







### **Exploratory research project:**



Development of a manufacturing process for a simulating fuel for the study of fine fragmentation in LOCA

Mehdi Belqat (IRSN)

Fabrice Rossignol (IRCER), Tatiana Taurines (IRSN), Jean Desquines (IRSN)

# **Context of the study – fuel fragmentation**

Fuel pellets undergo significant changes during their life in the reactor. Their condition is also potentially degraded during an incident or accident.





### **Study Objectives – Simulating fuel**

A few programs exist for the study of fragmentation on irradiated fuels:

- Many influential parameters: burnup, irradiation history, test conditions (temperature, pressure and quantity of gas in the rod, dT/dt)
- Few tests (expensive, material consuming)
- The objective of the study is to develop a pre-fragmented fuel fabrication process to various degrees:
- Ability to have several pellets with various characteristics of fragmentation
- Use outside the hot cell and possibility of studying fragmentation, relocation and dispersion/ejection under many conditions (crushing of rod section, impact, 4-point bending, semi-integral tests)...



## **Project structure**





# Main characteristics of model pellets

CAD software used: Rhino7/Grasshopper

### Pellet geometry:

- Modeling of dish and chamfers
- External diameter: ~ 8.2 mm
- Height ~ 13.5 mm

Fragments: Points generation inside the pellet



IFZ (Inter-Fragments zone): "Brittle" but facilitating handling







# Direct printing by stereolithography

### Direct printing by stereolithography

- 3D CERAM C900 from Novadditive
- Resolution: ~ 0.035mm
- Fabrication without supports
- Material: Alumina Al<sub>2</sub>O<sub>3</sub>
- Light-curing reaction of ceramic resin
- Debinding in air: removal of organic additives (1°C/min up to 600°C for 2 hours)
- Sintering: partial melting of the ceramic powder for densification (1700°C for 2 hours for maximum mechanical properties)







# 1. CAD model and validation in stereolithography printing

### CAD modeling with interconnected fragments



Fillets between fragments

### Pellet characteristics:

- 50 fragments of an average size of ~ 2 mm
- Distance between fragments: 0.4 mm
- Diameter of the bridges: 0.4 mm
- 0.2 mm fillets on bridges to prevent crack formation

### Feasibility test with Novadditive

#### Fabrication of two pellets





# 2. Lateral compression test

Hertz model:

• Maximum stress is at the center of the disc and corresponds to a tensile stress along the x axis.

$$\sigma_{x} = \frac{-2P}{\pi L} \left\{ \frac{x^{2}(R-y)}{\beta_{1}^{4}} + \frac{x^{2}(R+y)}{\beta_{2}^{4}} - \frac{1}{2R} \right\} (1)$$

$$\sigma_{y} = \frac{-2P}{\pi L} \left\{ \frac{(R-y)^{3}}{\beta_{1}^{4}} + \frac{(R+y)^{3}}{\beta_{2}^{4}} - \frac{1}{2R} \right\} (2)$$

$$\beta_{1}^{2} = (R-y)^{2} + x^{2}$$

$$\beta_{2}^{2} = (R+y)^{2} + x^{2}$$

$$\sigma_{xy} = \frac{2P}{\pi L} \left\{ \frac{x(R-y)^{2}}{\beta_{1}^{4}} + \frac{x(R+y)^{2}}{\beta_{2}^{4}} \right\} (3)$$



• Assuming that the tensile stress along the x axis is responsible for the sample failure, the tensile strength  $\sigma_f$  is obtained by substituting x=y=0 into equation 1 to obtain :

$$\sigma_f = \frac{2P}{\pi DL} = \frac{P}{\pi RL}$$



# 3. Results : Tests on fragmented and pellet





**IRSN** 



|                   | Force (N) | σ <del>í</del> (MPa) |
|-------------------|-----------|----------------------|
| Pellet            | 439       | 2.5                  |
| Pellet & cladding | 447       | 2.6                  |

- $\rightarrow$  Same fracture strength
- $\rightarrow$  Brittle pellets
- $\rightarrow$  Need to change the nature of IFZ for higher strength

# 3. Results : New strategy of fabrication

Following fabrication, no IFZ cleaning. -

- Goal: exploiting the densification difference between the polymerized fragments and the unpolymerized IFZ.
- IFZ thickness reduced to 200  $\mu$ m for higher mechanical properties.
- Several sintering temperatures tested to ensure a good fragmentation and sufficient mechanical properties.
- Fabrication of reference bulk pellets.





