8775 18 (0.2%) 2455 (28%) 5393(61.4%) 909 (10.4%) 

Ultimate 68 15300   73(0.5%) 2366(15.5%) 12861(84%) 
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List of Figure Captions 695 

Figure 1 Panel a: Magnitude-Distance scatter plot (grey dots) overlapped with the histogram of the 696 

distance (grey bars). Panel b: 226 response spectra (grey lines), the black dashed line is a randomly 697 

selected spectrum used as “target” for illustrative purposes. Panel (c): response spectra matched 698 

within the 15% tolerance (black lines), the black dashed line the target plotted. Panel (d): response 699 

spectra with a misfit greater than the 15% tolerance.  700 

Figure 2: Distribution of the median misfit for each matched family as a function of frequency in 701 

the whole 0.1 -35 Hz range.  702 

Figure 3 Target accelerogram (a) and matched time history (b) plotted along with their S-transform 703 

(c and d, respectively). The target and matched S-transforms coherence image as a function of 704 

frequency and time (e) is represented using a sequential palette, with boundaries varying from 0 705 

(clear) to 1 (darker). The white star shows the time-frequency location where the maximum value of 706 

coherence product occurs. 707 

Figure 4 Distribution of the frequency where the coherence product between the S-transforms of 708 

matched and target histories reaches the maximum value. The values in the legend indicate the 709 

different maxima values, where 1 stands for high coherence between the S-transforms (as the case 710 

shown in Figure 3) and a value lower than 0.6 stands for a low coherence. The dashed vertical line 711 

indicates the frequency of the maximum S-transform amplitude on the target accelerogram. 712 

Figure 5 (a) example of a target accelerogram (black line), the envelope is traced as a continuous 713 

line, the vertical line is the time when the coda starts. b: the envelope of the target accelerogram is 714 

plotted as a solid line, the envelopes of the accelerogram matched to this time histories are plotted 715 

as density of points. Panel c: ratio between the matched and the target envelopes plotted with the 716 

same palette of panel b, the horizontal dashed lines are the ratio values averaged on non-717 
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overlapping time windows with a duration of 1 second. Panel d, 2D histogram of the envelope ratio 718 

values computed for all the matched-target data pairs (50850) the palette indicates the percentage of 719 

pairs in each cell. For the sake of clarity, the plot neglects the cell with less than 2% of data. The 1D 720 

histograms are computed in each time-window of 1 s and they are plotted as well. The bins height is 721 

related to the background tone, the corresponding % are described in the legend. 722 

Figure 6 Time-frequency analysis of the RSPMatch matching process. First column (a) from top to 723 

bottom: the four passes of the spectral matching seen on spectrum response with details on line 724 

types given in the legend. Second column (b): target and seed S-transform amplitude followed by 725 

the S-transform evolution of the four passes of the seed time history processed by the spectral 726 

matching software. Details on palette and markers are given in the legend. Third column (c): target 727 

and seed time histories followed by the intermediate time histories produced by the spectral 728 

matching software. The accelerogram after the fourth and last iteration is the one whose spectrum 729 

successfully matches the target. 730 

Figure 7 Top: 1 Hz acceleration sinusoid with amplitude increasing at each cycle from 0.008 to 0.12 731 

g with increments of 0.01g per cycle. Such a sinusoid is used as acceleration input to the spring 1a 732 

FEMA model. Bottom: Force-deformation backbone curve of the spring 1a model shown as base 733 

shear normalized by the base shear at yielding versus drift ratio.  734 

Figure 8 Overview of the features of one of the 226 real target waveforms and the corresponding 735 

spring response. From the top to the bottom: response spectrum, accelerogram, accelerogram S-736 

transform zoomed between 1 and 5 Hz, accelerogram S-transform zoomed between 0 and 1 Hz; 737 

drift time-history, drift S-transform, and spring cyclic behavior. The solid vertical line indicates the 738 

occurrence time of the maximum lateral drift. Details on the S-transforms scales are given in the 739 

legend.  740 

Figure 9 Comparison between two accelerograms matched to the target spectrum of the 741 

accelerogram shown in Figure 8 and the corresponding spring responses. Each column has the same 742 
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structure utilized in Figure 8; details on graphic features are reported in the legend. The instant 743 

where the spring reaches a drift higher than 2.5% is plotted as a dashed line on panels ( f), (h) and 744 