## 3. Results : Bulk pellets



| Temperature (°C) | Force (kN) | Energy (J) | σ <sub>f</sub> (MPa) |
|------------------|------------|------------|----------------------|
| 1300             | 0.6        | 0.02       | 4.3                  |
| 1400             | 2.3        | 0.14       | 12.3                 |
| 1500             | 3.1        | 0.2        | 34                   |
| 1600             | 3.3        | 0.21       | 54.5                 |
| 1700             | 4.4        | 0.47       | 107                  |

• Higher resistance with higher sintering temperature.

## 3. Results : Test on pre-fragmented and uncleaned pellets





- Fragmentation occurs mainly in the IFZ.
- IFZ-controled fragmentation for the pellet sintered at 1700°C, as there is more individual and smaller fragments.





# 3. Results : Test on pre-fragmented and uncleaned pellets without cladding

|                  |           |            |                      | σ <sub>f</sub> (MPa) |   |
|------------------|-----------|------------|----------------------|----------------------|---|
| Temperature (°C) | Force (N) | Energy (J) | σ <sub>f</sub> (MPa) | Bulk                 | ٠ |
| 1300             | 527       | 0.01       | 2.9                  | 4.3                  | • |
| 1400             | 1054      | 0.03       | 6.1                  | 12.3                 |   |
| 1500             | 1797      | 0.07       | 11.2                 | 34                   | • |
| 1600             | 2287      | 0.11       | 15.2                 | 54.5                 |   |
| 1700             | 1692      | 0.08       | 10.8                 | 107                  |   |

IRSN



- Same behavior as the bulk pellet.
- Higher resistance with higher sintering temperature, except for 1700°C.
- A drop at 350 N indicating a cracking which could induce a drop in the overall resistance of the pellet

## 3. Results : Test on pre-fragmented and uncleaned pellets with cladding



- Mostly powder for 1300 and 1400°C as the fragments are not consolidated enough.
- As before, IFZ-controlled fragmentation at 1700°C as there is more individual and smaller fragments.



### 3. Results : Test on pre-fragmented and uncleaned pellets with cladding



| Temperature<br>(°C) | Force (kN) | Energy (J) | σ <sub>f</sub><br>(MPa) | σ <sub>f</sub> (MPa) NO<br>cladding |
|---------------------|------------|------------|-------------------------|-------------------------------------|
| 1300                | 1.5        | 0.15       | 8.2                     | 2.9                                 |
| 1400                | 1.4        | 0.07       | 8.4                     | 6.1                                 |
| 1500                | 2.4        | 0.15       | 14.9                    | 11.2                                |
| 1600                | 3.4        | 0.27       | 22.9                    | 15.2                                |
| 1700                | 4.2        | 0.39       | 30.3                    | 10.8                                |



- Same behavior as the full pellet.
- Higher resistance with higher sintering temperature
- Sintering at 1700°C seems to offer a good fragmentation in the IFZ, with individual fragments and high mechanical properties.

## 4. Conclusions and prospects

Excessive embrittlement for IFZ cleaned pellet

- Uncleaned pellets still offer a good fragmentation with higher mechanical properties.
- Chosen sintering temperature: 1700°C.

Future work:

IRS

- Fabrication of 40 pre-fragmented pellets at 1700°C to perform a Weibull's statistics
- Performing a semi-integral test on the pre-fragmented pellets
- Fabrication and mechanical characterization of new pellets with different sizes of fragments
- Towards DEM modeling to support experimental data



Thank you for your attention