(l). 745 

Figure 10 On the left, comparison between the IM values derived from target records and matched 746 

records for 19 families randomly selected from the pool of 226. The panels on the right show, for 747 

each IM, a histogram of the difference between the median values of the IM measure of the 226 748 

matched families and the corresponding IM value of the target accelerogram. The Legend explains 749 

the different symbols. 750 

Figure11 Histograms of the differences between the drift of the accelerograms matched to the target 751 

spectrum (“matched drift”) and the drift of the target accelerograms. (a) Drift misfit for all the 752 

matched accelerograms. Drift misfit (filled histograms) for matched accelerograms whose seed 753 

accelerogram generated a drift belonging to the yielding (b), strength drop, plateau, and ultimate 754 

classes. The overlaid histograms refer to drift misfits of matched time histories belonging to classes 755 

that are different from that of the seed. Spring capacity curve are also shown on the right side; the 756 

segment corresponding to the seed class response is highlighted. The Legend explains the different 757 

symbols. 758 

Figure A1 Improved cosine wavelets, as implemented in RspMatch 2009, for frequencies spanning 759 

form 0.5 Hz to 20 Hz along with the corresponding S-transforms. 760 

Figure B1  See Figure 5 legend for the description of graphic features 761 

Figure C1 See figure 8 legend for the description of graphic features. 762 

Figure C2  See figure 9 legend for the description of graphic features  763 
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 764 

APPENDIX C:  Analysis of the matching effect on the seed waveform 765 

The subsidiary question arising from the analysis of matched coda with respect to the target (Figure 766 

5 in section 3.3) is whether the spectral matching systematically amplifies the seed accelerogram 767 

coda amplitude. To give a quantitative answer we compared a seed accelerogram with the 225 768 

accelerograms obtained by matching it to different target (Figure A1a, A1b and A1c). Such a 769 

comparison, which is based on the ratio between the accelerogram envelopes, is done according to 770 

the following steps: 771 

- Given a seed accelerogram  ( ), we computed its envelope defined as the amplitude 772 

of the Hilbert transform | ( ( ))|) (Fig A1a). 773 

- We manually picked the beginning of the coda accelerogram (tcoda) by a visual 774 

inspection of the accelerogram and of the envelope (e.g., see vertical line in Fig 6).  775 

- We selected the 225 matched accelerograms (  ( ), with i ranging from 1 to 225, 776 

having the same seed accelerogram  ( ) and we compute their envelope | (  ( ))| 777 

- We attribute the same tcoda to all the matched signals. 778 

- We normalized the accelerogram amplitudes to the same PGA value. This is a 779 

necessary step since the target spectra have different amplitudes. We look at the relative 780 

amplitudes of coda with respect to PGA. 781 

- We aligned the seed and all the matched accelerograms with respect to tcoda. 782 

A visual comparison of the envelope amplitudes is given in Figure A1b. After tcoda, the envelopes of 783 

matched accelerograms have scattered amplitude (plotted as density of curves) implying that the 784 

shape of the seed accelerogram coda has been modified. The following step quantifies such a coda 785 

modification by computing the ratio between envelopes. Figure A1c displays the envelope ratio as a 786 

function of time, where the ratio curves are plotted as density of points. The envelope ratio is 787 
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mainly equal to one before the coda, starts to increase at the end of the strong phase and then 788 

reaches high values (as high as 10 in the example in the figure) on the coda. 789 

In order to reduce the effect of the possible errors in picking the tcoda, and to smooth the local 790 

oscillations of the envelope ratio curve, we computed the average envelope ratio (ER) over a 791 

moving and not-overlapping time-window of 1 s.  792 

    ∫
| ( ( ))|

| ( ( ))|

   

 

   

ER values are plotted as horizontal dashed lines in Figure A1c.  793 

Finally, we extended this analysis to the whole data se t of 50850 waveforms. In Figure A1d the 794 

distribution of the average enveloped ratio is plotted as a 2D histogram. The density of points in 795 

each histogram cell is expressed in percentage of waveforms. Note that to make the figure more 796 

readable the histogram cells with less than 2% (almost 1000 waveforms) are neglected.  797 

We observe that the ER values are scattered in the first 2 seconds of the coda and that the 798 

distributions are centered at 2 (1 in log2 scale). In the following seconds the ER distributions are 799 

centered on 1 (0 in log2 scale) instead. Therefore, we conclude that the matching process modifies 800 

the relative PGA coda ratio in the first 2 s of signal and, on average, enhances the coda amplitudes 801 

by a factor 2. Afterwards the amplitude modifications are not significant.  802 
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Appendix C: S-transform analysis of a matched accelerogram less aggressive than the target  803 

We analysed in detail the response of the SDOF spring to three different accelerograms with the 804 

same jagged spectrum. Figure C1 refers to the target accelerogram, which drives the SDOF to 805 

collapse, whereas Figure C2 presents the results of two accelerograms whose spectrum is matched 806 

to that of the accelerogram in Figure C1. The first matched accelerogram (Figure C2 left column) 807 

because of longer coda is gentler than the second matched one (Figure C2 right column ). Indeed, in 808 

the former case the accelerogram larger amplitudes (and the relative energy) are distributed over 809 

longer time windows in the frequency range of interest and, as a consequence, the SDOF enters in 810 

the hysteretic loop but never reaches the ultimate drift. On the contrary, both the target 811 

accelerogram Figure C1 and the second matched accelerogram (Figure C2 right column) both have 812 

a single amplitude (and energy) burst, which is sufficient to abruptly send the SDOF to the ultimate 813 

drift capacity. 814 


